
Gauge duality and low-rank

spectral optimization

by

Ives José de Albuquerque Macêdo Júnior

B.Sc., Universidade Federal de Pernambuco, 2005
M.Sc., Associação Instituto Nacional de Matemática Pura e Aplicada, 2007
D.Sc., Associação Instituto Nacional de Matemática Pura e Aplicada, 2011

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

in

The Faculty of Graduate and Postdoctoral Studies

(Computer Science)

THE UNIVERSITY OF BRITISH COLUMBIA

(Vancouver)

December 2015

c� Ives José de Albuquerque Macêdo Júnior 2015



Abstract

The emergence of compressed sensing and its impact on various applications in
signal processing and machine learning has sparked an interest in generalizing
its concepts and techniques to inverse problems that involve quadratic mea-
surements. Important recent developments borrow ideas from matrix lifting
techniques in combinatorial optimization and result in convex optimization
problems characterized by solutions with very low rank, and by linear opera-
tors that are best treated with matrix-free approaches. Typical applications
give rise to enormous optimization problems that challenge even the very best
workhorse algorithms and numerical solvers for semidefinite programming.

The work presented in this thesis focuses on the class of low-rank spectral
optimization problems and its connection with a theoretical duality framework
for gauge functions introduced in a seminal paper by Freund (1987). Through
this connection, we formulate a related eigenvalue optimization problem more
amenable to the design of specialized algorithms that scale well and can be
used in practical applications.

We begin by exploring the theory of gauge duality focusing on a slightly
specialized structure often encountered in the motivating inverse problems.
These developments are still made in a rather abstract form, thus allowing for
its application to different problem classes.

What follows is a connection of this framework with two important classes
of spectral optimization problems commonly found in the literature: trace
minimization in the cone of positive semidefinite matrices and affine nuclear
norm minimization. This leads us to a convex eigenvalue optimization problem
with rather simple constraints, and involving a number of variables equal to
the number of measurements, thus with dimension far smaller than the primal.

The last part of this thesis exploits a sense of strong duality between the
primal-dual pair of gauge problems to characterize their solutions and to devise
a method for retrieving a primal minimizer from a dual one. This allows us
to design and implement a proof of concept solver which compares favorably
against solvers designed specifically for the PhaseLift formulation of the cele-
brated phase recovery problem and a scenario of blind image deconvolution.
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Preface

The work presented herein is the product of a joint work and active col-
laboration between myself and my supervisor, Professor Michael Friedlander.
The material that appears in Chapter 2 and parts of Chapter 3 are the result
of additional collaboration with Dr. Ting Kei Pong while he was a postdoc
at UBC. The developments that result from this joint work and collaboration
have been published in the SIAM Journal on Optimization; see Friedlander,
Macêdo, and Pong (2014).

Some parts of Chapter 3 as well as the developments and results appearing
in Chapters 4 and 5 have been submitted to the SIAM Journal on Scientific
Computing and made publicly available in preprint form; see Friedlander and
Macêdo (2015).

The proof of concept implementation described in Chapter 4 was developed
in Matlab jointly by myself and Professor Michael Friedlander, while the
specialized solvers against which we compare our results in Chapter 5 were
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Chapter 1

Introduction

Recovering a signal from partial, and possibly corrupted, measurements is
a fundamental and ubiquitous problem in science and engineering. In many
applications, the nature of the measurement acquisition process limits the type
and number of observations available for recovery. This limited availability of
data in relation to the unknown signal’s ambient space often leads to highly
ill-posed inverse problems.

Common approaches to resolve this ambiguity often lead to optimization
problems whose solution one wishes to (perhaps approximately) reproduce
the measurements while also exhibiting some application-dependent extremal
property expected from a good estimate. Classical examples of these ap-
proaches are Tikhonov/2-norm regularization and the problem of obtaining
a minimum-norm solution to an underdetermined linear system.

The past decade has seen the emergence and fast growth of sparse reco-
very and compressed sensing, where one expects the signal to possess some
low-dimensional structure, typically represented by the number of coefficients
necessary for its representation as a linear combination of elements from some
basis or larger dictionary. This approach has received much interest for its
theoretical recovery guarantees and the development of effective computational
methods for solving the challenging optimization problems that are required.

Motivated by the successful application of these developments, there has
been a growing body of work that extends concepts and techniques from sparse
recovery to problems with different senses of low-dimensionality and more
general measurements. Recent examples include extensions of sparse recovery
results to low-rank matrices—in which the rank of a matrix is the counterpart
to the number of nonzeros in a vector—and problems where the measurements
are quadratic, which are then seen as linear measurements from a “lifted”
matrix space in which the unknown signal is rank-1.

For the latter examples, there have been suitable theoretical recovery
results, but the computational cost associated to the lifting technique has
limited the scale of the problems and the practical use of these approaches.
The main purpose of this thesis is to study the low-rank spectral optimization
problems that arise from these techniques and propose numerical methods able
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1.1. From sparse to low-rank signal recovery

to handle large-scale problems that arise in practice.
In the following sections we contextualize and introduce the problems that

motivate this work along with existing approaches for their solution. We then
describe the class of gauge optimization problems, which neatly captures these
and a wide variety of other formulations that arise from inverse problems, and
provides the basis for our subsequent developments.

1.1 From sparse to low-rank signal recovery

In a number of applications of signal processing, it has been observed that
digital signals admit compact approximate representations using techniques
such as transform coding, i.e., they can be well represented by just a few
elements from a suitable basis or dictionary of functions and their coefficients.

This simple observation forms the basis for many compression schemes,
such as the ubiquitous JPEG (Taubman and Marcellin, 2001), and naturally
leads to the ambitious endeavour of searching for an optimally sparse signal
that satisfies a set of measurements.

More formally, let s 2 Rd be a vector representation of our digital signal,
� 2 Rd⇥n a basis or overcomplete dictionary of elementary signals (i.e., d  n
and rank� = d),  2 Rm⇥d a model for a linear measurement process and
b 2 Rm a vector of possibily corrupted observations under this process. This
quest for a sparsest representation of s with respect to �, while approximating
the measurements kb� sk

2

 ✏, can be posed as the optimization problem

minimize

x2Rn
kxk

0

subject to kb� Axk
2

 ✏,

where s = �x, A =  � 2 Rm⇥n and kxk
0

:= #{i = 1, . . . , n | x
i

6= 0}.
Although easy to state, this problem is extremely difficult to solve in general,
in fact it is known to be NP-hard; c.f. Natarajan (1995).

While studying exact sparse overcomplete representations of signals, Chen,
Donoho, and Saunders (2001) propose a convex relaxation that substitutes
the function k·k

0

by the 1-norm of vectors. This approach leads to a convex
minimization problem of the form

minimize

x2Rn
kxk

1

subject to kb� Axk
2

 ✏,

where kxk
1

:=

P

n

i=1

|x
i

| , which we refer to as the basis pursuit denoise (BPDN)
problem. This convex optimization problem can be solved in practice using a
number of techniques; e.g., see van den Berg and Friedlander (2011).

2



1.1. From sparse to low-rank signal recovery

Figure 1.1: Unit balls of the 1-, 2- and max-norms in R2.

Figure 1.2: Unit balls of the 1-, 2- and max-norms in R3.

By looking at the unit balls of different p-norms (Figures 1.1 and 1.2), one
can intuitively observe that a minimum-norm point on an affine subspace in
general position is most likely to be sparse if the norm used is the 1-norm.

The practical observation that basis pursuit (✏ = 0) solutions often lead
to an exact recovery of sparse signals led to further study of the relationships
between the original and the convexified problems. This convex optimization
approach to sparse recovery gained tremendous momentum with theoretical
results providing a number of conditions under which these two problems are
in fact equivalent, or at least bound the error for the BPDN solution—e.g.,
see Candès and Tao (2005); Donoho (2006); Bruckstein, Donoho, and Elad
(2009).

Motivated by the practical success and available theoretical tools and tech-
niques developed for compressed sensing based on the 1-norm heuristic, there
has been an effort to extend this framework to other classes of problems
in which different notions of complexity play roles analogous to that of the
cardinality (i.e., number of nonzeros) in sparse recovery.

3



1.1. From sparse to low-rank signal recovery

Most notable is the generalization to matrices in which the rank function
serves as the matrix counterpart to the number of nonzeros in a vector. Appli-
cations in which a low-rank matrix is sought appear in many disciplines and
examples include: factor analysis, where one looks for low-degree statistical
models; the computation of low-order controllers or realizations of linear sys-
tems in control theory; and finding low-dimensional Euclidean embeddings.
In such scenarios, one seeks a lowest-rank matrix satisfying a number of linear
measurements (possibly within a bound on the misfit), leading to the problem

minimize

X2Rn1⇥n2
kXk

0

subject to kb�AXk
2

 ✏, (1.1)

where A : Rn1⇥n2 ! Rm is a linear map, kXk
0

:= k�(X)k
0

= rankX and
� : Rn1⇥n2 ! Rnmin

+

maps a matrix to the vector of its singular values in
nonincreasing order (n

min

:= min{n
1

, n
2

}), i.e., �
1

(X) � . . . � �
nmin(X) � 0.

This is indeed a generalization: a vector can be encoded as a diagonal matrix
and the rank function then gives the vector’s cardinality.

By observing the characterization of the rank function in terms of the
cardinality of the vector of singular values, one can naturally devise a con-
vex relaxation by taking the 1-norm of that vector. This is in fact the convex
heuristic for rank minimization advocated and proved tightest by Fazel, Hindi,
and Boyd (2001); see also Fazel (2002). This approach leads to convex opti-
mization problems of the form

minimize

X2Rn1⇥n2
kXk

1

subject to kb�AXk
2

 ✏, (1.2)

where kXk
1

:= k�(X)k
1

=

P

nmin

i=1

�
i

(X) is the nuclear norm of a matrix (also
known as the trace norm, Ky Fan n-norm and Schatten 1-norm).

Remark 1.1.1. We shall adopt the Schatten p-norm notation throughout,
i.e., kXk

p

:= k�(X)k
p

with 1  p  1, which closely parallels the notation
of the vector case. A peculiar consequence of this choice of notation is that
kXk

2

will in fact denote the Frobenius norm of X, as opposed to its operator
norm denoted by kXk1 = k�(X)k1 = �

1

(X).

Figure 1.3 depicts the unit balls of the nuclear and operator norms in
a parameterization of the space of real symmetric 2-by-2 matrices (in this
parameterization, the Frobenius norm has the same geometry as that of the
2-norm in R3, depicted in Figure 1.2). The brighter kinks and edges depict
the extreme points of these convex bodies. In the case of the nuclear norm,
the brighter points along the circumferences forming the edges of the cylinder
correspond to rank-1 matrices, which intuitively justifies the minimization of

4



1.1. From sparse to low-rank signal recovery

Figure 1.3: Unit balls of the nuclear- and operator-norms for real symmetric 2-
matrices. Depictions above correspond to the parameterization

h

x, zp
2

;

zp
2

, y
i

.

Figures 1.4 and 1.5 provide different viewing positions.

this norm in the search for low-rank solutions. Figures 1.4 and 1.5 provide
different viewpoints to better visualize the geometry of these sets.

Early work by Recht, Fazel, and Parrilo (2010) exploited this connection
between the 1-norm relaxation from sparse recovery and the nuclear-norm
heuristic from rank minimization to extend concepts and techniques from com-
pressed sensing and provide the first sufficient guarantees for the recovery of
low-rank matrices. Central to their work is a suitable generalization of the
restricted isometry property (RIP) to operators on low-rank matrices, intro-
duced first for sparse vectors by Candès and Tao (2005).

Definition 1.1.1 (Restricted Isometry Property). Let A : Rn1⇥n2 ! Rm

be a linear map and n
min

:= min{n
1

, n
2

}. For every 1  r  n
min

, define the
r-restricted isometry constant to be the smallest number �

r

(A) such that

(1� �
r

) kXk
2

 kAXk
2

 (1 + �
r

) kXk
2

holds for all matrices X 2 Rn1⇥n2 with rankX  r.

With this RIP concept, X
0

2 Rn1⇥n2 a fixed matrix of rank at most r and
b := AX

0

, the following result provides a condition for injectivity of A on the
set of matrices with rank bounded by r.

5



1.1. From sparse to low-rank signal recovery

Figure 1.4: Unit ball of the nuclear-norm for 2-by-2 real symmetric matrices.

Figure 1.5: Unit ball of the operator-norm for 2-by-2 real symmetric matrices.

6



1.1. From sparse to low-rank signal recovery

Theorem 1.1.1 (Recht et al. (2010)). Suppose that �
2r

< 1 for some integer
r � 1. Then X

0

is the only matrix of rank at most r satisfying AX = b.

The following result then provides a connection between rank minimiza-
tion and its convex relaxation. Let X⇤ be a solution of the nuclear-norm
minimization problem (1.2) with ✏ = 0 and the remaining data as above.

Theorem 1.1.2 (Recht et al. (2010)). Suppose that r � 1 is such that
�
5r

< 1/10. Then X⇤ = X
0

.

Recht et al. (2010) then exploited these sufficient conditions to provide a
family of random measurement maps A for which RIP is satisfied with high
probability whenever m is sufficiently large, however still asymptotically much
smaller than n

1

n
2

.
A typical example of such constructions with probabilistic guarantees is

the case when the entries of A are assumed i.i.d. Gaussian random variables
with zero mean and variance 1/m. The result below is but a particular case of
a theorem of Recht et al. (2010).

Theorem 1.1.3 (Recht et al. (2010, Theorem 4.2)). Fix 0 < � < 1.
If A is a random variable as above, then, for every 1  r  n

min

, there exist
positive constants c

0

and c
1

depending only on � such that, with probability
at least 1� exp(�c

1

m), �
r

(A)  � whenever m � c
0

r(n
1

+ n
2

) log(n
1

n
2

).

Because the number of degrees of freedom of n
1

⇥ n
2

real matrices with rank
at most r is r(n

1

+n
2

� r), this result ensures that the sufficient recoverability
conditions above are very likely satisfied without having to perform a number
of measurements anywhere near the dimension of the ambient space (= n

1

n
2

)
with a qualitatively modest increase on the underlying dimensionality of the
problem.

Although these results generalize in a natural manner their counterparts in
sparse recovery, the measurement process induced by such families of operators
—in which one essentially measures random projections of the unknown matrix
and accesses information about all of its entries—does not commonly arise in
practice.

Later recovery results studied the problem of matrix completion (also known
as collaborative filtering or the Netflix problem), in which one seeks to re-
trieve a low-rank matrix by observing a relatively small subset of its entries.
Motivated by this problem, Candès and Recht (2009) introduced similar pro-
babilistic results under a more practical measurement scenario. Avoiding a

7



1.1. From sparse to low-rank signal recovery

number of technical definitions, their results essentially state that “most n-
by-n matrices” of rank r can be recovered exactly, with high probability, via
nuclear-norm minimization from m entries observed uniformly at random as
long as m � Crn1+c

log n, for constants C and 1/5  c  1/4.
These works sparked an interest in providing more refined conditions under

which recoverability of low-rank matrices can be attained via nuclear norm
minimization under a variety of linear measurement models, these include
Recht (2011); Recht, Xu, and Hassibi (2011); Eldar, Needell, and Plan (2012).

The salient characteristics in these results relevant for the design of struc-
tured optimization methods are that the number of measurements is consid-
erably smaller than the dimension of the ambient matrix space, as well as the
typical rank expected in the solution is also low, while the linear measure-
ment operator admits fast evaluation on factored low-rank matrices as does
the product of its adjoint (and transpose) to a vector, i.e., (A⇤y)v and (A⇤y)Tu.

In the following subsections we describe and contextualize two important
problems in scientific imaging and signal processing to which these techniques
for low-rank matrix completion have been extended. Interesting characteristics
shared by these two problems are that they involve quadratic measurements in
their nonconvex formulations, typically involve large dimensions already in this
original form, and are expected to lead to rank-1 solutions of their relaxations.

1.1.1 Phase retrieval via matrix lifting

In a number of imaging science applications, the recovery of a complex sig-
nal from magnitude observations of its Fourier transform is a fundamental
problem. In such applications, physical properties of the measurement system
typically prevent gathering phase information or at least without incurring
large errors (Millane, 2006).

Since much of the structural content of a signal is encoded in its phase
information, the problem of phase retrieval appears naturally and must be
tackled. In Figure 1.6 we illustrate this property by computing the Fourier
transform of two real images, swapping their phases, and visualizing the results
from their inverse Fourier transforms—independently across color channels.

Assuming that magnitude measurements are available, one can think of a
model in which the signal is first probed by a linear process prior to observing
its magnitudes. In such a scenario, we seek to recover a complex signal x 2 Cn

from measurements of the form |Ax| , where |·| denotes the componentwise
absolute-value map and A 2 Cm⇥n models the initial probing process, in which
one would naturally expect m � n. An example is the case when A = F the
discrete Fourier transform (DFT) matrix.

8



1.1. From sparse to low-rank signal recovery

(a) Signal x1 (b) Signal x2

(c) F�1{|Fx1| (Fx2)/ |Fx2|} (d) F�1{|Fx2| (Fx1)/ |Fx1|}

Figure 1.6: Visualizing the structural content encoded in the Fourier phase.
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1.1. From sparse to low-rank signal recovery

This is a scenario in which the most popular algorithms operate, the al-
ternating (nonconvex) projection methods introduced in the seminal works of
Gerchberg and Saxton (1972) and Fienup (1978, 1982). The main difficulties
associated with these approaches lie on the need for a careful exploitation of
prior knowledge about the signal—e.g., support, nonnegativity, real-valuedness
etc.—, sensible parameter selection and availability of a good initial iterate.

Motivated by these difficulties, structured multiple illumination techniques
in diffraction imaging, and prior connections to rank minimization and matrix
completion problems by Chai, Moscoso, and Papanicolaou (2011), Candès,
Eldar, Strohmer, and Voroninski (2013a) propose and study a more applicable
measurement model and a convex relaxation for the phase recovery problem.

We start with a description of the convex relaxation by noticing that

|Ax|2
i

= (Ax)
i

(Ax)
i

= [(Ax)(Ax)⇤]
ii

= [A(xx⇤
)A⇤

]

ii

,

leads us to a problem of the form

find x 2 Cn

such that diag[A(xx⇤
)A⇤

] = b,

where b 2 Rm denotes the input (squared) magnitude measurements.
Observing the intrinsic global-phase ambiguity in the measurement process,

in which exp(i✓)x evaluates to the same measurements as x, we can identify
these x with a rank-1 positive semidefinite Hermitian matrix X via X = xx⇤.
Therefore, if it does admit a solution, this nonconvex feasibility problem can
be recast equivalently as one of rank minimization with the form

minimize

X2Hn
rankX subject to AX = b and X ⌫ 0,

where X ⌫ 0 denotes that the matrix X is Hermitian and positive semidefinite.
Employing the nuclear-norm convex relaxation for rank minimization, we

arrive at the problem

minimize

X2Hn
kXk

1

subject to AX = b and X ⌫ 0,

which can then be simplified by noticing that �(X) = �(X) implies kXk
1

=

traceX for all X ⌫ 0, where � : Hn ! Rn denotes the ordered eigenvalue
map, i.e., �

1

(X) � . . . � �
n

(X). This results in the trace minimization SDP

minimize

X2Hn
traceX subject to AX = b and X ⌫ 0.

This rationale was employed by Chai et al. (2011) in their study of a
class of array imaging problems in which only magnitude measurements can

10



1.1. From sparse to low-rank signal recovery

be obtained by current sensors. They exploit the connection with low-rank
recovery to provide conditions on the imaging and scatterer configurations
under which the rank minimization problem admits a unique solution. Making
use of then recent low-rank recovery results, this was accomplished by proving
sufficient conditions for �

2

(A) < 1 and invoking Theorem 1.1.1 above.
Candès et al. (2013a) introduce a measurement model inspired on a number

of structured illumination techniques in scientific imaging. In this model, an
illumination of the signal x is modulated by a coded diffraction pattern (CDP),
modeled as a diagonal matrix C = Diag(c) 2 Cn⇥n, and the resulting signal Cx
undergoes a measurement of the squared magnitude of its Fourier transform,
leading to measurements of the form |FCx|2 . This procedure is performed
L � 1 times with different CDPs, which can be deterministic or drawn from a
random ensemble, e.g., Bernoulli entries modeling a binary mask.

In our notation, this model leads to m = nL measurements of the form

A :=

0

B

@

FC
1

...
FC

L

1

C

A

, where C
k

:= Diag(c
k

), k = 1, . . . , L.

It also give rise to very large optimization problems involving linear maps only
feasibly treated as matrix-free operators.

In that work, Candès et al. (2013a) provide a deterministic construction of
CDPs for which, if the trace minimization problem admits a rank-1 solution, it
matches the measured signal up to a global phase. The main shortcomings were
lack of guarantees that the convex problem would have a rank-1 minimizer and
whether the approach would be stable to noisy measurements. These issues
were further studied by Candès, Strohmer, and Voroninski (2013b) in the case
where the rows of A are Gaussian or uniformly drawn from the sphere of radiusp
n and the measurements have bounded errors. The convex problem proposed

is the one we call here (PhaseLift) (although this originally assumes ✏ = 0)

minimize

X2Hn
traceX subject to kb�AXk

2

 ✏ and X ⌫ 0. (PhaseLift)

The authors show that, for an arbitrary signal and ✏ = 0, if m � c
0

n log n mea-
surements are taken from the distributions above, this problem has a unique
solution and it has rank-1 with probability at least 1 � 3 exp(��m/n), for
positive constants c

0

, �.
For uniform measurements of the sphere, they show that, under the same

conditions, if the measurements are contaminated by additive noise bounded
on the 2-norm by ✏ > 0, the best rank-1 approximation ˆX to the solution

11



1.1. From sparse to low-rank signal recovery

of (PhaseLift) will be within a distance of C
0

✏ to the measured signal in the
Frobenius norm, with nearly the same probability as the noiseless case.

These results where further refined by Candès and Li (2014) removing
the logarithmic term, the dependence on the signal—i.e., draw A and the
probabilistic bounds hold for all signals—and proving that the feasible set of
the ✏ = 0 problem is in fact a singleton, a result also shown by Demanet and
Hand (2014) but with a less tight lower bound on the number of measurements.

Much more recently, similar results have been proved for the semidefinite
relaxation under the CDP model in which the c

k

are drawn for certain random
ensembles. Candès, Li, and Soltanolkotabi (2015b) show that L � c

0

log

4 n
ensure that the feasible set of the ✏ = 0 problem is a singleton with probability
at least 1 � 1/n. Their result being further refined by Gross, Krahmer, and
Kueng (2014) decreasing the exponent on the logarithm from 4 down to 2.

Although the matrix lifting and convexification techniques relax the quadra-
tic measurements to linear operators on matrices, they lead to incredibly chal-
lenging convex optimization problems due to the quadratic increase in the
dimensionality of the primal space. This calls for customized computational
methods that exploit the structure of these operators and the (nearly) low-rank
properties of the minimizers.

In the following, we describe two main approaches designed for these convex
relaxations of the phase retrieval problem and contrast their results with those
we obtain in Chapter 5.

Convex prox-gradient methods

In their original paper proposing the PhaseLift formulation, Candès et al.
(2013a) propose a computational strategy based on PSD constrained least
squares (or alternative misfit) regularized by the trace. For a given regula-
rization parameter ⇢ > 0, their basic approach aims to solve the problem

minimize

X2Hn
f(X) :=

⇢

1

2

kb�AXk2
2

+ ⇢ traceX

�

subject to X ⌫ 0.

To solve this problem, the authors leverage the excellent Matlab package
TFOCS, introduced by Becker, Candès, and Grant (2011). TFOCS provides a
wrapper for a number of related first-order algorithms to create customized
solvers for a variety of convex models. The main building block used to solve
the problem above is the implementation of a prox-gradient operator, i.e., a
routine to solve

minimize

X2Hn
f(X

k

)+hrf(X
k

), X�X
k

i+ 1

2↵
k

kX �X
k

k2
2

subject to X ⌫ 0.

12



1.1. From sparse to low-rank signal recovery

By elementary manipulations, it is easy to see that this amounts to computing
a projection onto the PSD cone, i.e., P·⌫0

(X
k

�↵
k

rf(X
k

)). This operator can
be evaluated by computing the positive eigenvalues and eigenvectors of a ma-
trix. Formally, if X = QDiag(�(X))Q⇤ is an eigendecomposition of X, we have
that P·⌫0

(X) = QDiag([�(X)]

+

)Q⇤, where ([x]
+

)

i

:= max{0, x
i

} denotes the
positive-part operator. Assuming X

k

is available as a low-rank factorization,
the structure of rf(X

k

) = �A⇤
(b�AX

k

)+⇢I allows for efficient products be-
tween the matrix to be projected and a given vector, thus amenable to exploit
Lanczos-based eigensolvers to compute the positive rightmost eigenpairs.

A downside of this approach is that there is no a priori knowledge nor
control on how many positive eigenvalues may appear throughout the itera-
tions. Aware of this issue, the authors heuristically fix the maximum number
of computed eigenpairs and mention that the convergence guarantees provided
by the convex optimization algorithms implemented in TFOCS are lost. Never-
theless, good empirical results have been reported in their paper, where this
number is taken between 10 and 20.

For it being one of the first computational methods able to solve the
PhaseLift formulation in instances just too large for off-the-shelf SDP solvers,
and whose code was kindly provided to us by Prof. Thomas Strohmer, we
contrast the results obtained with our proof-of-concept solver to those of their
implementation later in Chapter 5.

It is noteworthy that Candès et al. (2013a) also propose an iteratively
reweighted method in which sequences of problems similar to the one above are
solved and achieve better low-rank recovery results with fewer measurements.
Although we have not performed experiments with reweighted formulations,
we show in §4.3 how they can be dealt with and fit within the approach we
propose.

Gradient descent on a nonconvex formulation

During the later stages of our research, Candès, Li, and Soltanolkotabi (2015a)
proposed an approach for the phase recovery problem in which one employs
a simple gradient descent method on a nonlinear least squares (or alternative
misfit function) formulation. Their approach aims to solve the problem

minimize

x2Cn
f(x) :=

1

4m kx
0

k2
2

kb�A(xx⇤
)k2

2

.

Using a predefined sequence of steplengths (↵
k

), this leads to the sequence

x
k+1

:= x
k

+

↵
k

kx
0

k2
2

⇢

1

m
[A⇤

(b�A(x
k

x⇤
k

))] x
k

�
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1.1. From sparse to low-rank signal recovery

and has been reported to provide excellent numerical solutions.
The key idea behind the effectiveness of this method, and difference from

classical nonconvex approaches, lies in a judicious choice of its first iterate x
0

:

x
0

2 argmax

kxk22=n

Pm
i=1 bi

kAk22

⌧✓

1

m
A⇤b

◆

x, x

�

.

This way, the first iterate is computed by a suitable rescaling of an eigenvector
of A⇤b associated to its rightmost eigenvalue �

1

(A⇤b), which can be computed
via matrix-free Lanczos-based methods, thus taking advantage of fast ope-
rators and allowing the solution of problems far larger than the prox-based
methods used by Becker et al. (2011).

Naturally, this nonconvex approach with spectral initialization requires a
certain number of measurements to be taken for the initial iterate to be close
enough to the basin of attraction of a solution. The remarkable achievement
of this work is that Candès et al. (2015a) provide guarantees under which, if
a large enough number of measurements in the coded diffraction model are
taken (m � Cn log

d n, for constant C and 2  d  4), the algorithm will
converge to an exact solution with high probability.

Similar provably effective nonconvex approaches with spectral initialization
have been proposed for Gaussian measurements A that induce operators of the
form AX = diag(AXA⇤

)—see Netrapalli, Jain, and Sanghavi (2013)—and the
much more recent works by White, Sanghavi, and Ward (2015) and Chen and
Candès (2015), the latter of which came to our attention at the time of writing
this thesis.

In Chapter 5, we contrast results obtained by our solver with those provided
by an implementation of this approach made available by its authors.

1.1.2 Blind deconvolution and biconvex compressive

sensing

Motivated by applications in image processing and wireless communications,
Ahmed, Recht, and Romberg (2014) study a restricted version of the blind
deconvolution problem under the framework of low-rank matrix recovery.

Succintly, the blind (circular) deconvolution problem can be stated as:
given measurements of the form b = f

1

⇤ f
2

2 Cm, where ⇤ : Cm ⇥ Cm !
Cm denotes the discrete circular convolution operator, recover the generating
signals f

1

, f
2

2 Cm up to scaling (since cf
1

and c�1f
2

evaluate to the same
measurements for all c 6= 0).
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1.1. From sparse to low-rank signal recovery

This problem has been approached from a number of perspectives and al-
gorithms have been proposed for it in different scenarios by exploiting various
application-domain specific priors, e.g., see Levin, Weiss, Durand, and Free-
man (2011) for uses and solution schemes in natural image processing.

Ahmed et al. (2014) analyze an idealized version of this problem in which
the signals are spread out in known subspaces, i.e., given full column-rank
matrices B

1

2 Cm⇥n1 and B
2

2 Cm⇥n2 , then f
1

= B
1

x
1

and f
2

= B
2

x
2

for
some (dense) coefficient vectors x

1

2 Cn1 and x
2

2 Cn2 . This leads to the
problem

find x
1

2 Cn1 and x
2

2 Cn2
such that (B

1

x
1

) ⇤ (B
2

x
2

) = b.

Invoking the convolution theorem, and denoting by F 2 Cm⇥m the unitary
DFT matrix (F�1

= F ⇤), we observe the following chain of equalities

(B
1

x
1

) ⇤ (B
2

x
2

) = F ⇤
diag[(FB

1

x
1

)(FB
2

x
2

)

T

]

= F ⇤
diag[(FB

1

)(x
1

x
2

⇤
)(FB

2

)

⇤
].

Defining A
1

:= FB
1

2 Cm⇥n1 and A
2

:= FB
2

2 Cm⇥n2 , we can employ a
matrix lifting technique similar to the one used for the phase recovery problem
and identify the coefficient vectors x

1

and x
2

with the matrix X = x
1

x
2

⇤.
Thus reformulating the problem above as one of rank minimization

minimize

X2Cn1⇥n2
rankX subject to F ⇤

diag(A
1

XA⇤
2

) = b.

A convex relaxation follows imediately from our previous discussions by
substituting the rank function by its convex surrogate k·k

1

, leading to a
nuclear-norm minimization problem of the form

minimize

X2Cn1⇥n2
kXk

1

subject to kb�AXk
2

 ✏, (NNM)

where we use AX := F ⇤
diag(A

1

XA⇤
2

) and have introduced bounded-misfit
constraints to allow for errors, as described by Ahmed et al. (2014).

Ahmed et al. (2014) then provide technical conditions on these bases and
the spread of f

1

in Fourier domain under which exact recovery is achieved in
the noiseless case with ✏ = 0.

In order to experimentally illustrate the recovery ability of this approach
in a scenario of two-dimensional image deblurring, they design experiments
where the image support of a blurring kernel is known (but not its values) and
the image to be recovered lies in a known subspace represented as a subset
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1.1. From sparse to low-rank signal recovery

of the Haar wavelet basis (or is estimated from the Haar coefficients of the
blurred image). Their numerical results are very encouraging and we compare
them with our results on one of their experiments in Chapter 5. This choice
was made essentially to compare the optimization approaches, as we make no
claims of contributions regarding recovery ability once the data for the convex
relaxations has been defined.

It is noteworthy that the matrix lifting rationale used above can be em-
ployed for more general bilinear (or sesquilinear) measurements. An approach
in this direction was presented recently by Ling and Strohmer (2015), who
propose an alternative scheme to achieve both low-rank and sparse recovery
(where x

1

and x
2

are expected to be sparse) by using a matrix lifting to lin-
earize the measurement operators, and the elementwise 1-norm on the lifted
matrix to encourage sparsity. Although they provide recovery guarantees for
their measurement models, there is still a lack of scalable computational ap-
proaches for their SparseLift formulation.

In the following we provide some details on the method used by Ahmed
et al. (2014) to solve (NNM).

Augmented Lagrangian for low-rank SDPs

Ahmed et al. (2014) use the nonlinear programming (NLP) algorithm of Burer
and Monteiro (2003) to solve nuclear-norm minimization problems whose size
would be too large for off-the-shelf SDP packages.

Their approach first reformulates (NNM), with ✏ = 0, into a fully equivalent
SDP as proposed by Fazel (2002). This leads to a problem of the form

minimize

X2Cn1⇥n2
,

U2Hn1
,

V 2Hn2

1

2

trace

✓

U X
X⇤ V

◆

subject to

AX = b and
✓

U X
X⇤ V

◆

⌫ 0.

Next, this method represents X in a low-rank factored form X = ZZ⇤,
with Z 2 C(n1+n2)⇥r and r � 1 chosen a priori to be small. This way, the SDP
above can be reformulated as the nonconvex constrained NLP

minimize

Z2C(n1+n2)⇥r

1

2

kZk2
2

subject to

ˆA(ZZ⇤
) = b,

where we define ˆA : Hn1+n2 ! Cm as the extension of the measurement
operator A to Hermitian matrices that acts on the top-right off-diagonal block.
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1.2. Norm-minimization and gauge duality

At this point the classical augmented Lagrangian method is applied to the
resulting problem. This leads to a sequence of subproblems of the form

Z
k+1

2 argmin

Z2C(n1+n2)⇥r

1

2

kZk2
2

+ hy
k

, b� ˆA(Z
k

Z⇤
k

)i+ ⇢
k

2

�

�

�

b� ˆA(Z
k

Z⇤
k

)

�

�

�

2

2

,

in which we omit the details related to rules for updating the dual variables
y
k

2 Cm and regularization parameters ⇢
k

> 0. The numerical solution of these
subproblems (to first-order stationarity) is then carried out using a standard
limited-memory quasi-Newton method via the minFunc package by Schmidt
(2005), and thus being able to take full advantage of matrix-free FFT routines.

Such an approach relies on the effectiveness of the subproblem solver to
provide good solutions and that the a priori choice of the rank r is large enough
to capture the expected solution, which seems reasonable in the scenarios
where low-rank recovery is likely. For problems with positive ✏, the authors
mention they stop the iterations as soon as the misfit falls below that value,
not necessarily solving (NNM) but providing a feasible point.

Chapter 5 compares the solution computed by this method, from an im-
plementation made available online by the authors, to that output from our
solver in an instance of image deblurring.

1.2 Norm-minimization and gauge duality

Chandrasekaran, Recht, Parrilo, and Willsky (2012) generalize results of sparse
and low-rank recovery under linear measurements to more abstract notions of
low-complexity. They observe that the constructions of convex relaxations for
the cardinality function of vectors and for the rank of matrices can be suitably
generalized by the notion of atomic norms defined below.

Definition 1.2.1 (Atomic norm). Let T ⇢ Rn be compact (with elements
called atoms), such that all of its elements are extreme points of conv T and
0 2 conv T . The gauge of T , denoted as k·kT : Rn ! R

+

[{+1}, is defined
by

kxkT := inf{t > 0 | x 2 t conv T }. (1.3)

If T is centrally symmetric about the origin (i.e., a 2 T implies �a 2 T ),
then k·kT is a norm and called the atomic norm induced by T .

With this concept, the set S := {±e
1

, . . . ,±e
n

} (where e
k

2 Rn is the
kth-element of the canonical basis for Rn) will induce the atomic norm k·kS =
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1.2. Norm-minimization and gauge duality

k·k
1

: Rn ! R
+

. Under this framework, the atoms of S are taken to be the
sparsest unit 2-norm elements in Rn, i.e. the elements of the canonical basis
and their negated counterparts. Similarly, the nuclear norm is induced by
taking the gauge of all rank-1 matrices with unit operator-norm—i.e.,

L :=

�

xyT | x 2 Rn1 , y 2 Rn2 , 1 = kxk
2

= kyk
2

 

induces k·kL = k·k
1

: Rn1⇥n2 ! R
+

.
In their approach, the notion of low-complexity is embedded in the choice

of the collection of atoms T , which would be dictated by the problem at hand.
The studied recovery procedure is given by the convex optimization problem

minimize

x2Rn
kxkT subject to kb� Axk

2

 ✏, (1.4)

where 0  ✏ < kbk
2

prescribes the admissible measurement misfit away from
the vector of observations b 2 Rm.

Assuming measurement maps A 2 Rm⇥n whose entries are drawn i.i.d.
from the standard Gaussian distribution, Chandrasekaran et al. (2012) pro-
vide probabilistic recoverability and stability bounds similar to those discussed
in §1.1 for a range of different “low-complexity” models generalized by the con-
cept of atomic norm and the solution of the convex optimization problem (1.4).
For sparse and low-rank recovery, they provide much tighter lower bounds on
the number of measurements sufficient for the effectiveness of the relaxation.

Candès and Recht (2013) also leveraged this concept of atomic norms and
their dual-norms to provide a unified treatment of recoverability bounds from
noiseless linear measurements for both (block) sparse vectors and low-rank
matrices.

As mentioned by Chandrasekaran et al. (2012), most of their developments
are applicable even in some cases where the collection of atoms T does not
induce a norm—e.g., sparse nonnegative vectors and low-rank positive semidef-
inite matrices. In such scenarios, convex problems of the form (1.4) are partic-
ular cases of a general class of gauge optimization studied by Freund (1987).

In his seminal paper, Freund (1987) develops a duality framework around a
class of optimization problems that generalizes the minimization of a p-norm,
convex QPs, and linear programs with nonnegative optimal values.

This class of problems can be succintly described with the formulation

minimize

x2X
(x) subject to x 2 C, (1.5)

where X is a finite-dimensional real inner-product space,  : X ! R [ {+1}
is a gauge function—i.e., a nonnegative convex function that is positively ho-
mogeneous and satisfies (0) = 0—and C ✓ X is a closed convex set.
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1.2. Norm-minimization and gauge duality

Remark 1.2.1. It must be noted that we will often assume  to be closed
(i.e., its epigraph epi := {(x, t) 2 X ⇥ R |(x)  t} is a closed set) and that
C does not contain the origin, otherwise x = 0 would be a solution of (1.5).

As can be readily inferred from definitions, the class of gauge functions
subsumes all norms and seminorms. Generalizing the notion of dual norms,
we have that of a polar gauge �

: X ! R[ {+1} defined by

�
(y) := inf{t > 0 | t(x) � hx, yi , 8x 2 X}, (1.6)

giving rise to a natural generalization of the Cauchy-Schwartz inequality

hx, yi  (x)�
(y), 8x, y 2 X , (1.7)

which holds whenever the product makes sense, i.e., {(x),�
(y)} 6= {0,+1}.

Although motivated by problems in which C is polyhedral, Freund (1987)
proposed an approach to handle general nonlinear constraints based on a con-
cept of the antipolar set to C, denoted by C 0 ⇢ X and defined as

C 0
:= {y 2 X | hx, yi � 1, 8x 2 C}. (1.8)

From its definition, it can be readily observed that this set is closed and convex
and does not contain the origin (however it might be empty).

An interesting consequence of the concepts of polar gauges and antipolar
sets is that they lead to a certain duality relationship represented by

x 2 C and y 2 C 0
=) 1  (x)�

(y), (1.9)

naturally leading to a gauge minimization problem of the form

minimize

y2X
�
(y) subject to y 2 C 0, (1.10)

which is the corresponding dual to (1.5) proposed by Freund (1987).
In his study of duality relationships between the gauge optimization prob-

lems (1.5) and (1.10), Freund (1987) provides a general weak duality result
for that primal-dual pair. In his theorem, compiled below, the domain of a
function f : X ! R [ {+1}, denoted by dom f, is defined as

dom f := {x 2 X | f(x) < +1},

i.e., it corresponds to the set of points at which the function is finite-valued.
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1.2. Norm-minimization and gauge duality

Theorem 1.2.1 (Freund (1987, Theorem 1A (Weak Duality))).
Let p⇤ 2 R

+

[ {+1} and d⇤ 2 R
+

[ {+1} be optimal values for (1.5)
and (1.10), respectively. Then

(i) If x 2 C \ dom and y 2 C 0 \ dom�, then (x)�
(y) � 1, and hence

p⇤d⇤ � 1.

(ii) If p⇤ = 0, then (1.10) is essentially infeasible, i.e., d⇤ = +1.

(iii) If d⇤ = 0, then (1.5) is essentially infeasible, i.e., p⇤ = +1.

(iv) If x⇤ 2 C \ dom and y⇤ 2 C 0 \ dom� and (x⇤
)�

(y⇤) = 1, then x⇤

and y⇤ are optimal solutions of (1.5) and (1.10), respectively.

This previous result is a direct consequence of (1.9) and it illustrates the
multiplicative notion of duality in gauge optimization, which is different from
the usual additive one from Lagrangian duality in general convex optimization.

For problems in which C is polyhedral, Freund (1987) introduces a qualifi-
cation condition for strong duality to hold.

Definition 1.2.2 (Projection property and qualification). A convex set
S ✓ X satisfies the projection property if, for all linear maps A : X ! Rm,
we have that AS = {Ax | x 2 S} is closed.

A gauge function  : X ! R[{+1} satisfies the projection qualification
if both {x 2 X |(x)  1} and {y 2 X |�

(y)  1} satisfy the projection
property.

With these concepts, the following strong duality result can be proved.

Theorem 1.2.2 (Freund (1987, Theorem 2)). Assume that  satisfies the
projection qualification and C is polyhedral. Let p⇤ 2 R

+

[ {+1} and
d⇤ 2 R

+

[ {+1} be optimal values for (1.5) and (1.10), respectively. Then

(i) If C \ dom 6= ; and C 0 \ dom� 6= ;, then p⇤d⇤ = 1; and the optimal
values of (1.5) and (1.10) are achieved for some x⇤ and y⇤.

(ii) C \ dom = ; (i.e., p⇤ = +1) if and only if d⇤ = 0; and d⇤ = 0 is
achieved for some y⇤ 2 C 0 if C = ;.

(iii) C 0 \ dom�
= ; (i.e., d⇤ = +1) if and only if p⇤ = 0; and p⇤ = 0 is

achieved for some x⇤ 2 C if C 0
= ;.
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1.2. Norm-minimization and gauge duality

Freund (1987) provides alternative strong duality results under qualifica-
tions similar to the classical Slater conditions, i.e., when the intersections in
Theorem 1.2.2 (i) involve relative interiors. Later in §2.4 we provide more
refined sufficient conditions for strong gauge duality in an abstract setting.

These results were used by Freund (1987) to show that the gauge dual
for the minimization of strictly convex p-norms provides tighter lower bounds
when compared to the corresponding Lagrange dual. Other authors have ex-
ploited these for applications ranging from proving robust stability of linear
dynamical systems to approximate Farkas Lemmas in linear programming and
tight inequalities in probability; see Teboulle and Kogan (1994); Todd and Ye
(1998); Bertsimas and Popescu (2005).

Our motivation is the natural gauge optimization form of the convex re-
laxations to inverse problems in low-complexity recovery. For these problems,
the convex relaxation typically has the form

minimize

x2X
(x) subject to ⇢(b� Ax)  ✏, (1.11)

where A : X ! Rm is a linear map and ⇢ : Rm ! R is also a gauge, modeling
the measurement misfit and typically a p-norm.

As we shall see later in Chapter 2, the corresponding dual gauge problem
has the form

minimize

y2Rm
�
(A⇤y) subject to hb, yi � ✏⇢(y) � 1, (1.12)

which can be contrasted to the Lagrange dual problem

maximize

y2Rm
hb, yi � ✏⇢(y) subject to �

(A⇤y)  1. (1.13)

In the applications that motivate our work, ⇢ is typically rather simple
while  has a more complicated structure. Our approach described later in
Chapter 4 leverages the fact that m is expected to be much smaller than
dimX to solve the dual problem (1.12), whose feasible set is much simpler
and is thus more amenable to computational approaches for nonsmooth convex
optimization than its Lagrangian counterpart (1.13).

Examples. The following self-contained examples, some condensed from our
previous and later discussions, illustrate the versatility of the gauge optimiza-
tion formulation in modeling a variety of problems, and also provide a motiva-
tion for the abstract treatment that we give to gauge duality in the following
Chapter 2.
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1.2. Norm-minimization and gauge duality

Example 1.2.1 (Norms and minimum-length solutions). Norms are special
cases of gauge functions that are finite everywhere, symmetric, and zero
only at the origin. (Semi-norms drop the last requirement, and allow the
function to be zero at other points.) Let (x) = kxk be any norm, and C =

{x | Ax = b } describe the solutions to an underdetermined linear system.
Then (1.5) yields a minimum-length solution to the linear system Ax = b.
This problem can be modeled as an instance of (1.11) by letting ⇢ be any
gauge function for which ⇢�1

(0) = { 0 } and setting ✏ = 0. The polar �
=

k·k⇤ is the norm dual to k·k, and C 0
= {A⇤y | hb, yi � 1 }; cf. Corollary 2.3.2.

The corresponding gauge dual (1.10) is then

minimize

y2Y
kA⇤yk⇤ subject to hb, yi � 1.

Example 1.2.2 (Sparse optimization and atomic norms). In his thesis,
van den Berg (2009) describes a framework for sparse optimization based on
the formulation where  is a gauge, and the function ⇢ is differentiable away
from the origin. The nonnegative regularization parameter ✏ influences the
degree to which the linear model Ax fits the observations b. This formulation
is specialized by van den Berg and Friedlander (2011) to the particular case
in which ⇢ is the 2-norm. In that case, C = {x | kAx� bk

2

 ✏ } and

C 0
= {A⇤y | hb, yi � ✏ kyk

2

� 1 } ;
cf. Corollary 2.3.1. Teuber, Steidl, and Chan (2013) consider a related case
where the misfit between the model and the observations is measured by
the Kullback-Leibler divergence.

Chandrasekaran et al. (2012) describe how to construct regularizers that
generalize the notion of sparsity in linear inverse problems. In particular,
they define the gauge

kxkT := inf { t � 0 | x 2 t conv T } (1.14)

over the convex hull of the set of canonical atoms given by the set T . If
0 2 int conv T and T is bounded and symmetric, i.e., T = �T , then the
definition (1.14) yields a norm. For example, if T consists of the set of unit
n-vectors that contain a single nonzero element, then (1.14) is the 1-norm; if
T consists of the set of rank-1 matrices with unit spectral norm, then (1.14)
is the Schatten 1-norm. The polar �

(y) = sup { hy, ai | a 2 conv({0} [ T ) }
is the support function of the closure of conv({0}[T ). Jaggi (2013) catalogs
various sets of atoms that yield commonly used gauges in machine learning.
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1.2. Norm-minimization and gauge duality

Example 1.2.3 (Conic gauge optimization). In this example we demon-
strate that it is possible to cast any convex conic optimization problem in
the gauge framework. Let K be a closed convex cone, and let K⇤ denote its
dual. Consider the primal-dual pair of feasible conic problems:

minimize

x

hc, xi subject to Ax = b, x 2 K, (1.15a)

maximize

y

hb, yi subject to c� A⇤y 2 K⇤. (1.15b)

Suppose that by is a dual-feasible point, and define bc = c � A⇤
by. Because

bc 2 K⇤, it follows that hbc, xi � 0 for all x 2 K. In particular, the primal
problem can be equivalently formulated as a gauge optimization problem
by defining

(x) = hbc, xi+ �K(x) and C = {x | Ax = b } , (1.16)

where �K is the indicator function on the set K. (More generally, it is
evident that any function of the form �+�K is a gauge if � is a gauge.) This
formulation is a generalization of the nonnegative linear program discussed
by Freund, and we refer to it as conic gauge optimization. The generalization
captures some important problem classes, such as trace minimization of
positive semidefinite (PSD) matrices, which arises in the phase-retrieval
problem (c.f. §§1.1.1). This is an example where c 2 K⇤, in which case the
dual-feasible point by = 0 is trivially available for the gauge reformulation;
cf. §3.1.

Example 1.2.4 (Semidefinite programming relaxation for MAX-CUT).
A concrete example of conic gauge programming, in the simple case where
c 2 K⇤, is the semidefinite programming relaxation of the max-cut problem
studied by Goemans and Williamson (1995). Let G = (V,E) be an undi-
rected graph, and D = diag

�

(d
v

)

v2V
�

, where d
v

denotes the degree of vertex
v 2 V. The max-cut problem can be written as

maximize

x

1

4

hD � A, xxT i subject to x 2 {�1, 1}V ,

where A denotes the adjacency matrix associated with G. The semidefinite
programming relaxation for this problem is derived by lifting xxT into a
PSD matrix, as we have done for phase retrieval in §1.1.1:

maximize

X

1

4

hD � A,Xi subject to diagX = e, X ⌫ 0,
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1.2. Norm-minimization and gauge duality

where e denotes the vector of all ones. The constraint diagX = e implies
that hD,Xi =

P

v2V d
v

= 2|E| is constant. Thus, the optimal value is equal
to

|E|� 1

4

·min

X

{ hD + A,Xi | diagX = e, X ⌫ 0 } , (1.17)

and the solution can be obtained by solving this latter problem. Note that
D +A is PSD because it has nonnegative diagonals and is diagonally dom-
inant. (In fact, it is possible to reduce the problem in linear time to one
where D+A is positive definite by identifying its bipartite connected com-
ponents.) Because the dual of the cone of PSD matrices is itself, and the
trace inner product between PSD matrices is nonnegative, (1.17) falls into
the class of conic gauge problems defined by (1.15a).

Example 1.2.5 (Submodular functions). Let V = { 1, . . . , n }, and consider
the set-function f : 2

V ! R, where f(;) = 0. The Lovàsz (1983) extension
bf : Rn ! R of f is given by

bf(x) =
n

X

k=1

x
jk

⇥

f({ j
1

, . . . , j
k

})� f({ j
1

, . . . , j
k�1

})
⇤

,

where x
j1 � x

j2 � · · · � x
jn are the sorted elements of x. Clearly, the

extension is positively homogeneous and vanishes at the origin. As shown
by Lovász, the extension is convex if and only if f is submodular, i.e.,

f(A) + f(B) � f(A [B) + f(A \ B) for all A,B ⇢ V ;

see also (Bach, 2013, Proposition 2.3). If f is additionally non-decreasing,
i.e.,

A,B ⇢ V and A ⇢ B =) f(A)  f(B),

then the extension is nonnegative over Rn

+

. Thus, when f is a submodu-
lar and non-decreasing set function, that function plus the indicator on the
nonnegative orthant, i.e., bf+�Rn

+
, is a gauge. Bach (2013) surveys the prop-

erties of submodular functions and their application in machine learning;
see Proposition 3.7 therein.
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1.3 Thesis overview and contributions

The main body of this thesis is comprised of four chapters following the present
introduction. In Chapter 2 we present the theoretical framework of gauge
optimization and extend its duality theory with a number of results useful for
modeling and deriving duals with focus given to problems involving gauge-
constrained linear measurements, an abstraction of the types of measurements
frequently encountered in the resulting convex relaxations of nonlinear inverse
problems that motivated this research.

Chapter 3 specializes this abstract gauge duality framework to problems
involving matrix variables. It connects the spectral optimization problems of
trace minimization in the PSD cone and nuclear-norm minimization to a con-
crete primal-dual pair of constrained gauge minimization problems. The main
result is the formulation of a dual convex eigenvalue optimization problem,
whose feasible set is defined by a rather simple constraint and is amenable to
matrix-free numerical methods, a requirement for scalabity to large problems.

Chapter 4 completes the abstract to concrete flow of this work with an
analysis of the strong duality and optimality conditions of the primal PSD
trace minimization and dual constrained eigenvalue minimization problems.
These conditions induce an approach for recovering low-rank primal solutions
from dual minimizers and are exploited to design a computational method
to solve the primal-dual gauge pair. A description of the main algorithmic
components of our proof-of-concept solver is presented and extensions of our
analysis to the reweighted formulations by Candès et al. (2013a) and Mohan
and Fazel (2010) conclude that chapter.

The numerical experiments in Chapter 5 contrast the results of our im-
plementation to those obtained by solvers designed for each of the two main
problems we study. For the PhaseLift formulation of phase recovery, our re-
sults are compared against those of TFOCS (Becker et al., 2011; Candès et al.,
2013b) and Wirtinger Flow (Candès et al., 2015a) on a number of random
problems and a large two-dimensional image, used to validate the ability of
our approach to solve problems of a practical scale. An instance of blind
deconvolution for motion deblurring of a two-dimensional image is used to
compare our solver’s results to those obtained by the augmented Lagrangian
solver proposed in (Ahmed et al., 2014) and assess its feasibility in solving
nuclear norm minimization problems of such scale.

We conclude this work in Chapter 6 with a discussion of our developments
along with our perspective of interesting avenues for further investigation.
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Reproducible research

The data files and Matlab scripts used to generate the tables and figures
from all numerical experiments presented in Chapter 5 can be obtained at:

http://www.cs.ubc.ca/labs/scl/low-rank-opt
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Chapter 2

Gauge optimization and duality

Gauge functions significantly generalize the notion of a norm, and gauge opti-
mization, as defined by Freund (1987), seeks the element of a convex set that
is minimal with respect to a gauge function. This conceptually simple problem
can be used to model a remarkable array of useful problems that arise in a
range of fields (see examples in §1.2). The gauge structure of these problems
allows for a special kind of duality framework which we explore and specialize
to a particular form that exposes some useful properties of the gauge opti-
mization framework (such as the variational properties of its value function),
and yet maintains most of the generality of the abstract form shown in §1.2.

As observed in the TFOCS-based method discussed in Chapter 1, one ap-
proach to solving linear inverse problems is to optimize a regularization func-
tion over the set of admissible deviations between the observations and the
forward model. Although regularization functions come in a wide range of
forms depending on the particular application, they often share some com-
mon properties. In this chapter we describe and study the class of gauge
optimization problems, which neatly captures a wide variety of regularization
formulations that arise from the convex relaxations described in Chapter 1 and
others from fields such as machine learning and inverse problems. We explore
the duality and variational properties particular to this family of problems.

All of the problems that we consider can be expressed as

minimize

x2X
(x) subject to x 2 C, (P)

where X is a finite-dimensional Euclidean space, C ✓ X is a closed convex set,
and  : X ! R [ {+1} is a gauge function, i.e., a nonnegative, positively
homogeneous convex function that vanishes at the origin. (We assume that
0 /2 C, since otherwise the origin is trivially a solution of the problem.) This
class of problems admits a duality relationship that is different from Lagrange
duality, and is founded on the gauge structure of its objective. Indeed, Freund
(1987) defines the dual gauge counterpart to be

minimize

y2X
�
(y) subject to y 2 C 0, (D)
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2. Gauge optimization and duality

where the set

C 0
:= { y | hy, xi � 1 for all x 2 C } (2.1)

is the antipolar of C (in contrast to the better-known polar of a convex set), and
the polar � (also a gauge) is the function that satisfies the Cauchy-Schwartz-
like inequality most tightly:

hx, yi  (x)�
(y), 8x 2 dom, 8y 2 dom�

; (2.2)

see (2.5) for the precise definition. It follows directly from this inequality
and the definition of C 0 that all primal-dual feasible pairs (x, y) satisfy the
weak-duality relationship

1  (x)�
(y), 8x 2 C \ dom, 8y 2 C 0 \ dom�. (2.3)

This duality relationship stands in contrast to the more usual Lagrange frame-
work, where the primal and dual objective values bound each other in an
additive sense.

A roadmap of our developments. Freund’s analysis of gauge duality is
mainly concerned with specialized linear and quadratic problems that fit into
the gauge framework, and with the pair of abstract problems (P) and (D). Our
treatment in this chapter considers the particular formulation of (P) given by

minimize

x2X
(x) subject to ⇢(b� Ax)  ✏, (P

⇢

)

where ⇢ is also a gauge. Typical applications might use ⇢ to measure the
mismatch between the model Ax and the measurements b, and in that case,
it is natural to assume that ⇢ vanishes only at the origin, so that the con-
straint reduces to Ax = b when ✏ = 0. This formulation is only very slightly
less general than (P) because any closed convex set can be represented as
{x | ⇢(b� x)  1 } for some vector b and gauge ⇢; cf. §2.1.2. However, it
is sufficiently concrete that it allows us to develop a calculus for computing
gauge duals for a wide range of existing problems. (Conic side constraints
and a linear map in the objective can be easily accommodated; this is covered
in §2.6.)

The special structure of the functions in the gauge program (P
⇢

) leads
to a duality framework that is analogous to the classical Lagrange-duality
framework. The gauge program dual to (P

⇢

) is given by
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2.1. Preliminaries

minimize

y2X
�
(A⇤y) subject to hy, bi � ✏⇢�(y) � 1, (D

⇢

)

which bears a striking similarity to the Lagrange dual problem

maximize

y2X
hy, bi � ✏⇢�(y) subject to �

(A⇤y)  1. (D
`

)

Note that the objective and constraints between the two duals play different
roles. (These two duals are derived in §2.3 under suitable assumptions.) A
significant practical difference between these two formulations is when ⇢ is a
simple Euclidean norm and  is a more complicated function (such as the one
described in Example 1.2.2). The result is that the Lagrange dual optimizes
a “simple” objective function over a potentially “complicated” constraint; in
contrast, the situation is reversed in the gauge optimization formulation.

We develop in §2.2 an antipolar calculus for computing the antipolars of
sets such as {x | ⇢(b� Ax)  ✏ }, which corresponds to the constraint in our
canonical formulation (P

⇢

). This calculus is applied in §2.3 to derive the gauge
dual (D

⇢

).
The formal properties of the polar and antipolar operations are described

in §§2.1–2.2. In §2.4 we develop conditions sufficient for strong duality, i.e.,
for there to exist a primal-dual pair that satisfies (2.3) with equality. Our
derivation parts with the “ray-like” assumption used by Freund, and in certain
cases further relaxes the required assumptions by leveraging connections with
established results from convex analysis and Fenchel duality.

2.1 Preliminaries

In this section we review known facts about polar sets, gauges and their polars,
and introduce results that are useful for our subsequent analysis. We mainly
follow Rockafellar (1970) and use a number of results from his monograph:
see §14 in that text for a discussion of polarity operations on convex sets,
and §15 for a discussion of gauge functions and their corresponding polarity
operations. A few results from other books are partially compiled and credited
when needed for convenient reference.

We use the following notation throughout. For a closed convex set D, let
riD and clD denote, respectively, the relative interior and the closure of D.
The indicator function of the set D is denoted by �D and defined as �D(x) = 0, if
x 2 D, and �D(x) = +1, otherwise. The recession cone of D is defined below;
see Auslender and Teboulle (2003, Definition 2.1.2).
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Definition 2.1.1 (Recession cone). Let D be a nonempty set in X . Then
the recession (or asymptotic) cone of the set D, denoted by D1, is the set
of vectors d 2 X that are limits in direction of the sequences {x

k

} ⇢ D,
namely

D1 :=

⇢

d 2 X
�

�

�

�

9t
k

! +1, 9x
k

2 D with lim

k!+1
x
k

t
k

= d

�

.

For a gauge  : X ! R [ {+1}, its domain is denoted by dom =

{x | (x) < +1 }, and its epigraph is denoted by epi = { (x, µ) | (x)  µ }.
A function is called closed if its epigraph is closed, which is equivalent to the
function being lower semi-continuous; c.f. Rockafellar (1970, Theorem 7.1).
Let cl denote the gauge whose epigraph is cl epi, which is the largest
lower semi-continuous function smaller than ; see Rockafellar (1970, p. 52).
Finally, for any x 2 dom, the subdifferential of  at x is denoted @(x) =

{ y | (u) � (x) + hy, u� xi, 8u } .
We make the following blanket assumptions throughout. The set C is a

nonempty closed convex set that does not contain the origin; the set D is a
nonempty convex set that may or may not contain the origin, depending on
the context. The gauge function ⇢ : X ! R [ {+1}, used in (P

⇢

), is closed;
when ✏ = 0, we additionally assume that ⇢�1

(0) = {0} essentially to ensure
that {x | ⇢(b� Ax)  0} = {x | Ax = b} , as would be expected in the case of
a zero tolerance on the mismatch between Ax and the observations b.

2.1.1 Polar sets

The polar of a nonempty closed convex set D is defined as

D�
:= { y | hx, yi  1, 8x 2 D } ,

which is necessarily closed convex, and contains the origin.
The bipolar theorem states that if D is closed, then it contains the origin

if and only if D = D��
; see Rockafellar (1970, Theorem 14.5).

When D = K is a closed convex cone, the polar is equivalently given by

K�
:= { y | hx, yi  0, 8x 2 K} .

The positive polar cone (also known as the dual cone) of D is given by

D⇤
:= { y | hx, yi � 0, 8x 2 D } .

The polar and positive polar are related via the closure of the conic hull, i.e.,

D⇤
= (cl coneD)

⇤
= �(cl coneD)

�, where coneD :=

[

��0

�D.
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2.1.2 Gauge functions

All gauges can be represented in the form of a Minkowski function �D of some
nonempty convex set D, i.e.,

(x) = �D(x) := inf {� � 0 | x 2 �D } . (2.4)

In particular, one can always choose D = {x | (x)  1 }, and the above
representation holds. The polar of the gauge  is defined by

�
(y) := inf {µ > 0 | hx, yi  µ(x), 8x } , (2.5)

which explains the inequality (2.2). Because  is a proper convex function,
one can also define its convex conjugate:

⇤
(y) := sup

x

{ hx, yi � (x) } . (2.6)

It is well known that ⇤ is a proper closed convex function (Rockafellar, 1970,
Theorem 12.2). The next fact is used in the proof of the proposition following
it and compiled from Auslender and Teboulle (2003, Proposition 3.1.3) for
convenient reference.

Proposition 2.1.1. Let f : X ! R [ {+1} be proper closed and convex.
Then 0 2 int dom f ⇤ if and only if the optimal set {x | f(x) = inf f} is
nonempty and compact.

The next result collects properties relating the polar and conjugate of a gauge.

Proposition 2.1.2. For the gauge  : X ! R [ {+1}, it holds that

(i) � is a closed gauge function;

(ii) ��
= cl = ⇤⇤;

(iii) �
(y) = sup

x

{ hx, yi | (x)  1 } for all y;

(iv) ⇤
(y) = �



�
(·)1

(y) for all y;

(v) dom�
= X if  is closed and �1

(0) = { 0 };

(vi) epi�
= { (y,�) | (y,��) 2 (epi)� }.
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Proof. The first two items are proved in Theorems 15.1 and 12.2 of Rockafellar
(1970). Item (iii) follows directly from the definition (2.5) of the polar gauge.
To prove item (iv), we note that if g(t) = t, t 2 R, then the so-called monotone
conjugate g+ is

g+(s) = sup

t�0

{ st� t } = �
[0,1]

(s),

where s � 0. Now, apply Rockafellar (1970, Theorem 15.3) with g(t) = t,
and ⇤⇤ in place of f in that theorem to obtain that ⇤⇤⇤

(y) = �
[0,1]

(⇤⇤�
(y)).

The conclusion in item (iv) now follows by noting that ⇤⇤⇤
= ⇤ and ⇤⇤�

=

���
= �. To prove item (v), note that the assumptions together with Propo-

sition 2.1.1 show that 0 2 int dom⇤. This together with item (iv) and the
positive homogeneity of � shows that dom�

= X . Finally, item (vi) is
stated on Rockafellar (1970, p. 137) and can also be verified directly from the
definition.

In many interesting applications, the objective in (P) is the composition
 �A, where  is a gauge and A is a linear map. Clearly,  �A is also a gauge.
The next result gives the polar of this composition.

Proposition 2.1.3. Let A be a linear map. Suppose that either

(i) epi is polyhedral; or

(ii) ri dom \ rangeA 6= ;.

Then
( � A)�(y) = inf

u

{�
(u) | A⇤u = y } .

Moreover, the infimum is attained when the value is finite.

Proof. Since  � A is a gauge, we have from Proposition 2.1.2(iii) that

( � A)�(y) = sup

x

{ hy, xi | (Ax)  1 } = � inf

x

{ h�y, xi+ �D(Ax) } ,

where D = {x | (x)  1 }. Since  is positively homogeneous, we have
dom =

S

��0

�D. Hence, ri dom =

S

�>0

� riD from Rockafellar (1970,
p. 50). Thus, assumption (ii) implies that riD \ rangeA 6= ;. On the other
hand, assumption (i) implies that D is polyhedral; and D \ rangeA 6= ;
because they both contain the origin. Use these conclusions and apply Rock-
afellar (1970, Corollary 31.2.1) (see also Rockafellar’s remark right after that
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corollary for the case when D is polyhedral) to conclude that

( � A)�(y) = � sup

u

{�(h�y, ·i)⇤(�A⇤u)� (�D)⇤(u) }

= � sup

u

{��
(u) | A⇤u = y } ,

where the second equality follows from the definition of conjugate functions
and Proposition 2.1.2(iii). Moreover, from that same corollary, the supremum
is attained when finite. (Note that Rockafeller’s statement of that corollary is
formulated for the difference between convex and concave function, and must
be appropriately adapted to our case.) This completes the proof.

Suppose that a gauge is given as the Minkowski function of a nonempty
convex set that may not necessarily contain the origin. The following propo-
sition summarizes some properties concerning this representation.

Proposition 2.1.4. Suppose that D is a nonempty convex set. Then

(i) (�D)� = �D� ;

(ii) �D = �
conv({0}[D)

;

(iii) If conv({0} [D) is closed, then �D is closed;

(iv) If  = �D, D is closed, and 0 2 D, then D is the unique closed convex
set containing the origin such that  = �D; indeed, D = {x |(x)  1} .

Proof. Item (i) is proved in Rockafellar (1970, Theorem 15.1). Item (ii) follows
directly from the definition. To prove (iii), we first notice from item (ii) that
we may assume without loss of generality that D contains the origin. Notice
also that �D is closed if and only if �D = �⇤⇤

D . Moreover, �⇤⇤
D = �D��

= �
clD,

where the first equality follows from Proposition 2.1.2(ii) and item (i), while
the second equality follows from the bipolar theorem. Thus, �D is closed if and
only if �D = �

clD. The latter holds when D = clD. Finally, the conclusion
in item (iv) was stated on Rockafellar (1970, p. 128); indeed, the relation
D = {x | (x)  1 } can be verified directly from definition.

From Proposition 2.1.2(iv) and Proposition 2.1.4(iv), it is not hard to prove
the following formula on the polar of the sum of two gauges of independent
variables.
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2.1. Preliminaries

Proposition 2.1.5. Let 
1

and 
2

be gauges. Then (x
1

, x
2

) := 
1

(x
1

) +


2

(x
2

) is a gauge, and its polar is given by

�
(y

1

, y
2

) = max {�
1

(y
1

), �
2

(y
2

) } .

Proof. It is clear that  is a gauge. Moreover,

⇤
(y

1

, y
2

) = ⇤
1

(y
1

) + ⇤
2

(y
2

) = �D1⇥D2(y1, y2),

where D
i

= {x | �
i

(x)  1 } for i = 1, 2; the first equality follows from the
definition of the convex conjugate and the fact that y

1

and y
2

are decoupled,
and the second equality follows from Proposition 2.1.2(iv). This together with
Proposition 2.1.4(iv) implies that

�
(y

1

, y
2

) = inf {� � 0 | y
1

2 �D
1

, y
2

2 �D
2

}
= max { inf {� � 0 | y

1

2 �D
1

} , inf {� � 0 | y
2

2 �D
2

} }
= max { �D1(y1), �D2(y2) } = max {�

1

(y
1

), �
2

(y
2

) } .

This completes the proof.

The following corollary is immediate from Propositions 2.1.3 and 2.1.5.

Corollary 2.1.1. Let 
1

and 
2

be gauges. Suppose that either

(i) epi
1

and epi
2

are polyhedral; or

(ii) ri dom
1

\ ri dom
2

6= ;.

Then

(
1

+ 
2

)

�
(y) = inf

u1,u2

{max {�
1

(u
1

), �
2

(u
2

) } | u
1

+ u
2

= y } . (2.7)

Moreover, the infimum is attained when finite.

Proof. Apply Proposition 2.1.3 with Ax = (x, x) and the gauge 
1

(x
1

)+
2

(x
2

),
whose polar is given by Proposition 2.1.5.

The support function for a nonempty convex set D is defined as

�D(y) = sup

x2D
hx, yi.
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2.1. Preliminaries

It is straightforward to check that if D contains the origin, then the support
function is a (closed) gauge function. Indeed, we have the following rela-
tionship between support and Minkowski functions (Rockafellar, 1970, Corol-
lary 15.1.2).

Proposition 2.1.6. Let D be a closed convex set that contains the origin.
Then ��

D = �D and ��
D = �D.

The following result relates the domain of the support function and the
recession cone via polarity; see Auslender and Teboulle (2003, Theorem 2.2.1).

Theorem 2.1.1. If D is nonempty and convex, then (dom �D)� = D1.

2.1.3 Antipolar sets

The antipolar C 0, defined by (2.1), is nonempty as a consequence of the sepa-
ration theorem. Freund’s 1987 derivations are largely based on the following
definition of a ray-like set. (As Freund mentions, the terms antipolar and
ray-like are not universally used.)

Definition 2.1.2. A set D is ray-like if for any x, y 2 D,

x+ ↵y 2 D for all ↵ � 0.

Note that the antipolar C 0 of a (not necessarily ray-like) set C must be ray-like.
The following result is analogous to the bipolar theorem for antipolar op-

erations; see McLinden (1978, p. 176) and Freund (1987, Lemma 3).

Theorem 2.1.2 (Bi-antipolar theorem). C = C 00 if and only if C is ray-like.

The following proposition, stated by McLinden (1978, p. 176), follows from
the bi-antipolar theorem.

Proposition 2.1.7. C 00
=

S

��1

�C.

The next fact is used in the proof of the lemma following it; it has been
drawn from Auslender and Teboulle (2003, Proposition 2.1.5) and compiled
here for convenient reference.
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2.2. Antipolar calculus

Proposition 2.1.8. Let D be a nonempty convex set in X . Then the
recession cone D1 is a closed convex cone. Moreover, defining

D(x) := {d 2 X | x+ td 2 clD, 8t > 0}8x 2 D,

E := {d 2 X | 9x 2 D such that x+ td 2 clD, 8t > 0},
F := {d 2 X | d+ clD ⇢ clD},

we have that D(x) is in fact independent of x, now denoted simply by D,
and D1 = D = E = F.

The next lemma relates the positive polar of a convex set, its antipolar and
the recession cone of its antipolar.

Lemma 2.1.1. cl cone(C 0
) = C⇤

= (C 0
)1.

Proof. It is evident that cl cone(C 0
) ✓ C⇤. To show the converse inclusion, take

any x 2 C⇤ and fix an x
0

2 C 0. Then for any ⌧ > 0, we have

hc, x+ ⌧x
0

i � ⌧hc, x
0

i � ⌧ for all c 2 C,
which shows that x + ⌧x

0

2 cone C 0. Taking the limit as ⌧ goes to 0 shows
that x 2 cl cone(C 0

). This proves the first equality.
Next we show the second equality, and begin with the observation that

C⇤ ✓ (C 0
)1. Conversely, suppose that x 2 (C 0

)1 and fix any x
0

2 C 0. Then,
by Proposition 2.1.8, x

0

+ ⌧x 2 C 0 for all ⌧ > 0. Hence, for any c 2 C,
1

⌧
hc, x

0

i+ hc, xi = 1

⌧
hc, x

0

+ ⌧xi � 1

⌧
.

Since this is true for all ⌧ > 0, we must have hc, xi � 0. Since c 2 C is
arbitrary, we conclude that x 2 C⇤.

2.2 Antipolar calculus

In general, it may not always be easy to obtain an explicit formula for the
Minkowski function of a given closed convex set D. Hence, we derive some
elements of an antipolar calculus that allows us to express the antipolar of a
more complicated set in terms of the antipolars of its constituents. These rules
are useful for writing down the explicit gauge duals of problems such as (P

⇢

).
Table 2.1 summarizes the main elements of the calculus.

As a first step, the following formula gives an expression for the antipolar
of a set defined via a gauge. The formula follows directly from the definition
of polar functions.
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2.2. Antipolar calculus

Table 2.1: The main rules of the antipolar calculus; the required assumptions
are made explicit in the specific references.

Result Reference

(AC)0 = (A⇤
)

�1C 0 Proposition 2.2.2
(A�1C)0 = cl(A⇤C 0

) Propositions 2.2.3 and 2.2.4
(C

1

[ C
2

)

0
= C 0

1

\ C 0
2

Proposition 2.2.5
(C

1

\ C
2

)

0
= cl conv(C 0

1

[ C 0
2

) Proposition 2.2.6

Proposition 2.2.1. Let C = {x | ⇢(b� x)  ✏ } with 0 < ✏ < ⇢(b). Then
C 0

= { y | hb, yi � ✏⇢�(y) � 1 } .

Proof. Note that y 2 C 0 is equivalent to hx, yi � 1 for all x 2 C. Thus, for all
x such that ⇢(b� x)  ✏,

hx� b, yi � 1� hb, yi () hb� x, yi  hb, yi � 1.

From Proposition 2.1.2(iii), this is further equivalent to ✏⇢�(y)  hb, yi�1.

Proposition 2.2.1 is very general since any closed convex set D containing
the origin can be represented in the form of {x | ⇢(x)  1 }, where ⇢(x) =

inf {� � 0 | x 2 �D }; cf. (2.4). For conic constraints in particular, one obtains
the following corollary by setting ⇢(x) = ��K(x).

Corollary 2.2.1. Let C = {x | x 2 b+K} for some closed convex cone K
and a vector b /2 �K. Then

C 0
= { y 2 K⇤ | hb, yi � 1 } .

Note that Proposition 2.2.1 excludes the potentially important case ✏ = 0;
however, Corollary 2.2.1 can instead be applied by defining K = ⇢�1

(0) = { 0 }.

2.2.1 Linear transformations

We now consider the antipolar of the image of C under a linear map A.

Proposition 2.2.2. It holds that
(AC)0 = (A⇤

)

�1C 0.
Furthermore, if cl(AC) does not contain the origin, then both sets above are
nonempty.
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2.2. Antipolar calculus

Proof. Note that y 2 (AC)0 is equivalent to

hy, Aci = hA⇤y, ci � 1 for all c 2 C.

The last relation is equivalent to A⇤y 2 C 0. Hence, (AC)0 = (A⇤
)

�1C 0. Further-
more, the assumption that cl(AC) does not contain the origin, together with
an argument using supporting hyperplanes, implies (AC)0 is nonempty. This
completes the proof.

We have the following result concerning the pre-image of C.

Proposition 2.2.3. Suppose that A�1C 6= ;. Then

(A�1C)0 = cl(A⇤C 0
),

and both sets are nonempty.

Proof. Recall from our blanket assumption (cf. §2.1) that C is a closed convex
set not containing the origin. It follows that cl(A⇤C 0

) is nonempty. Moreover,
A�1C is also a closed convex set that does not contain the origin. Hence,
(A�1C)0 is also nonempty.

We next show that cl(A⇤C 0
) does not contain the origin. Suppose that

y 2 A⇤C 0 so that y = A⇤u for some u 2 C 0. Then for any x 2 A�1C, we have
Ax 2 C and thus

hx, yi = hx,A⇤ui = hAx, ui � 1,

which shows that y 2 (A�1C)0. Thus, we have A⇤C 0 ✓ (A�1C)0 and conse-
quently that cl(A⇤C 0

) ✓ (A�1C)0. Since the set A�1C is nonempty, (A�1C)0
does not contain the origin. Hence, it follows that cl(A⇤C 0

) also does not
contain the origin.

Now apply Proposition 2.2.2 with A⇤ in place of A, and C 0 in place of C,
to obtain

(A⇤C 0
)

0
= A�1C 00.

Taking the antipolar on both sides of the above relation, we arrive at

(A⇤C 0
)

00
= (A�1C 00

)

0. (2.8)

Since C 0 is ray-like, it follows that cl(A⇤C 0
) is also ray-like. Since cl(A⇤C 0

)

does not contain the origin, we conclude from the bi-antipolar theorem that
(A⇤C 0

)

00
= cl(A⇤C 0

). Moreover, we have

�

A�1C 00�0
=

 

[

��1

�A�1C
!0

=

�

A�1C
�0
,
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2.2. Antipolar calculus

where the first equality follows from Proposition 2.1.7, and the second equality
can be verified directly from definition. The conclusion now follows from the
above discussion and (2.8).

The next result is used in the proof of the proposition following it and
we compile it here for convenient reference; see (Berman, 1973, Lemma 3.1).

Theorem 2.2.1 (R.A. Abrams). Let K ⇢ X and A a linear map from X .
Then AK is closed if and only if K + kerA is closed.

We now have the following further consequence.

Proposition 2.2.4. Suppose that A�1C 6= ;, and either C is polyhedral or
ri C \ rangeA 6= ;. Then (A�1C)0 is nonempty and

�

A�1C
�0
= A⇤C 0.

Proof. We will show that A⇤C 0 is closed under the assumption of this proposi-
tion. Then the conclusion follows immediately from Proposition 2.2.3.

Abrams’s Theorem 2.2.1 asserts that A⇤C 0 is closed if and only if C 0
+kerA⇤

is closed. We will thus establish the closedness of the latter set.
Suppose that C is a polyhedral. Then it is routine to show that C 0 is also a

polyhedral and thus C 0
+kerA⇤ is closed. Hence, the conclusion of the corollary

holds under this assumption.
Finally, suppose that ri C \ rangeA 6= ;. From Theorem 2.1.1 and the

bipolar theorem mentioned in §2.1.1, we have cl dom �C0
= [(C 0

)1]

�, where
(C 0

)1 is the recession cone of C 0, which turns out to be just C⇤ by Lemma 2.1.1.
From this and the bipolar theorem, we see further that

cl dom �C0
= [C⇤

]

�
= [(cl cone C)⇤]� = � cl cone C,

and hence ri dom �C0
= � ri cone C, thanks to Rockafellar (1970, Theorem 6.3).

Furthermore, the assumption that ri C\rangeA 6= ; is equivalent to ri cone C\
rangeA 6= ;, since ri cone C =

S

�>0

� ri C; see Rockafellar (1970, p. 50). Thus,
the assumption ri C \ rangeA 6= ; together with Rockafellar (1970, Theo-
rem 23.8) imply that

C 0
+ kerA⇤

= @�C0
(0) + @�

rangeA

(0) = @(�C0
+ �

rangeA

)(0).

In particular, C 0
+ kerA⇤ is closed.
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2.2. Antipolar calculus

2.2.2 Unions and intersections

Other important set operations are union and intersection, which we discuss
here. Ruys and Weddepohl (1979, Appendix A.1) outline additional rules.

Proposition 2.2.5. Let C
1

and C
2

be nonempty closed convex sets. Then

(C
1

[ C
2

)

0
= C 0

1

\ C 0
2

.

If 0 /2 cl conv(C
1

[ C
2

), then the sets above are nonempty.

Proof. By definition, every y 2 (C
1

[ C
2

)

0 obeys hy, xi � 1 for all x 2 (C
1

[
C
2

) ◆ C
1

, so y 2 C 0
1

. Likewise, y 2 C 0
2

, and thus y 2 C 0
1

\ C 0
2

. The converse is
equally direct. Moreover, if we assume further that 0 /2 cl conv(C

1

[ C
2

), then
(C

1

[ C
2

)

0
= [cl conv(C

1

[ C
2

)]

0 is nonempty. This completes the proof.

We now consider the antipolar of intersections. Note that it is necessary
to assume that both C

1

and C
2

are ray-like, which was missing from Ruys
and Weddepohl (1979, Property A.5). (The necessity of this assumption is
demonstrated by Example 2.2.1, which follows the proposition.)

Proposition 2.2.6. Let C
1

and C
2

be nonempty ray-like closed convex sets
not containing the origin. Suppose further that C

1

\ C
2

6= ;. Then

(C
1

\ C
2

)

0
= cl conv(C 0

1

[ C 0
2

),

and both sets are nonempty.

Proof. From the fact that both C
1

and C
2

are closed convex sets not containing
the origin, it follows that C 0

1

and C 0
2

are nonempty and hence cl conv(C 0
1

[C 0
2

) 6=
;. Moreover, because C

1

\ C
2

does not contain the origin, (C
1

\ C
2

)

0 is also
nonempty.

We first show that cl conv(C 0
1

[ C 0
2

) does not contain the origin. To this
end, let y 2 C 0

1

[ C 0
2

. For any x 2 C
1

\ C
2

, we have hy, xi � 1, which shows that
C 0
1

[ C 0
2

✓ (C
1

\ C
2

)

0, and hence cl conv(C 0
1

[ C 0
2

) ✓ (C
1

\ C
2

)

0. Since C
1

\ C
2

is
nonempty, (C

1

\C
2

)

0 does not contain the origin. Consequently, cl conv(C 0
1

[C 0
2

)

does not contain the origin, as claimed.
Now apply Proposition 2.2.5, with C 0

1

in place of C
1

and C 0
2

in place of C
2

,
to obtain

(C 0
1

[ C 0
2

)

0
= C 00

1

\ C 00
2

= C
1

\ C
2

.

Take the antipolar of both sides to obtain

(C
1

\ C
2

)

0
= (C 0

1

[ C 0
2

)

00
= [cl conv(C 0

1

[ C 0
2

)]

00
= cl conv(C 0

1

[ C 0
2

),
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2.3. Duality derivations

where the second equality follows from the definition of antipolar, and the third
equality follows from the observation that cl conv(C 0

1

[ C 0
2

) is a nonempty ray-
like closed convex set not containing the origin. This completes the proof.

The following counter-example shows that the requirement that C
1

and C
2

are ray-like cannot be removed from Proposition 2.2.6. Refer to Figure 2.1 for
a visual depiction of its construction.

Example 2.2.1 (Set intersection and the ray-like property).
Consider the sets

C
1

= { (x
1

, x
2

) | 1� x
1

 x
2

 x
1

� 1 } and C
2

= { (x
1

, x
2

) | x
1

= 1 } .

Define H
1

= { (x
1

, x
2

) | x
1

+ x
2

� 1 } and H
2

= { (x
1

, x
2

) | x
1

� x
2

� 1 } so
that C

1

= H
1

\H
2

. Clearly the set C
2

is not ray-like, while the sets C
1

, H
1

,
and H

2

are. Moreover, all four sets do not contain the origin. Furthermore,
C
1

\C
2

is the singleton { (1, 0) }, and hence a direct computation shows that
(C

1

\ C
2

)

0
= { (y

1

, y
2

) | y
1

� 1 }.
Next, it follows directly from the antipolar definition that

C 0
2

= { (y
1

, 0) | y
1

� 1 } .

Also note that H
1

= L�1

1

I, where L
1

(x
1

, x
2

) = x
1

+x
2

and I = {u | u � 1 }.
Thus, by Proposition 2.2.4, H 0

1

= { (y
1

, y
1

) | y
1

� 1 }.
Similarly, H 0

2

= { (y
1

,�y
1

) | y
1

� 1 }. Because H
1

and H
2

are ray-like,
it follows from Proposition 2.2.6 that

C 0
1

= (H
1

\H
2

)

0
= cl conv(H 0

1

[H 0
2

),

which contains C 0
2

. Thus,

cl conv(C 0
1

[ C 0
2

) = C 0
1

( { (y
1

, y
2

) | y
1

� 1 } = (C
1

\ C
2

)

0.

2.3 Duality derivations

We derive in this section the gauge and Lagrange duals of the primal prob-
lem (P

⇢

). Let

C = {x | ⇢(b� Ax)  ✏ } (2.9)

denote the constraint set, where ⇢ is a closed gauge and 0  ✏ < ⇢(b). We also
consider the associated set
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2.3. Duality derivations

(a) C1 = H1 \H2 (b) C0
1 = cl conv(H 0

1 [H 0
2)

(c) C2 (d) C0
2

(e) C1 \ C2 (f) (C1 \ C2)0 ) C0
1 = cl conv(C0

1 [ C0
2)

Figure 2.1: Visual depiction of the counter-example described in Example 2.2.1
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2.3. Duality derivations

C
0

= {u | ⇢(b� u)  ✏ } , (2.10)

and note that C = A�1C
0

. Recall from our blanket assumption in §2.1 that
when ✏ = 0, we only consider closed gauges ⇢ with ⇢�1

(0) = { 0 }.

2.3.1 The gauge dual

We consider two approaches for deriving the gauge dual of (P
⇢

). The first uses
explicitly the abstract definition of the gauge dual (D). The second approach
redefines the objective function to also contain an indicator for the nonlinear
gauge ⇢ where C is an affine set. This alternative approach is instructive,
because it illustrates the modeling choices that are available when working
with gauge functions.

First approach

The following combines Proposition 2.2.4 with Proposition 2.2.1, and gives an
explicit expression for the antipolar of C when ✏ > 0.

Corollary 2.3.1. Suppose that C is given by (2.9), where 0 < ✏ < ⇢(b),
and C

0

is given by (2.10). If C
0

is polyhedral, or ri C
0

\ rangeA 6= ;, then

C 0
= {A⇤y | hb, yi � ✏⇢�(y) � 1 } .

As an aside, we present the following result, which follows from Corol-
lary 2.2.1 and Proposition 2.2.4, concerning a general closed convex cone K.

Corollary 2.3.2. Suppose that C = {x | Ax� b 2 K} for some closed con-
vex cone K and b /2 �K. If K is polyhedral, or (b + riK) \ rangeA 6= ;,
then

C 0
= {A⇤y | hb, yi � 1, y 2 K⇤ } .

These results can be used to obtain an explicit representation of the gauge
dual problem. We rely on the antipolar calculus developed in §2.2. Assume

C
0

is polyhedral, or ri C
0

\ rangeA 6= ;. (2.11)

Consider separately the cases ✏ > 0 and ✏ = 0.

Case 1 (✏ > 0): Apply Corollary 2.3.1 to derive the antipolar set

C 0
= {A⇤y | hb, yi � ✏⇢�(y) � 1 } . (2.12)
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Case 2 (✏ = 0): Here we use the blanket assumption (see §2.1) that ⇢�1

(0) =

{ 0 }, and in that case, C = {x | Ax = b }. Apply Corollary 2.3.2 with K = { 0 }
to obtain

C 0
= {A⇤y | hb, yi � 1 } . (2.13)

Since ⇢�1

(0) = { 0 } and ⇢ is closed, we conclude from Proposition 2.1.2(v)
that dom ⇢� = X . Hence, (2.13) can be seen as a special case of (2.12) with
✏ = 0.

These two cases can be combined, and we see that when (2.11) holds, the
gauge dual problem (D) for (P

⇢

) can be expressed as (D
⇢

). If the assump-
tions (2.11) are not satisfied, then in view of Proposition 2.2.3, it still holds
that (D) is equivalent to

minimize

u,y

�
(u) subject to u 2 cl {A⇤y | hy, bi � ✏⇢�(y) � 1 } .

This optimal value can in general be less than or equal to that of (D
⇢

).

Second approach

This approach does not rely on assumptions (2.11). Define the function
⇠(x, r, ⌧) := (x)+�

epi ⇢

(r, ⌧), which is a gauge because epi ⇢ is a cone. Then (P
⇢

)
can be equivalently reformulated as

minimize

x,r,⌧

⇠(x, r, ⌧) subject to Ax+ r = b, ⌧ = ✏. (2.14)

Invoke Proposition 2.1.5 to obtain

⇠�(z, y,↵) = max {�
(z), (�

epi ⇢

)

�
(y,↵) }

(i)

= max {�
(z), �

(epi ⇢)

�
(y,↵) }

(ii)

= �
(z) + �

(epi ⇢)

�
(y,↵)

(iii)

= �
(z) + �

epi(⇢

�
)

(y,�↵),

where (i) follows from Proposition 2.1.4(i), (ii) follows from the definition of
indicator function, and (iii) follows from Proposition 2.1.2(vi). As Freund
(1987, §2) shows for gauge programs with linear constraints, the gauge dual is
given by

minimize

y,↵

⇠�(A⇤y, y,↵) subject to hy, bi+ ✏↵ � 1,

which can be rewritten as

minimize

y,↵

�
(A⇤y) subject to hy, bi+ ✏↵ � 1, ⇢�(y)  �↵.
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2.3. Duality derivations

(The gauge dual for problems with linear constraints also follows directly from
Corollary 2.3.2 with K = { 0 }.) Further simplification leads to the gauge dual
program (D

⇢

).
Note that the transformation used to derive (2.14) is very flexible. For

example, if (P
⇢

) contained the additional conic constraint x 2 K, then ⇠ could
be defined to contain an additional term given by the indicator of K.

Even though this approach does not require the assumptions (2.11) used
in §2.3.1, and thus appears to apply more generally, it is important to keep
in mind that we have yet to impose conditions that imply strong duality. In
fact, as we show in §2.4, the assumptions required there imply (2.11).

2.3.2 Lagrange duality

Our derivation of the Lagrange dual problem (D
`

) is standard, and we include
it here as a counterpoint to the corresponding gauge dual derivation. We begin
by reformulating (P

⇢

) by introducing an artificial variable r, and deriving the
dual of the equivalent problem

minimize

x,r

(x) subject to Ax+ r = b, ⇢(r)  ✏. (2.15)

Define the Lagrangian function

L(x, r, y) = (x) + hy, b� Ax� ri.

The Lagrange dual problem is given by

maximize

y

inf

x, ⇢(r)✏

L(x, r, y).

Consider the (concave) dual function

`(y) = inf

x, ⇢(r)✏

L(x, r, y)

= inf

x, ⇢(r)✏

n

hy, bi � hy, ri �
�

hA⇤y, xi � (x)
�

o

= hy, bi � sup

⇢(r)✏

hy, ri � sup

x

n

hA⇤y, xi � (x)
o

= hy, bi � ✏⇢�(y)� �


�
(·)1

(A⇤y),

where the first conjugate on the right-hand side follows from Proposition 2.1.2(iii)
when ✏ > 0, and when ✏ = 0, it is a direct consequence of the assumption that
⇢�1

(0) = { 0 } so that dom ⇢� = X from Proposition 2.1.2(v); the last conjugate
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2.4. Strong duality

follows from Proposition 2.1.2(iv). The Lagrange dual problem is obtained by
maximizing `, leading to (D

`

).
Strictly speaking, the Lagrangian primal-dual pair of problems that we have

derived is given by (2.15) and (D
`

), but it is easy to see that (P
⇢

) is equivalent
to (2.15) in the sense that the respective optimal values are the same, and
that solutions to one problem readily lead to solutions for the other. Thus,
without loss of generality, we refer to (D

`

) as the Lagrange dual to the primal
problem (P

⇢

).

2.4 Strong duality

Freund’s 1987 analysis of the gauge dual pair is mainly based on the clas-
sical separation theorem. It relies on the ray-like property of the constraint
set C. Our study of the gauge dual pairs allows us to relax the ray-like as-
sumption. By establishing connections with the Fenchel duality framework,
we can develop strong duality conditions that are analogous to those required
for Lagrange duality theory.

The Fenchel dual (Rockafellar, 1970, §31) of (P) is given by

maximize

y

��C(�y) subject to �
(y)  1, (2.16)

where we use (�C)⇤ = �C and Proposition 2.1.2(iv) to obtain ⇤
= �

[

�1]

. Let
v
p

, v
g

, and v
f

, respectively, denote the optimal values of (P), (D) and (2.16).
The following result relates their optimal values and dual solutions.

Theorem 2.4.1 (Weak duality). Suppose that dom� \ C 0 6= ;. Then

v
p

� v
f

= 1/v
g

> 0.

Furthermore,

(i) if y⇤ solves (2.16), then y⇤ 2 cone C 0 and y⇤/v
f

solves (D);

(ii) if y⇤ solves (D) and v
g

> 0, then v
f

y⇤ solves (2.16).

Proof. The fact that v
p

� v
f

follows from standard Fenchel duality theory.
We now show that v

f

= 1/v
g

.
Because dom� \ C 0 6= ;, there exists y

0

such that �
(y

0

)  1 and y
0

2 ⌧C 0

for some ⌧ > 0. In particular, because ��C(�y) = inf

c2Chc, yi for all y, it
follows from the definition of v

f

that

v
f

= sup

y

{ inf
c2C

hc, yi | �
(y)  1 } � inf

c2C
hc, y

0

i � ⌧ > 0. (2.17)
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2.4. Strong duality

Hence
v
f

= sup

y,�

{� | �
(y)  1, ��C(�y) � �, � > 0 } . (2.18)

From this, we have further that

v
f

= sup

y,�

{� | �
(y/�)  1/�, ��C(�y/�) � 1, 1/� > 0 }

= sup

y,µ

{ 1/µ | �
(µy)  µ, ��C(�µy) � 1, µ > 0 } .

Inverting both sides of this equation gives

1/v
f

= inf

y,µ

{µ | �
(µy)  µ, ��C(�µy) � 1, µ > 0 }

= inf

w,µ

{µ | �
(w)  µ, ��C(�w) � 1, µ > 0 }

(i)
= inf

w,µ

{µ | �
(w)  µ, w 2 C 0, µ > 0 }

= inf

w,µ

{µ | �
(w)  µ, w 2 C 0 }

= inf

w

{�
(w) | w 2 C 0 } = v

g

,

(2.19)

where equality (i) follows from the definition of C 0. This proves v
f

= 1/v
g

.
We now prove item (i). Assume that y⇤ solves (2.16). Then v

f

is nonzero
(by (2.17)) and finite, and so is v

g

= 1/v
f

. Then y⇤ 2 cone C 0 because
��C(�y⇤) = inf

c2Chc, y⇤i = v
f

> 0, and we see from (2.19) that y⇤/v
f

solves
(D). We now prove item (ii). Note that if y⇤ solves (D) and v

g

> 0, then
�
(y⇤) > 0. One can then observe similarly from (2.19) that y⇤/v

g

= v
f

y⇤

solves (2.16). This completes the proof.

Fenchel duality theory allows us to use Theorem 2.4.1 to obtain several
sufficient conditions that guarantee strong duality, i.e., v

p

v
g

= 1, and the
attainment of the gauge dual problem (D). For example, applying Rockafellar
(1970, Theorem 31.1) yields the following corollary.

Corollary 2.4.1 (Strong duality I). Suppose that dom� \ C 0 6= ; and
ri dom \ ri C 6= ;. Then v

p

v
g

= 1 and the gauge dual (D) attains its
optimal value.

Proof. From ri dom \ ri C 6= ; and Rockafellar (1970, Theorem 31.1), we see
that v

p

= v
f

and v
f

is attained. The conclusion of the corollary now follows
immediately from Theorem 2.4.1.
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2.4. Strong duality

We would also like to guarantee primal attainment. Note that the gauge
dual of the gauge dual problem (D) (i.e., the bidual of (P)) is given by

minimize

x

��
(x) subject to x 2 C 00, (2.20)

which is not the same as (P) unless C is ray-like and  is closed; see Theo-
rem 2.1.2 and Proposition 2.1.2(ii). However, we show in the next proposition
that (2.20) and (P) always have the same optimal value when  is closed (even
if C is not ray-like), and that if the optimal value is attained in one problem,
it is also attained in the other.

Proposition 2.4.1. Suppose that  is closed. Then the optimal values of
(P) and (2.20) are the same. Moreover, if the optimal value is attained in
one problem, it is also attained in the other.

Proof. From Proposition 2.1.7, we see that (2.20) is equivalent to

minimize

�,x

�(x) subject to x 2 C, � � 1,

which clearly gives the same optimal value as (P). This proves the first con-
clusion. The second conclusion now also follows immediately.

Hence, we obtain the following corollary, which generalizes Freund (1987,
Theorem 2A) by dropping the ray-like assumption on C.

Corollary 2.4.2 (Strong duality II). Suppose that  is closed, and that
ri dom\ ri C 6= ; and ri dom� \ ri C 0 6= ;. Then v

p

v
g

= 1 and both values
are attained.

Proof. The conclusion follows from Corollary 2.4.1, Proposition 2.4.1, the fact
that  = �� for closed gauge functions, and the observation that ri dom \
ri C 6= ; if and only if ri dom\ri C 00 6= ;, since ri C 00

=

S

�>1

� ri C (Rockafellar,
1970, p. 50) and dom is a cone.

Before closing this section, we specialize Theorem 2.4.1 to study the rela-
tionship between the Lagrange (D

`

) and gauge (D
⇢

) duals. Let v
l

denote the
optimal value of (D

`

). We use the fact that, for any y,

� �C(�y) = inf

c2C
hc, yi

(

> 0 if y 2 cone C 0\ { 0 } ,
 0 otherwise,

(2.21)

which is directly verifiable using the definition of C 0.
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2.4. Strong duality

Corollary 2.4.3. Suppose that C is given by (2.9), where 0  ✏ < ⇢(b),
assumption (2.11) holds, and dom�\C 0 6= ;. Then v

l

= v
f

> 0. Moreover,

(i) if y⇤ solves (D
`

), then y⇤/v
l

solves (D
⇢

);

(ii) if y⇤ solves (D
⇢

) and v
g

> 0, then v
l

y⇤ solves (D
`

).

Proof. From (2.21), for any y 2 cone C 0\ { 0 }, we have ��C(�y) = inf

c2Chc, yi >
0 and is hence finite. Note that inf

c2Chc, yi = inf

c,r

{hc, yi |Ac+ r = b, ⇢(r)  ✏}.
Use this reformulation and proceed as in §2.3.2 to obtain the dual function

`(u) = inf

c, ⇢(r)✏

�

hu, bi � hu, ri �
�

hA⇤u, ci � hc, yi
� 

= hb, ui � sup

⇢(r)✏

hu, ri � sup

c

{hA⇤u� y, ci}

= hb, ui � ✏⇢�(u)� �
A

⇤
u=y

(u).

The dual problem to inf

c2Chc, yi is given by maximizing ` over u. Because of
assumption (2.11) and the finiteness of ��C(�y),

inf

c2C
hc, yi = sup

y=A

⇤
u

�

hb, ui � ✏⇢�(u)
 

, (2.22)

and the supremum is attained, which is a consequence of Rockafellar (1970,
Corollary 28.2.2 and Theorem 28.4). On the other hand, for any y /2cone C 0\{0},
we have from weak duality and (2.21) that

sup

y=A

⇤
u

{hb, ui � ✏⇢�(u)}  inf

c2C
hc, yi  0. (2.23)

Since dom� \ C 0 6= ;, we can substitute (2.22) into (2.18) and obtain

0 < v
f

= sup {� | �
(y)  1, ��C(�y) � � > 0 }

= sup { hb, ui � ✏⇢�(u) | �
(A⇤u)  1, A⇤u 2 cone C 0\ { 0 } }

= sup { hb, ui � ✏⇢�(u) | �
(A⇤u)  1 } = v

l

,

where the last equality follows from (2.22), (2.23), and the positivity of v
f

.
This completes the first part of the proof. In particular, the Fenchel dual
problem (2.16) has the same optimal value as the Lagrange dual problem
(D

`

), and y⇤ = A⇤u⇤ solves (2.16) if and only if u⇤ solves (D
`

). Moreover, since
assumption (2.11) holds, §2.3.1 shows that (D) is equivalent to (D

⇢

). The
conclusion now follows from these and Theorem 2.4.1.

We next state a strong duality result concerning the primal-dual gauge pair
(P

⇢

) and (D
⇢

).
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2.5. Variational properties of the gauge value function

Corollary 2.4.4. Suppose that C and C
0

are given by (2.9) and (2.10),
where 0  ✏ < ⇢(b). Suppose also that  is closed,

ri dom \ A�1

ri C
0

6= ;, and ri dom� \ A⇤
ri C 0

0

6= ;. (2.24)

Then the optimal values of (P
⇢

) and (D
⇢

) are attained, and their product is
equal to 1.

Proof. Since A�1

ri C
0

6= ;, A satisfies the assumption in (2.11). Then §2.3.1
shows that (D) is equivalent to (D

⇢

). Moreover, from Rockafellar (1970, The-
orem 6.6, Theorem 6.7), we see that ri C = A�1

ri C
0

and ri C 0
= A⇤

ri C 0
0

. The
conclusion now follows from Corollary 2.4.2.

This last result also holds if C
0

were polyhedral; in that case, the assump-
tions (2.24) could be replaced with ri dom \ C 6= ; and ri dom� \ C 0 6= ;.

2.5 Variational properties of the gauge value

function

Thus far, our analysis has focused on the relationship between the optimal val-
ues of the primal-dual pair (P

⇢

) and (D
⇢

). As with Lagrange duality, however,
there is also a fruitful view of dual solutions as providing sensitivity informa-
tion on the primal optimal value. Here we provide a corresponding variational
analysis of the gauge optimal-value function with respect to perturbations in
b and ✏.

Sensitivity information is captured in the subdifferential of the value func-
tion

v(h, k) = inf

x

f(x, h, k), (2.25)

with
f(x, h, k) = (x) + �

epi ⇢

(b+ h� Ax, ✏+ k). (2.26)

Following the discussion in Aravkin, Burke, and Friedlander (2013, Section 4),
we start by computing the conjugate of f , which can be done as follows:

f ⇤
(z, y, ⌧) = sup

x,h,k

{ hz, xi+ hy, hi+ ⌧k � (x)� �
epi ⇢

(b+ h� Ax, ✏+ k) }

= sup

x,w,µ

{ hz + A⇤y, xi � (x) + hy, wi+ ⌧µ� �
epi ⇢

(w, µ) }� hb, yi � ⌧✏

= ⇤
(z + A⇤y) + �⇤

epi ⇢

(y, ⌧)� hb, yi � ⌧✏.
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2.5. Variational properties of the gauge value function

Use Proposition 2.1.2(iv) and the definition of support function and convex
conjugate to further transform this as

f ⇤
(z, y, ⌧) + hb, yi+ ⌧✏ = �



�
(·)1

(z + A⇤y) + �
epi ⇢

(y, ⌧)

(i)

= �


�
(·)1

(z + A⇤y) + �
(epi ⇢)

�
(y, ⌧)

(ii)

= �


�
(·)1

(z + A⇤y) + �
epi(⇢

�
)

(y,�⌧)

= �


�
(·)1

(z + A⇤y) + �
⇢

�
(·)·(y,�⌧),

where equality (i) follows from Proposition 2.1.6 and Proposition 2.1.4(i), and
equality (ii) follows from Proposition 2.1.2(vi). Combining this with the defi-
nition of the value function v(h, k),

v⇤(y, ⌧) = sup

h,k

{ hy, hi+ ⌧k � v(h, k) }

= sup

x,h,k

{ hy, hi+ ⌧k � f(x, h, k) }

= f ⇤
(0, y, ⌧) = �hb, yi � ✏⌧ + �



�
(·)1

(A⇤y) + �
⇢

�
(·)·(y,�⌧).

(2.27)

In view of Rockafellar and Wets (1998, Theorem 11.39), under a suitable con-
straint qualification, the set of subgradients of v is nonempty and given by

@v(0, 0) = argmax

y,⌧

{�f ⇤
(0, y, ⌧) }

= argmax

y,⌧

{ hb, yi+ ✏⌧ | �
(A⇤y)  1, ⇢�(y)  �⌧ }

=

⇢

�

y,�⇢�(y)
�

�

�

�

�

y2argmax

y

{hb, yi � ✏⇢�(y) |�
(A⇤y)  1}

�

,

(2.28)

in terms of the solution set of (D
`

) and the corresponding function value of
⇢�(y). We state formally this result, which is a consequence of the above
discussion and Corollary 2.4.3.

Proposition 2.5.1. For fixed (b, ✏), define v as in (2.25) and f as in (2.26).
Then

dom f(·, 0, 0) 6= ; () 0 2 A dom� [⇢(b� ·)  ✏],

and hence

(0, 0) 2 int dom v () 0 2 int(A dom� [⇢(b� ·) < ✏])

51



2.6. Extensions

If (0, 0) 2 int dom v and v(0, 0) > 0, then @v(0, 0) 6= ; with

@v(0, 0) =

⇢

(y,�⇢�(y))

�

�

�

�

y2argmax

y

{hb, yi � ✏⇢�(y) |�
(A⇤y)  1}

�

=

⇢

v(0, 0) · (y,�⇢�(y))

�

�

�

�

y2argmin

y

{�
(A⇤y) |hb, yi � ✏⇢�(y) � 1}

�

.

Proof. It is routine to verify the properties of the domain of f(·, 0, 0) and the
interior of the domain of v. Suppose that (0, 0) 2 int dom v. Then the value
function is continuous at (0, 0) and hence @v(0, 0) 6= ;. The first expression
of @v(0, 0) follows directly from Rockafellar and Wets (1998, Theorem 11.39)
and the discussions preceding this proposition.

We next derive the second expression of @v(0, 0). Since (0, 0) 2 int dom v
implies 0 2 int(A dom � [⇢(b � ·) < ✏]), the linear map A satisfies assump-
tion 2.11. Moreover, as another consequence of Rockafellar and Wets (1998,
Theorem 11.39), (0, 0) 2 int dom v also implies that v(0, 0) = sup

y,⌧

{�f ⇤
(0, y, ⌧)},

which is just the optimal value of the Lagrange dual problem (D
`

). Further-
more, v(0, 0) being finite and nonzero together with the definition of (D

`

) and
(2.12) implies that dom� \ C 0 6= ;. The second expression of @v(0, 0) now
follows from these three observations and Corollary 2.4.3.

2.6 Extensions

The following examples illustrate how to extend the canonical formulation (P
⇢

)
to accommodate related problems. It also provides an illustration of the tech-
niques that can be used to pose problems in gauge form and how to derive
their corresponding gauge duals.

2.6.1 Composition and conic side constraints

A useful generalization of (P
⇢

) is to allow the gauge objective to be composed
with a linear map, and for the addition of conic side constraints. The composite
objective can be used to capture, for example, problems such as weighted basis
pursuit (e.g., Candés, Wakin, and Boyd (2008); Friedlander, Mansour, Saab,
and Yilmaz (2012)), or together with the conic constraint, problems such as
nonnegative total variation (Krishnan, Lin, and Yip, 2007).

The following result generalizes the canonical primal-dual gauge pair (P
⇢

)
and (D

⇢

).
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2.6. Extensions

Proposition 2.6.1. Let D be a linear map and K be a convex cone. The
following pair of problems constitute a primal-dual gauge pair:

minimize

x

(Dx) subject to ⇢(b� Ax)  ✏, x 2 K, (2.29a)

minimize

y, z

�
(z) subject to hy, bi � ✏⇢�(y) � 1, D⇤z � A⇤y 2 K⇤.

(2.29b)

Proof. Reformulate (2.29a) as a gauge optimization problem by introducing
additional variables, and lifting both the cone K and the epigraph epi ⇢ into the
objective by means of their indicator functions: use the function f(x, s, r, ⌧) :=
�K(x) + (s) + �

epi ⇢

(r, ⌧) to define the equivalent gauge optimization problem

minimize

x,s,r,⌧

f(x, s, r, ⌧) subject to Dx = s, Ax+ r = b, ⌧ = ✏.

As with §2.3.1, observe that f is a sum of gauges on disjoint variables. Thus,
we invoke Proposition 2.1.5 to deduce the polar of the above objective:

f �
(u, z, y,↵) = max { ��K(u), �

(z), ��
epi ⇢

(y,↵) }
(i)

= max { �K�
(u), �

(z), �
(epi ⇢)

�
(y,↵) }

(ii)

= max { �K⇤
(�u), �

(z), �
epi(⇢

�
)

(y,�↵) }
(iii)

= �K⇤
(�u) + �

(z) + �
epi(⇢

�
)

(y,�↵),

where (i) follows from Proposition 2.1.4(i), (ii) follows from Proposition 2.1.2(vi),
and (iii) follows from the definition of indicator function. Moreover, use Corol-
lary 2.3.2 to derive the antipolar of the linear constraint set

C = { (x, s, r, ⌧) | Dx = s, Ax+ r = b, ⌧ = ✏ } ,

which leads us to

C 0
= { (�D⇤z + A⇤y, z, y,↵) | hb, yi+ ✏↵ � 1 } .

From the above discussion, we obtain the following gauge program

minimize

y,z,↵

�K⇤
(D⇤z�A⇤y)+�

(z)+�
epi(⇢

�
)

(y,�↵) subject to hb, yi+✏↵ � 1.

Bringing the indicator functions down to the constraints leads to

minimize

y,z,↵

�
(z) subject to hy, bi+ ✏↵ � 1, ⇢�(y)  �↵, D⇤z�A⇤y 2 K⇤

;

further simplification by eliminating ↵ yields the gauge dual problem (2.29b).
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2.6. Extensions

2.6.2 Nonnegative conic optimization

Conic optimization subsumes a large class of convex optimization problems
that ranges from linear, to second-order, to semidefinite programming, among
others. Example 1.2.3 describes how a general conic optimization problem can
be reformulated as an equivalent gauge problem; see (1.16).

We can easily accommodate a generalization of (1.16) by embedding it
within the formulation defined by (1.15a), and define

minimize

x

hc, xi+ �K(x) subject to ⇢(b� Ax)  ✏, (2.30)

with c 2 K⇤, as the conic gauge optimization problem. The following result
describes its gauge dual.

Proposition 2.6.2. Suppose that K ⇢ X is a convex cone and c 2 K⇤.
Then the gauge

(x) = hc, xi+ �K(x)

has the polar
�
(u) = inf {↵ � 0 | ↵c 2 K⇤

+ u } , (2.31)

with dom�
= span{c} � K⇤. If K is closed and c 2 intK⇤, then  has

compact level sets, and dom�
= X .

Proof. From Proposition 2.1.2, we have that

�
(u) = sup {hu, xi |(x)  1}

= sup {hu, xi | hc, xi  1 and x 2 K} (2.32)
= inf {↵ � 0 |↵c� u 2 K⇤} ,

where the strong (Lagrangian) duality relationship in the last equality stems
from the following argument. First consider the case where u 2 dom�. Be-
cause the maximization problem in (2.32) satisfies Slater’s condition, equality
follows from Rockafellar (1970, Corollary 28.2.2 and Theorem 28.4). Next, con-
sider the case where u /2 dom�, where �

(u) = +1. The last equality then
follows from weak duality. For the domain, note that the minimization prob-
lem is feasible if and only if u 2 span{c}�K⇤; hence dom�

= span{c}�K⇤.
To prove compactness of the level sets of  when K is closed and c 2 intK⇤,

define � := inf

x

{ hc, xi | kxk = 1, x 2 K} and observe that compactness of the
feasible set in this minimization implies that the infimum is attained and that
� > 0. Thus, for any x 2 K \ {0}, hc, xi � � kxk > 0 and, consequently,
that {x 2 X | (x)  ↵ } = {x 2 K | hc, xi  ↵ } ⇢ {x 2 X | kxk  ↵/� }.

54



2.6. Extensions

This guarantees that the level sets of  are bounded, which establishes their
compactness. From this and Proposition 2.1.2(iii), we see that �

(u) is finite
for any u 2 X .

Remark 2.6.1. Note that even though the polar gauge in (2.31) is closed, it
is not necessarily the case that it has a closed domain. For example, let K be
the cone of PSD 2-by-2 matrices, and define

c =

✓

1 0

0 0

◆

and u
n

=

✓

0 1

1 � 1

n

◆

,

for each n = 1, 2, . . .. Use the expression (2.31) to obtain that �
(u

n

) = n.
Hence, u

n

2 dom�, but lim

n!+1 u
n

62 dom�.
This is an example of a more general result described by Ramana, Tunçel,

and Wolkowicz (1997, Lemma 2.2), which shows that the cone of PSD matrices
is devious (i.e., for every nontrivial proper face F of K, spanF + K is not
closed). The concept of a devious cone seems to be intimately related to the
closedness of the domain of polar gauges such as (2.31) because span{c}�K⇤

=

�(spanF +K⇤
), where F ✓ K⇤ is the smallest face of K⇤ that contains c; see

Tunçel and Wolkowicz (2012, Proposition 3.2).
With that in mind, it is interesting to derive a representation for the closure

of the domain of (2.31). It follows from Rockafellar (1970, Corollary 16.4.2)
that cl dom�

= cl (span{c}�K⇤
) =

�

{c}? \ clK
��.
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Chapter 3

Spectral gauge optimization and

duality

The gauge duality framework developed in Chapter 2, albeit inspired by convex
formulations arising from practical inverse problems, was still approached in
a rather abstract form.

In this chapter we connect this general class of problems with those con-
vex relaxations for phase recovery and blind deconvolution presented in §1.1.
Our goal is to derive their corresponding dual problems and to show that they
admit a unified description suitable for the design of numerical methods for
their minimization.

Due to its expressiveness and direct relationship to the PhaseLift formula-
tion, we begin by specializing the nonnegative conic gauge optimization class
from §2.6.2 to matrix problems in which the abstract cone is instantiated to
be that of positive semidefinite Hermitian matrices. This specialization along
with further analysis lead us to a constrained eigenvalue minimization prob-
lem derived from the dual gauge problem, which will serve as the basis for our
approach described in Chapter 4.

This is followed by an analogous derivation of a dual gauge problem associ-
ated to the nuclear norm relaxation described in §1.1.2, which is then further
reduced to a problem of the same form as that for PhaseLift—thus allowing
for a unified approach to both problems.

We conclude this chapter with a construction of a family of lower approx-
imants to this spectral gauge dual objective and a discussion of their possible
application within the framework of proximal bundle methods for nonsmooth
convex minimization.

3.1 Semidefinite nonnegative conic optimization

For our purposes, an instance of semidefinite nonnegative conic optimization
is a problem of the form

minimize

X2Hn
hC,Xi subject to ⇢(b�AX)  ✏ and X ⌫ 0, (3.1)
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3.1. Semidefinite nonnegative conic optimization

where C ⌫ 0, ⇢ : Rm ! R [ {+1} is a closed gauge function such that
⇢�1

(0) = {0}, b 2 Rm \ {0}, ✏ < ⇢(b), and A : Hn ! Rm is a linear map
defined by matrices A

k

2 Hn in such a way that

(AX)

k

= hX,A
k

i := trace(A⇤
k

X) = trace(A
k

X)

for each k = 1, . . . ,m and all X 2 Hn.
We begin with the specialization of the general nonnegative conic gauge

optimization presented in §2.6.2 to problems of the form (3.1). In that abstract
formulation, we take X = Hn to be the real vector space of n-by-n Hermitian
matrices, K ⇢ X to be the (self-dual) cone of positive semidefinite matrices,
c = C and A = A, this specialization translates (2.30) to the problem

minimize

X2Hn
(X) := hC,Xi+ �·⌫0

(X) subject to ⇢(b�AX)  ✏, (3.2)

where the PSD constraint from (3.1) is moved to the objective function turning
it into the gauge , a technique used in §2.6.2 for more general convex cones.

Invoking Proposition 2.6.2, we have that the gauge polar to  is given by

�
(U) = inf

↵2R
{↵ � 0 | ↵C ⌫ U }

= max{0, inf {↵ 2 R | ↵C ⌫ U }}
= max{0,�

1

(U,C)}
= [�

1

(U,C)]

+

,

where �
1

(U,C) denotes the rightmost generalized eigenvalue—i.e., largest real
not in absolute value—corresponding to the generalized eigenvalue problem
Ux = �Cx (which might be +1 as in the example given in Remark 2.6.1).

With this characterization, the abstract gauge dual (D
⇢

) derived in §2.3.1
specializes to the spectral optimization problem

minimize

y2Rm
[�

1

(A⇤y, C)]

+

subject to hb, yi � ✏⇢�(y) � 1, (3.3)

which is feasible for 0  ✏ < ⇢(b), but not necessarily finite due to assuming
only semidefiniteness of C; c.f. Remark 2.6.1.

In the following, we further specialize and analyze this primal-dual pair to
its most commonly encountered form from convex relaxations.

3.1.1 Trace minimization in the PSD cone

The lifted formulation of phase retrieval is an example of the semidefinite
conic gauge optimization problem (3.2) where C is the identity matrix and
⇢ : Cm ! R is some norm k·k (typically the 2-norm).
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3.1. Semidefinite nonnegative conic optimization

For these cases, (3.2) reduces to the problem of minimizing the trace of a
PSD matrix that satisfies a prescribed bound on the (norm-measured) linear
measurements misfit, while the dual consists of a constrained eigenvalue mini-
mization problem. This neatly specializes the abstract primal-dual gauge pair

minimize

x2X
(x) subject to ⇢(b� Ax)  ✏, (3.4a)

minimize

y2Y
�
(A⇤y) subject to hy, bi � ✏⇢�(y) � 1, (3.4b)

to the spectral gauge pair that forms the core of our approach

minimize

X2Hn
traceX + �(X | · ⌫ 0) subject to kb�AXk  ✏, (3.5a)

minimize

y2Rm
[�

1

(A⇤y)]
+

subject to hy, bi � ✏ kyk⇤ � 1, (3.5b)

where k·k⇤ denotes the norm dual to k·k and A⇤y =

P

m

k=1

A
k

y
k

.
Figure 3.1 illustrates the geometry of the gauge dual feasible set in (3.5b)

for different norms and values of ✏ in the case where m = 2 and b = (0, 1) 2 R2.
The generalized “unit balls” of the gauge traceX + �(X | · ⌫ 0) and its corre-
sponding polar [�

1

(U)]

+

are depicted in Figure 3.2 for 2-by-2 real symmetric
matrices parameterized as

h

x, zp
2

;

zp
2

, y
i

, where (x, y, z) correspond to the co-
ordinate axes in R3. Figures 3.3 and 3.4 provide alternative viewing positions.

Assuming the original problem with the cone constraints is feasible and
b 6= 0, we can further simplify the dual objective and safely eliminate the
positive-part operator: since in this case (X) is obviously strictly positive
for all nonzero X, and is additionally finite over the feasible set of the origi-
nal cone-constrained problem, it follows from weak gauge duality (cf. Theo-
rem 2.4.1) that �

(A⇤y) is positive for all dual feasible points. In other words,
0 < [�

1

(A⇤y)]
+

= �
1

(A⇤y) (3.6)
for all dual feasible points y, leading to the equivalent spectral problem

minimize

y2Rm
�
1

(A⇤y) subject to hb, yi � ✏ kyk⇤ � 1, (3.7)

which will play a central role in our computational approach described in
Chapter 4.

In practice, we need to be prepared to detect infeasiblity. The failure of
condition (3.6) in fact furnishes a certificate of infeasibility for the original
cone-constrained problem (3.1): if �

1

(A⇤y)  0 for some dual-feasible vector
y, it follows from weak gauge duality that (X) is necessarily infinite over the
feasible set of (3.5a)—i.e., X 6⌫ 0 for all X feasible in problem (3.5a).
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3.1. Semidefinite nonnegative conic optimization

(a) k·k = k·k1 and k·k⇤ = k·k1

(b) k·k = k·k2 and k·k⇤ = k·k2

(c) k·k = k·k1 and k·k⇤ = k·k1

Figure 3.1: Visualizing the dual feasible set for b = (0, 1) and ✏ 2 [0:.1:.9].
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3.2. Nuclear-norm minimization

Figure 3.2: Generalized unit balls of the trace-gauge and its polar for real
symmetric 2-by-2 matrices (intersected with [�1.5, 1.5]3 for illustration pur-
poses). Depictions above correspond to the parameterization

h

x, zp
2

;

zp
2

, y
i

.

Figures 3.3 and 3.4 provide different viewing positions.

3.2 Nuclear-norm minimization

Recall the nuclear-norm minimization problem described in Chapter 1,

minimize

X2Cn1⇥n2
kXk

1

=

X

i

�
i

(X) subject to kb�AXk  ✏,

where the measurement operator A : Cn1⇥n2 ! Cm is defined by matrices
A

k

2 Cn1⇥n2 as (AX)

k

:= hX,A
k

i := trace(A⇤
k

X), k = 1, . . . ,m, and ✏ < kbk .
The dual to this gauge minimization problem admits a far simpler treat-

ment if we exploit the norm structure of the objective. By observing that its
polar is the corresponding dual norm (i.e., the operator norm k·k1 = �

1

(·))
and identifying Y = Cm as a real 2m-dimensional vector space with the inner-
product R h·, ·i , we have the following primal-dual gauge pair

minimize

X2Cn1⇥n2
kXk

1

subject to kb�AXk  ✏, (3.8a)

minimize

y2Cm
kA⇤yk1 subject to R hy, bi � ✏ kyk⇤ � 1, (3.8b)

where A⇤y =

P

m

k=1

A
k

y
k

2 Cn1⇥n2 is the adjoint of A evaluated at y.
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3.2. Nuclear-norm minimization

Figure 3.3: Generalized unit ball of the trace-gauge for symmetric 2-matrices.

Figure 3.4: Generalized unit ball of the polar to the trace-gauge for real sym-
metric 2-matrices. Set is unbounded, so it is illustrated here within a box.
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3.2. Nuclear-norm minimization

3.2.1 Reduction to PSD trace minimization

It will be convenient, for both theoretical and algorithmic developments of the
approach we discuss in Chapter 4, to embed the nuclear-norm minimization
problem (3.8a) within the symmetric SDP formulation (3.5a). The results
are no less general, and it will allow us to solve both problems with what is
essentially a single algorithmic approach and software implementation.

The reduction to the Hermitian trace-minimization problem (3.5a) leve-
rages the SDP formulation of the nuclear norm as introduced by Fazel (2002)
and used by Ahmed et al. (2014) for their algorithmic approach, as we discussed
in §1.1.2. It embeds the problem in a larger Hermitian space and separates
the complex measurements into their real and imaginary parts, leading to a
problem of the form

minimize

U2Hn1
,V 2Hn2

X2Cn1⇥n2

r1,r22Rm

⌧

1

2

✓

I 0

0 I

◆

,

✓

U X
X⇤ V

◆�

subject to

⌧

1

2

✓

0 A
k

A⇤
k

0

◆

,

✓

U X
X⇤ V

◆�

+ r
1k

= Rb
k

,

⌧

i

2

✓

0 A
k

�A⇤
k

0

◆

,

✓

U X
X⇤ V

◆�

+ r
2k

= Ib
k

,

kr
1

+ ir
2

k  ✏,

✓

U X
X⇤ V

◆

⌫ 0, k = 1, . . . ,m,

(3.9)

where the residual vectors r
1

, r
2

2 Rm are introduced simply to allow a com-
pact presentation.

The gauge dual obtained from this problem when instantiated in (3.3) will
have the exact same form as (3.8b) once the dual variables y

1

, y
2

2 Rm are
“compacted” back into a complex vector y = y

1

+ iy
2

2 Cm and the objective
is simplified by observing the following equalities



�
1

✓✓

0

1

2

(A⇤y)
1

2

(A⇤y)⇤ 0

◆

,
1

2

I

◆�

+

=



�
1

✓

0 A⇤y
(A⇤y)⇤ 0

◆�

+

= [kA⇤yk1]

+

= kA⇤yk1 ,

where we use the fact that the eigenvalues of the matrix [0, Z;Z⇤, 0] are ±�
k

(Z)
for each k = 1, . . . ,min{n

1

, n
2

} and |n
1

� n
2

| zeros.
Based on this reduction, from now on we focus entirely on the PSD trace

minimization formulation (3.5a), its gauge dual (3.5b) and the corresponding
constrained eigenvalue optimization problem (3.7).
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3.3. Spectral lower models for convex minimization

3.3 Spectral lower models for convex

minimization

In the next chapter we describe a computational approach for problem (3.5b)
that is based on a projected subgradient method (PSGM) to solve that con-
vex eigenvalue minimization problem. Although simple and promising (c.f.,
experiments described in Chapter 5), that approach inherits some difficulties
from PSGMs—e.g., lack of natural stopping criteria—for which workarounds
need to be devised.

Bundle methods for nonsmooth convex minimization provide natural mech-
anisms to address such issues, however they require good (lower) approxima-
tions for the objective function. The main goal of this section is to describe
the construction of a family of such lower models that seems suitable for the
spectral objectives appearing in the dual gauge problems from §3.1 and §3.2.

Although promising, these approximations have yet to be thoroughly ex-
ploited in the design of computational alternatives to the PSGM approach. To
support the first steps towards such an endeavour, the following subsections
describe the construction of these lower models and briefly outline their use
within the context of proximal bundle methods.

An overview. Many classical methods for nonsmooth convex minimization
have been designed for problems of the form

minimize

x2X
f(x) subject to x 2 F, (CM)

where f : X ! R is a convex objective function and F ✓ X is the set of fea-
sible points, a closed and convex subset of a finite-dimensional real Euclidean
space X . Due to the simplicity of the dual constraints in (3.5b) and the non-
smoothness of the objective, we focus on casting that dual gauge problem in
this framework and specialize the numerical methods to that class of problems.

In order to compute solutions for problems in the general formulation (CM),
many methods assume that it is possible to query the objective function (seen
as a “black-box”) for its value and subgradients at given points (F might al-
low for the solution of certain quadratic problems associated with it as an
additional constraint, e.g., projection onto F ). A common structure in these
methods is that such functional values and subgradients are used to construct
suitable lower models for the original objective function (e.g., bundle meth-
ods (Bonnans, Gilbert, Lemaréchal, and Sagastizábal, 2006, Chapter 10)).

Following this reasoning, we proceed by presenting a family of lower models
for the dual gauge objective in (3.5b) and will assume that the constraints in
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3.3. Spectral lower models for convex minimization

that problem are simple enough to allow for the operations required in those
methods to be performed without significant overhead (since those constraints
can be transformed into a particularly simple second-order cone constraint, we
believe this is not unreasonable).

3.3.1 Spectral lower models for the dual gauge objective

Our approach to construct lower models for the dual gauge objective in (3.5b)
is based on forming outer-approximations for its epigraph in a manner equiv-
alent to that used by Helmberg and Rendl (2000).

Whenever U 2 Cn⇥k is an arbitrary matrix with C-orthonormal columns
(i.e., U⇤CU = I), we have that

epi [�
1

(A⇤·, C)]

+

=

n

(y, t) 2 Y ⇥ R
+

�

�

�

t > �
1

(A⇤y, C)

o

=

n

(y, t) 2 Y ⇥ R
+

�

�

�

tC < A⇤y
o

✓
n

(y, t) 2 Y ⇥ R
+

�

�

�

tU⇤CU < U⇤
(A⇤y)U

o

=

n

(y, t) 2 Y ⇥ R
+

�

�

�

tI < U⇤
(A⇤y)U

o

=

n

(y, t) 2 Y ⇥ R
+

�

�

�

t > �
1

(U⇤
(A⇤y)U)

o

= epi [�
1

(U⇤
(A⇤·)U)]

+

= epi [�
1

(A⇤
U

·)]
+

,

where we define the reduced measurement operator A
U

: Hk ! Cm as A
U

(Z) :=
A (UZU⇤

) , which has an adjoint A⇤
U

: Cm ! Hk defined by A⇤
U

y = U⇤
(A⇤y)U.

The advantage of using such approximations is that, while the original
function involved a typically very large linear matrix inequality (LMI) with
matrices of order n, the outer-approximation is described by LMIs of a given
order k. As long as we can control this order k, we have the possibility to
deal with much reduced problems (an observation also made in Helmberg and
Rendl (2000) and exploited via proximal bundle methods (Bonnans et al.,
2006, Chapter 10)).

Relationship with approximate subdifferentials

Key observations for the suitability of such lower models show up when they
are built using generalized eigenvectors of the adjoint measurement operator
at a given point and related to approximate subdifferentials of the objective at
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3.3. Spectral lower models for convex minimization

feasible points. To that end, let us begin with a simple characterization of the
subdifferential of the abstract gauge objective in (3.4b) presented in

Proposition 3.3.1. Let  : X ! R [ {+1} be a closed gauge function
with compact level-sets and A : X ! Y be a linear map. Then, for each
" > 0, we have that

g 2 @
"

(�
(A⇤·))(y) () g = Au, (u) 6 1 and " > �

(A⇤y)� hA⇤y, ui .

Proof. Since  has compact level-sets, we have that � is finite-valued every-
where and the first and second of the following chain of equivalences hold
by (Hiriart-Urruty and Lemaréchal, 1993, Theorem XI.3.2.1) and (Hiriart-
Urruty and Lemaréchal, 1993, Proposition XI.1.2.1), respectively:

g 2 @
"

(�
(A⇤·))(y) () g = Au and u 2 @

"

(�
(·))(A⇤y)

() g = Au and (�
)

⇤
(u) + �

(A⇤y)� hA⇤y, ui 6 "

() g = Au and �
(·)61

(u) + �
(A⇤y)� hA⇤y, ui 6 "

() g = Au, (u) 6 1 and �
(A⇤y)� hA⇤y, ui 6 ".

By noticing that, if the primal (3.5a) is feasible, weak gauge duality and
Slater’s constraints qualification in the Lagragian dual of (3.5a) give us

0 < (traceX)

�1 6 [�
1

(A⇤y, C)]

+

= �
1

(A⇤y, C) ,

for every (dual) feasible point in (3.5b).
Observing these two results and that the assumption C � 0 implies that the

primal gauge objective (X) = hC,Xi + �·<0

(X) has compact level sets (c.f.
Proposition 2.6.2), we can relate our family of outer-approximations with a
class of subdifferential-based lower models for our objective in (3.5b) centered
at a given dual feasible point. Let ŷ 2 Y be feasible in (3.5b), U 2 Cn⇥k

have as columns generalized eigenvectors corresponding to the (decreasingly
ordered) rightmost generalized eigenvalues of A⇤ŷ with respect to C (counting
multiplicities) and Z 2 Hk be such that traceZ = 1 and Z < 0, then

hŷ,A (UZU⇤
)i = hU⇤

(A⇤ŷ)U,Zi
=

⌦

Diag

�

�
[k]

(A⇤ŷ, C)

�

, Z
↵

> �
k

(A⇤ŷ, C)

= [�
1

(A⇤ŷ, C)]

+

� ([�
1

(A⇤ŷ, C)]

+

� �
k

(A⇤ŷ, C))

= [�
1

(A⇤ŷ, C)]

+

� (�
1

(A⇤ŷ, C)� �
k

(A⇤ŷ, C)),
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3.3. Spectral lower models for convex minimization

where the last equality uses the observation above that �
1

(A⇤ŷ, C) > 0 at
dual feasible points y. By noticing that hC,UZU⇤i = hU⇤CU,Zi = hI, Zi =
traceZ, we deduce that

@
"̂

[�
1

(A⇤·, C)]

+

(ŷ) ◆
n

A
U

Z
�

�

�

traceZ = 1, Z < 0

o

,

where "̂ := �
1

(A⇤ŷ, C) � �
k

(A⇤ŷ, C) . Moreover, it is easy to see that the
set on the right-hand side of this inclusion has a nonempty intersection with
@ [�

1

(A⇤·, C)]

+

(ŷ), a property that will justify the use of such lower models in
proximal bundle methods as we will see later.

These considerations shed some light on the structure of our family of lower
models as a possibly uncountable supremum of linear lower models given by
approximate subgradient inequalities:

[�
1

(A⇤y, C)]

+

>

2

4

sup

traceZ=1

Z<0

(

[�
1

(A⇤ŷ, C)]

+

+ hy � ŷ,A
U

Zi
�
⇣

[�
1

(A⇤ŷ, C)]

+

�
⌦

�
[k]

(A⇤ŷ, C), diag(Z)
↵

⌘

)

3

5

+

=

2

4

sup

traceZ=1

Z<0

⇢

�
1

(A⇤ŷ, C) + hA⇤
U

(y � ŷ), Zi
��

1

(A⇤ŷ, C) +

⌦

�
[k]

(A⇤ŷ, C), diag(Z)
↵

�

3

5

+

=

2

4

sup

traceZ=1

Z<0

n

hA⇤
U
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⌦

�
[k]

(A⇤ŷ, C), diag(Z)
↵

o

3

5

+

=

2

4

sup

traceZ=1

Z<0

n

hA⇤
U

y, Zi � hA⇤
U

ŷ, Zi+
⌦

�
[k]

(A⇤ŷ, C), diag(Z)
↵

o

3

5

+
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2

4

sup

traceZ=1

Z<0

n

hA⇤
U

y, Zi �
⌦

Diag(�
[k]

(A⇤ŷ, C)), Z
↵

+

⌦

�
[k]

(A⇤ŷ, C), diag(Z)
↵

o

3

5

+

=

2

4

sup

traceZ=1

Z<0

n

hA⇤
U

y, Zi �
⌦

�
[k]

(A⇤ŷ, C), diag(Z)
↵

+

⌦

�
[k]

(A⇤ŷ, C), diag(Z)
↵

o

3

5

+

=

2

4

sup

traceZ=1

Z<0

hA⇤
U

y, Zi

3

5

+

= [�
1

(A⇤
U

y)]
+

.
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3.3. Spectral lower models for convex minimization

3.3.2 Proximal-bundle subproblems

In a seminal paper, Correa and Lemaréchal (1993) introduced general condi-
tions under which the classical proximal bundle method (Bonnans et al., 2006,
Chapter 10) converges to a solution of (CM).

The basic idea in those methods consists of approximating f using lower
models ˇf

i

around the main iterates xk and minimizing a stabilization of the
form ˇf

i

+

1

2↵k
k · �xkk2

2

+ �
F

(·) . By suitably constructing those lower models
to satisfy a few general conditions and updating the main iterates when suffi-
cient descent is achieved, it can be shown that the sequence of main iterates
converges to a minimizer of f in F when such a point exists.

In the following considerations, we skip many details on the outer prox-
imal bundle iterations and focus our attention on verifying that the family
of lower models presented in the previous subsection can be used within the
framework presented in (Correa and Lemaréchal, 1993) and on the structure
of the proximal bundle’s stabilized subproblems when specialized to the dual
gauge problem for the generalized PhaseLift formulation (3.5b).

Conditions on lower models for use in proximal bundle methods

Bundle methods generate iterates approximating solutions of (CM) by solving
problems of the form

x̂k

:= argmin

x2X
ˇf
k

(x) +
1

2↵
s

kx� xsk2
2

subject to x 2 F,

in order to achieve a tentative iterate x̂k 2 F. If a certain sufficient decrease
condition is satisfied, this step is called a serious step and the stability center
xs is updated with the new serious iterate xs+1

:= x̂k. Otherwise, the step is
declared a null step and the null iterate x̂k is only used to update the lower
model.

In principle, the lower model can updated at any time after either a serious
or a null step as long as the conditions below, introduced in (Correa and
Lemaréchal, 1993, page 269), are satisfied:

ˇf
k

(x) 6 f(x), 8k = 0, . . . and 8x 2 F,

max

(

ˇf
k

(x̂k

) +

⌦

↵�1

s

(xs � x̂k

), ·� x̂k

↵

,

f(x̂k

) +

⌦

ĝk, ·� x̂
↵

)

6 ˇf
k+1

, if x̂k 2 F was generated
in a null step,

where ĝk 2 @f(x̂k

) is arbitrary.
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3.3. Spectral lower models for convex minimization

This result is remarkable since it presents very meager conditions on the
construction of lower models for the objective which will still satisfy the con-
vergence results for a proximal bundle iteration based on them. In fact, the
maximum of the two affine functions on the left-hand side of the second con-
dition can be used to construct such lower models since it satisfies the first
condition. This can be verified by noticing that the second term in that max-
imum corresponds to a subgradient linearization of the convex f, and then by
observing that the optimality condition for the stabilized subproblem implies
that the first term in the maximum is a subgradient linearization of ˇf

k

in
F—i.e., ↵�1

s

(xs � x̂k

) 2 @ ˇf
k

(x̂k

) +N
F

(x̂k

)—, which is a lower model for f by
assumption.

Naturally, one would not expect good practical convergence behaviour if
only these meager assumptions are satisfied (i.e., using arbitrary lower models
after serious steps and the maximum of these two linearizations). However, by
designing more accurate lower models satisfying these conditions, one might be
able to trade-off convergence performance and complexity of the lower models
and difficulty in the numerical solution of the subproblems.

It is noteworthy that the spectral bundle method introduced by Helmberg
and Rendl (2000) can be roughly seen as implementing lower models con-
structed taking the maximum of the first affine function above (also known
in the bundle literature as the aggregate linearization (Bonnans et al., 2006,
Chapter 10)) and substituting the second subgradient linearization with a
spectral lower model as presented in the previous subsection. For those, U is
constructed in such a way that it contains columns with a few of the rightmost
eigenvectors of the corresponding A⇤ŷk, as well as re-orthonormalized columns
from previously computed eigenvectors.

Proximal bundle subproblems with spectral lower models

From our discussion above, the design and maintenance of lower models for
the dual gauge objective in (3.5b) allow for considerable flexibility. As long
as the models lie below the objective at all times and above the aggregate
linearization and some subgradient linearization at the most recent subprob-
lem solution, we have the freedom to manipulate the model function in order
to balance memory usage and subproblem solution costs against the accu-
racy/tightness of those lower models while still satisfying the assumptions
used to prove convergence of the serious iterates to a minimizer.

To present our construction, we first present the structure of the proximal
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3.3. Spectral lower models for convex minimization

bundle subproblems when specialized to (3.5b):

ŷk := minimize

y2Cm

ˇf
k

(y) +
1

2↵
s

ky � ysk2
2

subject to R hy, bi � ✏kyk
2

> 1,

where ˇf
k

is our current lower model for [�
1

(A⇤·, C)]

+

.
A simple and natural construction of lower models can be derived from the

conditions stated above based on the lower models from the previous subsec-
tion. Given a C-orthonormal matrix U

k

2 Cn⇥rk whose columns comprise at
least one generalized eigenvector of A⇤ŷk corresponding to �

1

�

A⇤ŷk
�

and given
also arbitrary C-orthonormal {U

i

}
i2Ik , we have that lower models of the form

ˇf
k+1

:=max

⇢

0, ˇf
k

(ŷk) +
⌦

↵�1

s

(ys � ŷk), ·� ŷk
↵

,�
1

⇣

A⇤
Uk�1

·
⌘

,max

i2Ik

�

�
1

�

A⇤
Ui
·
� 

�

,

satisfy the conditions presented by Correa and Lemaréchal (1993). This is due
to our considerations in the previous subsection regarding the relationship
between lower models of the form [�

1

(A⇤
U

·)]
+

and the (approximate) subdif-
ferentials of the dual gauge objective at dual feasible points.

Remark 3.3.1. It is noteworthy that U
k

does not need to contain more than
one column, as long as one of its columns is a generalized eigenvector of A⇤ŷk

corresponding to �
1

�

A⇤ŷk, C
�

, not all columns need to be generalized eigen-
vectors and I

k

could be empty (i.e., no additional U
i

at all). In fact, one can
show that this is (by equivalence) the case in the spectral bundle method Helm-
berg and Rendl (2000) where U

k

contains some generalized eigenvectors and
ŷk as well as C-reorthonormalized columns of previously computed generalized
eigenvectors.

Using lower models like these, we can reformulate bundle subproblems as

minimize

(y,t)2Cm⇥R
t+

1

2↵
s

ky � ysk2
2

subject to

R hy, bi � ✏kyk
2

> 1,

ˆt
k�1

+

⌦

↵�1

s

(ys � ŷk�1

), y � ŷk�1

↵

6 t,

A⇤
Uk
y 4 tI,

A⇤
Ui
y 4 tI, i 2 I

k�1

,

t > 0,
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3.3. Spectral lower models for convex minimization

where ˆt
k�1

:=

ˇf
k

(ŷk). These problems can be solved by off-the-shelf solvers
implementing interior point methods (typically after introducing multiple, but
small, semidefinite slacks and second-order cone auxiliary variables).

In this approach, we trade-off the minimization of a linear objective over
one huge (n ⇥ n) linear matrix inequality (LMI) on m (possibly complex)
variables by the sequential minimization of simple quadratic objectives over
controllably-many controllably-small LMIs (still on m variables).

As mentioned earlier, we would not expect to be able to arbitrarily decrease
the complexity of the subproblems and the induced lower models without
impacting the number of iterations needed to achieve fixed stopping criteria.
However, this family of spectral lower models satisfying the conditions of the
framework presented by Correa and Lemaréchal (1993) allows much flexibility
for bundle maintenance while retaining convergence guarantees.

Although the family of lower models described in this section allows for a
natural exploitation within the framework of bundle methods for nonsmooth
convex minimization, the approach and proof of concept solver we describe
next make use of a simpler projected subgradient descent method for the dual
spectral optimization problem (3.5b). The use of such models for the numerical
solution of that problem, along with the primal recovery technique presented
next, seems to be an interesting topic for further investigation.
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Chapter 4

Low-rank spectral optimization

Having established in Chapter 3 the connection between those matrix-lifted
convex relaxations of phase recovery and blind deconvolution from Chapter 1
and the gauge duality framework studied in Chapter 2, we are in the position
to develop a computational strategy for those problems.

The approach that we propose is designed for the numerical solution of
the following problems in the scenarios of low-rank recovery described in §1.1:

minimize

X2Hn
traceX subject to kb�AXk  ✏, X ⌫ 0, (4.1a)

minimize

X2Cn1⇥n2
kXk

1

:=

min{n1,n2}
X

i=1

�
i

(X) subject to kb�AXk  ✏, (4.1b)

where the parameter ✏ 2 [0, kbk) controls the admissible deviations between the
linear model AX and the vector of observations b. (The particular properties
of b and the linear operators A are detailed in §1.1.) Our strategy for both
problems is based on first solving a related constrained Hermitian eigenvalue
optimization problem over a simple constraint, and then using that solution to
recover a solution of the original problem. This eigenvalue problem is highly
structured, and because the constraint is easily handled, we are free to apply
a projected first-order method with inexpensive per-iteration costs that scales
well to very large problems.

The method that we develop applies to the much broader class of conic
optimization problems with nonnegative objective values. We pay special at-
tention to the low-rank spectral problems just mentioned because their mea-
surement operators and solution are highly structured and can be exploited
both theoretically and computationally.

In the following we summarize our overall scheme and its building blocks
are described in the next sections.
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4. Low-rank spectral optimization

A roadmap of our approach. Our strategy for these low-rank spectral
optimization problems is based on solving the following dual constrained eigen-
value optimization problem derived via gauge duality in Chapter 3:

minimize

y2Rm
�
1

(A⇤y) subject to hb, yi � ✏ kyk⇤ � 1. (4.2)

The dimension of the variable y in the eigenvalue optimization problem cor-
responds to the number of measurements. In the context of phase retrieval
and blind deconvolution, Candès et al. (2015b) and Ahmed et al. (2014) show
that the number of measurements needed to recover with high probability the
underlying signals is within logarithmic factors of the signal length (see §1.1).
The crucial implication is that the dimension of the dual problem grows slowly
as compared to the dimension of the primal problem, which grows quadrati-
cally on the signal length.

In our implementation, we apply a simple first-order projected subgradient
method to solve this convex constrained spectral optimization problem. The
dominant cost at each iteration of our algorithm is the computation of right-
most eigenpairs of the n ⇥ n Hermitian linear operator A⇤y, which are used
to construct descent directions for (4.2). The structure of the measurement
operators then allows us to use Krylov-based eigensolvers, such as ARPACK
(Lehoucq, Sorensen, and Yang, 1998), for obtaining these leading eigenpairs.
Primal solution estimates X are then recovered and retained in a low-rank fac-
tored form via relatively small constrained least-squares problems, described
next in §4.2.

An analogous approach based on the classical Lagrangian duality would
also lead to a dual optimization problem in the same space as our dual eigen-
value problem (c.f. considerations in §§2.3.2 and characterization in §3.1):

maximize

y2Rm
hy, bi � ✏ kyk⇤ subject to A⇤y � I. (4.3)

Note that the Lagrange dual possesses a rather simple objective and a difficult
linear matrix inequality of order n as a constraint. Precisely the reverse situ-
ation holds for the gauge dual (4.2), which has a relatively simple constraint.

It is well known that SDPs with a constant-trace property—i.e., AX =

b implies trace(X) is constant—have Lagrange dual problems that can be
reformulated as unconstrained eigenvalue problems. This approach is used
by Helmberg and Rendl (2000) to develop a spectral bundle method. The
applications that we consider however, do not necessarily exhibit this property.
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4.1. Derivation of the approach

4.1 Derivation of the approach

There are two key theoretical pieces needed for our approach. The first is the
derivation of the convex constrained eigenvalue optimization problem (4.2),
which we described in §3.1.1 (see equation (3.7)). The second piece is described
next and consists of the derivation of a subproblem that allows recovery of a
primal solution X from a solution of (4.2).

4.1.1 Recovering a primal solution

Our derivation of a subproblem for primal recovery proceeds in two stages.
The first stage develops necessary and sufficient optimality conditions for the
primal-dual gauge pair (3.5a) and (3.5b). The second stage uses these to
derive a subproblem that can be used to recover a primal solution from a dual
solution.

Strong duality and optimality conditions

From Theorem 2.4.1, the weak gauge duality condition

1  (X)�
(A⇤y) (4.4)

holds for all primal-dual feasible pairs (X, y). The following result asserts that
if the pair is optimal, then that inequality must necessarily hold tightly.

Proposition 4.1.1 (Strong duality). If (4.1a) is feasible and 0  ✏ < kbk ,
then
2

4

min

X2Hn

kb�AXk✏

traceX + �(X | · ⌫ 0)

3

5 ·

2

4

inf

y2Rm

hy,bi�✏kyk⇤�1

[�
1

(A⇤y)]
+

3

5

= 1. (4.5)

Proof. We proceed by reasoning about the Lagrangian-dual pair (4.1a) and (4.3).
We then translate these results to the corresponding gauge-dual pair (3.5a)
and (3.5b).

The primal problem (4.1a) is feasible by assumption. Because its Lagrange
dual problem (4.3) admits strictly feasible points (e.g., y = 0), it follows from
Rockafellar (1970, Theorems 28.2 and 28.4) that the primal problem attains
its positive minimum value and that there is zero duality gap between the
Lagrange-dual pair (a broadly known fact of satisfying dual Slater conditions).
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4.1. Derivation of the approach

Moreover, because the primal problem (4.1a) attains its positive minimum
value for some bX, and there is zero duality gap, there exists a sequence
{y

j

} such that [�
1

(A⇤y
j

)]

+

 1 and hy
j

, bi � ✏ ky
j

k⇤ % trace

bX. Because
trace

bX > 0, we can take a subsequence {y
jk
} for which hy

jk
, bi � ✏ ky

jk
k⇤ is

uniformly bounded above zero. Define the sequence {by
k

} by by
k

:= y
jk
(hy

jk
, bi�

✏ ky
jk
k⇤)�1. Then hby

k

, bi� ✏ kby
k

k⇤ = 1 for all k, which is a feasible sequence for
the gauge dual problem (3.5b). Weak gauge duality (4.4) and the definition
of by

k

then implies that

(trace

bX)

�1  [�
1

(A⇤
by
k

)]

+

 (hy
jk
, bi � ✏ ky

jk
k⇤)

�1 & (trace

bX)

�1.

Multiply the series of inequalities by trace

bX to obtain (4.5).

Note the lack of symmetry in the statement of Proposition 4.1.1: the pri-
mal problem is stated with a “min”, but the dual problem is stated with an
“inf”. This is because the dual Slater condition—i.e., strict feasibility of the
corresponding Lagrange-dual problem (4.3)—allows us to assert that a primal
optimal solution necessarily exists. However, we cannot assert in general that
a dual optimal solution exists because the corresponding primal feasible set
does not necessarily satisfy the Slater condition. We comment further on this
theoretical question in the concluding Chapter 6.

The following result characterizes gauge primal-dual optimal pairs. It relies
on von Neumann’s trace inequality, which says that: for Hermitian A and B,

hA,Bi  h�(A),�(B)i ,

and equality holds if and only if A and B admit a simultaneous ordered eigen-
decomposition, i.e., A = U Diag[�(A)]U⇤ and B = U Diag[�(B)]U⇤ for some
unitary matrix U ; see Lewis (1996).

Proposition 4.1.2 (Optimality conditions). If (4.1a) is feasible and 0 
✏ < kbk , then (X, y) 2 Hn ⇥ Rm is primal-dual optimal for the gauge dual
pair (3.5a) and (3.5b) if and only if the following conditions hold:

1. X ⌫ 0 and kb�AXk = ✏;

2. hy, bi � ✏ kyk⇤ = 1;

3. hy, b�AXi = kyk⇤ kb�AXk ;

4. �
i

(X) · (�
1

(A⇤y)� �
i

(A⇤y)) = 0, i = 1, . . . , n;
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4.1. Derivation of the approach

5. X and A⇤y admit a simultaneous ordered eigendecomposition.

Proof. By strong duality (Proposition 4.1.1), the pair (X, y) 2 Hm ⇥ Rm is
primal-dual optimal if and only if they are primal-dual feasible and the product
of their corresponding objective values is equal to one. In this case,

1 = [traceX + �(X | · ⌫ 0)] · [�
1

(A⇤y)]
+

(strong duality)
= he,�(X)i · �

1

(A⇤y)

= h�
1

(A⇤y) · e,�(X)i
� h�(A⇤y),�(X)i (�

1

(A⇤y) � �
i

(A⇤y) and X ⌫ 0)
� hA⇤y,Xi (von Neumann’s trace inequality)
= hy,AXi
= hy, bi � hy, b�AXi
� hy, bi � kyk⇤ kb�AXk (Cauchy-Schwartz inequality)
� hy, bi � ✏ kyk⇤ (primal feasibility)
� 1. (dual feasibility)

Thus all of the above inequalities hold with equality. This proves conditions
1–4. Condition 5 follows from again invoking von Neumann’s trace inequal-
ity and noting its implication that X and A⇤y share a simultaneous ordered
eigenvalue decomposition. Sufficiency of those conditions can be verified by
simply following the reverse chain of reasoning and again noticing that the
inequalities can be replaced by equalities.

4.1.2 Primal recovery subproblem

The optimality conditions stated in Proposition 4.1.2 furnish the means for
deriving a subproblem that can be used to recover a primal solution from a
dual solution. The next result establishes an explicit relationship between
primal solutions X and A⇤y for an arbitrary optimal dual solution y.

Corollary 4.1.1. Suppose that the conditions of Proposition 4.1.2 hold.
Let y 2 Rm be an arbitrary optimal solution for the dual gauge pro-
gram (3.5b), r

1

2 {1, . . . , n} be the multiplicity of �
1

(A⇤y), and U
1

2 Cn⇥r1

be the matrix formed by the first r
1

eigenvectors of A⇤y. Then a matrix
X 2 Hn is a solution for the primal problem (3.5a) if and only if there

75



4.1. Derivation of the approach

exists an r
1

⇥ r
1

matrix S ⌫ 0 such that

X = U
1

SU⇤
1

and (b�AX) 2 ✏@ k·k⇤ (y). (4.6)

Proof. The assumptions imply that the optimal dual value is positive. If y 2
Rm is an optimal solution to (3.5b), the positive-homogeneity of its objective
and constraint, and the positivity of the optimal value, allow us to deduce that
the dual constraint must be active, i.e., hy, bi � ✏ kyk⇤ = 1. Thus condition 2
of Proposition 4.1.2 holds.

The construction of X in (4.6) guarantees that it shares a simultaneous
ordered eigendecomposition with A⇤y, and that it has rank of r

1

at most.
Thus, conditions 4 and 5 of Proposition 4.1.2 hold.

We now show that conditions 1 and 3 of the proposition hold. The sub-
differential @ k·k⇤ corresponds to the set of maximizers of the linear func-
tion that defines the dual norm; i.e., k·k⇤ := maxkzk1

R h·, zi . Then because
(b�AX) 2 ✏@ k·k⇤ (y), it holds that kb�AXk  ✏ and ✏ kyk⇤ = hy, b�AXi 
kyk⇤ kb�AXk  ✏ kyk⇤ , implying that kb�AXk = ✏ and hy, b�AXi =

kyk⇤ kb�AXk . This way, condition 1 and 3 of Proposition 4.1.2 are also sat-
isfied. Hence, all the conditions of the proposition are satisfied, and the pair
(X, y) 2 Hn ⇥ Rm is optimal.

Suppose now that X 2 Hn is optimal for (3.5a). We can invoke Propo-
sition 4.1.2 on the pair (X, y) 2 Hn ⇥ Rm. Condition 4 implies that any
eigenvector of A⇤y associated to an eigenvalue �

i

(A⇤y) with i > r
1

is in the
nullspace of X, therefore there is an r

1

⇥r
1

matrix S ⌫ 0 such that X = U
1

SU⇤
1

.
Conditions 1 and 3 imply that kb�AXk  ✏ and hy, b�AXi = ✏ kyk⇤ , thus
verifying that (b�AX) 2 ✏@ k·k⇤ (y), as required.

Corollary 4.1.1 thus provides us with a way to recover a solution to our
model problem (4.1a) after computing a solution to the gauge dual prob-
lem (3.5a). When the residual in (4.1a) is measured in the 2-norm, condi-
tion (4.6) simplifies, and implies that the matrix S that defines X = USU⇤

can be obtained by solving

minimize

S⌫0

kA(U
1

SU⇤
1

)� b
✏

k2
2

, with b
✏

:= b� ✏y/ kyk . (4.7)

When the multiplicity r
1

of the eigenvalue �
1

(A⇤y) is much smaller than n, this
optimization problem is relatively inexpensive. In particular, if r

1

= 1—which
may be expected in some matrix-lifted applications such as PhaseLift—the
optimization problem is over a scalar s that can be obtained immediately as

s = [hA(u
1

u⇤
1

), b
✏

i]
+

/ kA(u
1

u⇤
1

)k2
2

76



4.2. The implementation of a proof of concept solver

where u
1

is a rightmost eigenvector of A⇤y. This approach exploits the comple-
mentarity relation on eigenvalues in condition 4 of Proposition 4.1.2 to reduce
the dimensionality of the primal solution recovery. Its computational diffi-
culty effectively depends on finding a dual solution y at which the rightmost
eigenvalue has low multiplicity r

1

.

4.2 The implementation of a proof of concept

solver

The effectiveness of our approach hinges on efficiently solving the constrained
eigenvalue optimization problem (4.2) in order to generate solution estimates
y and rightmost eigenvector estimates U

1

of A⇤y that we can feed to (4.7). The
two main properties of this problem that drive our approach are that it has a
nonsmooth objective and that projections on the feasible set are inexpensive.
Our implementation is based on a basic projected-subgradient descent method,
although certainly other choices are available. For example, Nesterov (2009)
and Richtárik (2011) propose specialized algorithms for minimizing positively
homogeneous functions with affine constraints; some modification of this ap-
proach could possibly apply to (4.3). Another possible choice is Helmberg
and Rendl’s (2000) spectral bundle method. For simplicity, and because it
has proven sufficient for our needs, we use a standard projected subgradient
method as described below.

4.2.1 Dual descent

The generic projected subgradient method is based on the iteration

y
+

= P(y � ↵g), (4.8)

where g is a subgradient of the objective at the current iterate y, ↵ is a positive
steplength, and the operator P : Rm ! Rm gives the Euclidean projection
onto the feasible set. For the objective function f(y) = �

1

(A⇤y) of (3.7), the
subdifferential has the form

@f(y) = {A(U
1

TU⇤
1

) | T ⌫ 0, traceT = 1 } , (4.9)

where U
1

is the n ⇥ r
1

matrix of rightmost eigenvectors of A⇤y (Overton,
1992, Theorem 3). A Krylov-based eigenvalue solver can be used to evaluate
f(y) and a subgradient g 2 @f(y). Such methods require products of the
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4.2. The implementation of a proof of concept solver

form (A⇤y)v for arbitrary vectors v. In many cases, these products can be
computed without explicitly forming the matrix A⇤y. In particular, for the
applications described in §1.1, these products can be computed entirely using
fast operators such as the FFT and the fast discrete Wavelet transform (DWT),
with essentially O(n log n) arithmetic operations. Similar efficiencies can be
used to compute a subgradient g from the forward map A(U

1

TU⇤
1

).
For large problems, further efficiencies can be obtained simply by comput-

ing a single eigenvector u
1

, i.e., any unit-norm vector in the range of U
1

. In
our implementation, we typically request at least two rightmost eigenpairs:
this gives us an opportunity to detect if the leading eigenpair is isolated. If it
is, then the subdifferential contains only a single element, which implies that
f is in fact differentiable at that point.

Any sequence of step lengths {↵
k

} that satisfies the generic conditions

lim

k!1
↵
k

= 0,
1
X

k=0

↵
k

= 1

is sufficient to guarantee that the value of the objective at y
k

converges to
the optimal value (Bertsekas, 2015, Proposition 3.2.6). A typical choice is
↵
k

= O(1/k). Our implementation defaults to a Barzilai-Borwein steplength
(Barzilai and Borwein, 1988) with a nonmonotonic linesearch (Zhang and
Hager, 2004) if it is detected that a sequence of iterates is differentiable (by
observing separation of the leading eigenpair); and otherwise it falls back to a
decreasing step size.

The projection operator P onto the dual-feasible set (3.7) is inexpensive
when the residual is measured in the 2-norm. In particular, if ✏ = 0, the dual-
feasible set is a halfspace, and the projection can be accomplished in linear
time. When ✏ is positive, the projection requires computing the roots of a
1-dimensional degree-4 polynomial, which in practice requires little additional
expense. In the following, we describe the approach we use for implementing
the projection operator.

Computing the projection onto the gauge dual feasible set

In order to compute the projection onto the gauge dual feasible set, we need
to be able to solve the following optimization problem:

minimize

y2Cm

1

2

ky � ŷk2
2

subject to R hb, yi � ✏ kyk
2

� 1, (4.10)

where ŷ 2 Cm is arbitrary and kbk
2

> ✏, otherwise the feasible set is empty.
The following result allows for a concrete way to compute this projection by
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4.2. The implementation of a proof of concept solver

solving for the roots of a quartic polynomial and then picking one satisfying a
few simple conditions.

Proposition 4.2.1. Given b 2 Cm \ {0} and ✏ 2 [0, kbk
2

), there is a unique
y 2 Cm that solves (4.10). Moreover, it is characterized by

y =

(

ŷ if R hb, ŷi � ✏ kŷk
2

� 1;

(ŷ + �b)
⇣

1� �✏

kŷ+�bk2

⌘

otherwise;

where � > 0 is a positive real root of the degree-4 polynomial

p(�) = kŷ + �bk2
2

⇥

R hb, ŷ + �bi+ �✏2 � 1

⇤

2�✏2
⇥

kŷ + �bk2 + �R hb, ŷ + �bi
⇤

2

which satisfies

kŷ + �bk
2

⇥

R hb, ŷ + �bi+ �✏2 � 1

⇤

= ✏
⇥

kŷ + �bk2 + �R hb, ŷ + �bi
⇤

and for which kŷ + �bk
2

� �✏ is positive and smallest.

Proof. Existence and uniqueness follow from the fact that the feasible set is
nonempty, closed and convex, and from the strong convexity of the objective.
It is clear that if ŷ is feasible, it is also the solution. This way we can focus on
the second part of the characterization. Defining h(·) := 1�R hb, ·i+✏ k·k

2

, we
have that @h(y) =

n

✏ y

kyk2 � b
o

63 0. And the necessary and sufficient first-order
optimality conditions tell us we need to find � > 0 such that

y � ŷ + �

✓

✏
y

kyk
2

� b

◆

= 0 and R hb, yi � ✏ kyk
2

= 1.

Manipulating the first condition, we have that

y

✓

1 +

�✏

kyk
2

◆

= ŷ + �b =) kyk
2

= kŷ + �bk
2

� �✏

=) y = (ŷ + �b)

✓

1� �✏

kŷ + �bk
2

◆

,

which we can then substitute into the second condition, resulting in

kŷ + �bk
2

⇥

R hb, ŷ + �bi+ �✏2 � 1

⇤

= ✏
⇥

kŷ + �bk2 + �R hb, ŷ + �bi
⇤

.

The result follows by squaring both sides and noticing that � must then satisfy
p(�) = 0.
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4.2. The implementation of a proof of concept solver

Our implementation is motivated by the approach outlined above as it
leads to a simple and inexpensive enough Matlab implementation. An alter-
native approach to compute � can be devised by deriving the Lagrangian dual
problem to (4.10) and then employing an efficient iterative method to solve
the resulting one-dimensional problem. This might lead to improved robust-
ness and accuracy, but we have not identified a particular need for that in the
course of our numerical experimentations.

4.2.2 Primal recovery

At each iteration of the descent method (4.8) for the constrained eigenvalue
optimization problem (4.2), we compute a corresponding primal estimate

X
+

= U
1

S
+

U⇤
1

(4.11)

maintained in factored form. The matrix U
1

has already been computed in
the evaluation of the objective and its subgradient; see (4.9). The positive
semidefinite matrix S

+

is the solution of the primal-recovery problem (4.7).
A byproduct of the primal-recovery problem is that it provides a suitable

stopping criterion for the overall algorithm. Because the iterations y
k

are dual
feasible, it follows from Corollary 4.1.1 that if (4.7) has a zero residual, then
the dual iterate y

k

and the corresponding primal iterate X
k

are optimal. Thus,
we use the size of the residual to determine a stopping test for approximate
optimality.

4.2.3 Primal-dual refinement

The primal-recovery procedure outlined in §4.2.2 is used as a stopping criterion
and to provide primal solutions, it does not directly affect the sequence of dual
iterates from (4.8). In our numerical experiments, we find that signficant gains
can be had by refining the primal estimate (4.11) and feeding it back into the
dual sequence. We use the following procedure, which involves two auxiliary
subproblems that add relatively little to the overall cost.

Inspired by the Wirtinger Flow algorithm described in §§1.1.1, the first
step is to refine the primal estimate obtained via (4.7) by using its solution
to determine the starting point Z

0

= U
1

S
1/2

+

for the smooth unconstrained
non-convex problem

minimize

Z2Cn⇥r
h(Z) := 1

4

kA(ZZ⇤
)� b

✏

k2
2

. (4.12)
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4.3. Extensions

In effect, we continue to minimize (4.7), where additionally U
1

is allowed to
vary. Several options are available for solving this smooth unconstrained prob-
lem. Our implementation has the option of using a steepest-descent iteration
with a spectral steplength and non-monotone linesearch (Zhang and Hager,
2004), or a limited-memory BFGS method (Nocedal and Wright, 2006, §7.2).
The main cost at each iteration is the evaluation of the gradient

rh(Z) = A⇤
(A(ZZ⇤

)� b
✏

)Z. (4.13)

We thus obtain a candidate improved primal estimate bX =

bZ bZ⇤, where bZ
is a solution of (4.12). When ✏ = 0, this non-convex problem coincides with
the problem used by Candès et al. (2015a) in their Wirtinger Flow algorithm.
They use the initialization Z

0

= �u
1

, where u
1

is a leading eigenvector of A⇤b,
and � = n

P

i

b
i

/
P

i

ka
i

k2
2

. Our initialization, on the other hand, is based on
a solution of the primal-recovery problem (4.7).

The second step of the refinement procedure is to construct a candidate
dual estimate by from a solution of the constrained linear-least-squares problem

minimize

y2Rm

1

2

�

�

�

(A⇤y) bZ � b� bZ
�

�

�

2

2

subject to hy, bi � ✏ kyk⇤ � 1, (4.14)

where b� := 1/ trace bX ⌘ 1/
�

�

�

bZ
�

�

�

2

2

is the reciprocal of the primal objective value

associated with bX. This constrained linear-least-squares problem attempts to
construct a vector by such that the columns of bZ correspond to eigenvectors
of A⇤

by associated with b�. If f(by) < f(y
+

), then by improves on the current
dual iterate y

+

obtained by the descent method (4.8), and we are free to use
by in its place. This improved estimate, which is exogenous to the dual descent
method, can be considered a “spacer” iterate, as described by Bertsekas (1999,
Proposition 1.2.6). Importantly, it does not interfere with the convergence of
the underlying descent method. The projected-descent method used to solve
the dual problem and generate the dual sequence can also be applied to (4.14),
though in this case the objective is guaranteed to be differentiable.

4.3 Extensions

The formulations (4.1) that we have considered so far are stated in their sim-
plest form. Reweighted formulations, as introduced by Mohan and Fazel (2010)
and Candès et al. (2013a), are also useful, and are accommodated by our
approach. In the next subsections we provide alternative derivations of the
corresponding gauge duals for these weighted formulations and specialize the
primal-from-dual recovery conditions from Corollary 4.1.1.
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4.3. Extensions

4.3.1 Weighted trace minimization

Candès, Eldar, Strohmer, and Voroninski (2013a) show that an iteratively
reweighted sequence of trace minimization problems of the form

minimize

X2Hn

⌦

W�1, X
↵

subject to kb�AXk  ✏, X ⌫ 0, (4.15)

where W � 0, can improve the range of signals that can be recovered using the
PhaseLift relaxation. Each problem in the sequence uses the previous solution
to derive the next weight matrix W , which is a low-rank update to a small
positive multiple of the identity.

Define the maps

W(·) := W
1
2
(·)W 1

2 and A
W

:= A �W .

It is evident that X ⌫ 0 if and only if W�1

(X) ⌫ 0, and so the weighted trace
minimization problem can be stated equivalently as

minimize

X2Hn
traceW�1

(X) subject to

�

�b�A
W

(W�1

(X))

�

�  ✏, W�1

(X) ⌫ 0.

Because W is a bijection, we can optimize over bX := W�1

(X) instead of X:

minimize

b
X2Hn

trace

bX subject to

�

�

�

b�A
W

bX
�

�

�

 ✏, bX ⌫ 0. (4.16)

This clearly falls within the structure of (4.1a), and has the corresponding
gauge dual

minimize

y2Rm
[�

1

(A⇤
W

y)]
+

subject to hy, bi � ✏ kyk⇤ � 1. (4.17)

Observing that �
1

(A⇤
W

y) = �
1

(W
1
2
(A⇤y)W

1
2
) = �

1

(A⇤y,W�1

), the dual gauge
problem corresponding to (4.15) has the form

minimize

y2Rm
[�

1

(A⇤y,W�1

)]

+

subject to hy, bi � ✏ kyk⇤ � 1. (4.18)

This shows that the introduction of a weighting matrix that is not a simple
multiple of the identity leads to a dual gauge problem involving the minimiza-
tion of the rightmost generalized eigenvalue of A⇤y with respect to that weight.
Now that we have a formulation for the gauge dual problem, we focus on how
a primal solution to the original weighted trace minimization can be computed
given a dual minimizer. The following result extends Corollary 4.1.1.
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Corollary 4.3.1. Suppose that problem (4.15) is feasible and 0  ✏ < kbk .
Let y 2 Rm be an arbitrary optimal solution for the dual gauge (4.18),
r
1

2 {1, . . . , n} be the multiplicity of �
1

(A⇤y,W�1

), and U
1

2 Cn⇥r1 be the
matrix formed by the first r

1

generalized eigenvectors of A⇤y with respect
to W�1. Then X 2 Hn is a solution for the primal problem (4.15) if and
only if there exists S ⌫ 0 such that

X = U
1

SU⇤
1

and (b�AX) 2 ✏@ k·k⇤ (y).

Proof. A solution for (4.18) is clearly a solution for (4.17). We may thus invoke
Corollary 4.1.1 and assert that bX 2 Hn is a solution for (4.16) iff there is S ⌫ 0

such that bX =

ˆU
1

S ˆU⇤
1

and (b � A
W

bX) 2 ✏@ k·k⇤ (y), where ˆU
1

2 Cn⇥r1 is a
matrix formed by the first r

1

eigenvectors of A⇤
W

y = W
1
2
(A⇤y)W

1
2 . From the

structure of W , we have that X is a solution to (4.15) iff X = W(

bX). Thus,
X = W

1
2 ˆU

1

S ˆU⇤
1

W
1
2
= U

1

SU⇤
1

, where U
1

:= W
1
2 ˆU

1

corresponds to the first r
1

generalized eigenvectors of A⇤y with respect to W�1.

Once again, this provides us with a way to recover a solution to the weighted
trace minimization problem by computing a solution to the gauge dual prob-
lem (now involving the rightmost generalized eigenvalue) and then solving a
problem of potentially much reduced dimensionality.

4.3.2 Weighted affine nuclear-norm minimization

We can similarly extend the reweighted extension to the non-symmetric case (4.1b).
Let W

1

2 Hn1 and W
2

2 Hn2 be invertible. The weighted nuclear-norm mini-
mization problem becomes

minimize

X2Cn1⇥n2

�

�W�1

1

XW�⇤
2

�

�

1

subject to kb�AXk  ✏. (4.19)

Define the weighted quantities

W(·) = W
1

(·)W ⇤
2

: Cn1⇥n2 ! Cn1⇥n2 , A
W

= A �W , and bX := W�1

(X).

The weighted problem can then be stated equivalently as

minimize

b
X2Cn1⇥n2

�

�

�

bX
�

�

�

1

subject to

�

�

�

b�A
W

bX
�

�

�

 ✏,
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which, following the approach introduced in Fazel (2002), can be embedded in
a symmetric problem:

minimize

b
U2Hn1

b
V 2Hn2

b
X2Cn1⇥n2

*

1

2

I,

 

bU bX
bX⇤

bV

!+

subject to

 

bU bX
bX⇤

bV

!

⌫ 0 and
�

�

�

b�A
W

bX
�

�

�

 ✏.

(4.20)

Define the measurement operator from M : Hn1+n2 ! Cm by the map
 

bU bX
bX⇤

bV

!

7! A
W

bX,

and identify Cm with R2m as a real inner-product space. The adjoint of the
measurement operator is then given by

M⇤y =

✓

0 A⇤
W

y
(A⇤

W

y)⇤ 0

◆

,

where A⇤
W

y =

1

2

P

m

i=1

W
1

A
i

W ⇤
2

y
i

. We can now state the gauge dual problem:

minimize

y2Cm

⇥

�
1

(M⇤y, 1
2

I)
⇤

+

subject to R hy, bi � ✏ kyk⇤ � 1. (4.21)

Observe the identity

�
1

�

M⇤y, 1
2

I
�

= �
1

(2M⇤y)

=



�
1

✓

0

P

m

i=1

W
1

A
i

W ⇤
2

y
i

(

P

m

i=1

W
1

A
i

W ⇤
2

y
i

)

⇤
0

◆�

+

= [kW
1

(A⇤y)W ⇤
2

k1]

+

= kW
1

(A⇤y)W ⇤
2

k1 .

We can now deduce the simplified form for the gauge dual problem:

minimize

y2Cm
kW

1

(A⇤y)W ⇤
2

k1 subject to R hy, bi � ✏ kyk⇤ � 1. (4.22)

This weighted gauge dual problem can be derived from first principles
using the tools from §3.1.1 by observing that the primal problem is already
in standard gauge form (c.f. §3.2.1). We present this alternative approach,
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however, to make explicit the close connection between the (weighted) nuclear-
norm minimization problem and the (weighted) trace-minimization problem
described in §4.3.1.

The following result provides a way to characterize solutions of the nuclear
norm minimization problem when a solution to the dual gauge problem is
available.

Corollary 4.3.2. Suppose that problem (4.19) is feasible and 0  ✏ < kbk.
Let y 2 Cm be an arbitrary optimal solution for the dual gauge prob-
lem (4.22), r

1

2 {1, . . . , n} be the multiplicity of �
1

(W
1

(A⇤y)W ⇤
2

), U
1

2
Cn1⇥r1 and V

1

2 Cn2⇥r1 be the matrices formed by the first r
1

left- and
right-singular-vectors of W

1

(A⇤y)W ⇤
2

, respectively. Then X 2 Cn1⇥n2 is a
solution for the primal problem (4.19) if and only if there exists S ⌫ 0 such
that X = (W

1

U
1

)S(W
2

V
1

)

⇤ and (b�AX) 2 ✏@ k·k⇤ (y).

Proof. A solution for (4.22) is clearly a solution for (4.21); this way we in-
voke Corollary 4.1.1 and have that (

bU, bV , bX) 2 Hn1 ⇥ Hn2 ⇥ Cn1⇥n2 in-
duce a solution for (4.20) iff there is S ⌫ 0 such that bX =

bU
1

S bV ⇤
1

and
(b � A

W

bX) 2 ✏@ k·k⇤ (y), where bU
1

2 Cn1⇥r1 and bV
1

2 Cn2⇥r1 are matrices
formed by the first r

1

left- and right-singular-vectors of A⇤
W

y = W
1

(A⇤y)W ⇤
2

.

From the structure of W , we have that X is a solution to (4.19) iff X = W(

bX).

This way, X = (W
1

bU
1

)S(W
2

bV
1

)

⇤.

85



Chapter 5

Numerical experiments

This chapter reports on a set of numerical experiments for solving instances of
the phase retrieval and blind deconvolution problems described in Chapter 1.
The various algorithmic pieces described in §4.2 have been implemented as a
Matlab software package. The implementation uses Matlab’s eigs routine
for the eigenvalue computations described in §4.2.1, thus only accessing A⇤y
via its product with a given vector and not requiring to explicitly form a large
dense matrix. We implemented a projected gradient-descent method, which is
then used for solving (4.8), (4.12), and (4.14).

5.1 Phase recovery

We conduct three experiments for phase retrieval via the PhaseLift formula-
tion. The first experiment is for a large collection of small 1-dimensional ran-
dom signals, and is meant to contrast our approach against a general-purpose
convex optimization algorithm and a specialized non-convex approach. The
second experiment tests problems where the vector of observations b is con-
taminated by noise, hence testing the case where ✏ > 0. The third experiment
tests the scalability of the approach on a large 2-dimensional natural image.

Our phase retrieval experiments follow the approach outlined in Candès
et al. (2015a). The diagonal matrices C

k

2 Cn⇥n encode diffraction patterns
that correspond to the kth “mask” (k = 1, . . . , L) through which a signal
x
0

2 Cn is measured. The measurements are given by

b = A(x
0

x⇤
0

) := diag

2

6

4

0

B

@

FC
1

...
FCL

1

C

A

(x
0

x⇤
0

)

0

B

@

FC
1

...
FCL

1

C

A

⇤3

7

5

,

where F is the unitary discrete Fourier transform (DFT). The adjoint of the
associated linear map A is then

A⇤y :=

L

X

k=1

C⇤
k

F ⇤
Diag(y

k

)FC
k

,
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where y = (y
1

, . . . , y
L

) and Diag(y
k

) is the diagonal matrix formed from the
vector y

k

2 Rn. The main cost in the evaluation of the forward map A(V V ⇤
)

involves L applications of the DFT for each column of V . Each evaluation of
the adjoint map applied to a vector v—i.e., (A⇤y)v—requires L applications of
both the DFT and its inverse. In the experimental results reported below, the
columns labeled “nDFT” indicate the total number of DFT evaluations used
over the course of a run. The costs of these DFT evaluations are invariant
across the different algorithms, and dominate the overall computation.

5.1.1 Random Gaussian signals

In this section we consider a set of experiments for different numbers of masks.
For each value of L = 6, 7, . . . , 12, we generate a fixed set of 100 random
complex Gaussian vectors x

0

of length n = 128, and a set of L random complex
Gaussian masks C

k

.
Table 5.1 summarizes the results of applying four different solvers to each

set of 100 problems. The solver GAUGE is our implementation of the approach
described in §4.2; TFOCS (Becker et al., 2011) is a first-order conic solver applied
to the primal problem (4.1a). The version used here was modified to avoid
explicitly forming the matrix A⇤y (Strohmer, 2013). The algorithm WFLOW
(Candès et al., 2015a) is a non-convex approach that attempts to recover the
original signal directly from the feasibility problem (4.12), with ✏ = 0. To
make sensible performance comparisons to WFLOW, we add to its implemen-
tation a stopping test based on the norm of the gradient (4.13); the default
algorithm otherwise uses a fixed number of iterations. We also show the re-
sults of applying the GAUGE code in a “feasibility” mode that exits with the
first candidate primal-feasible solution; this is the solver labeled GAUGE-feas.
This derivative of GAUGE is in some respects akin to WFLOW, with the main
difference that GAUGE-feas uses starting points generated by the dual-descent
estimates, and generates search directions and step-lengths for the feasibility
problem from a spectral gradient algorithm. The columns labeled “xErr” re-
port the median relative error kx

0

x⇤
0

� bxbx⇤k
F
/ kx

0

k2
2

of the 100 runs, where
bx is the solution returned by the corresponding solver. The columns labeled
“%” give the percentage of problems solved to within a relative error of 10�2.
This column is excluded for GAUGE and GAUGE-feas because these solvers ob-
tained the prescribed accuracy for all problems in each test set. At least on
this set of artificial experiments, the GAUGE solver (and its feasibility variant
GAUGE-feas) appear to be most efficient.
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Table 5.1: Phase retrieval comparisons for random complex Gaussian signals
of size n = 128 measured using random complex Gaussian masks. Numbers
of the form n�e

are a shorthand for n · 10�e.

GAUGE TFOCS GAUGE-feas WFLOW

L nDFT xErr nDFT xErr % nDFT xErr nDFT xErr %

12 18,330 1.6�6

2,341,800 3.6�3

100 3,528 1.3�6

5,232 1.2�5

100

11 19,256 1.5�6

2,427,546 4.3�3

100 3,344 1.4�6

4,906 1.6�5

100

10 19,045 1.4�6

2,857,650 5.5�3

100 3,120 1.6�6

4,620 2.1�5

100

9 21,933 1.6�6

1.2 · 107 7.5�3

89 2,889 1.4�6

4,374 2.5�5

100

8 23,144 2.1�6

1.1 · 107 1.2�2

22 2,688 1.9�6

4,080 3.3�5

100

7 25,781 1.8�6

6,853,245 2.4�2

0 2,492 2.0�6

3,836 5.2�5

95

6 34,689 3.0�6

2,664,126 6.4�2

0 2,424 2.5�6

3,954 9.5�5

62

5.1.2 Random problems with noise

In this set of experiments, we assess the effectiveness of the gauge-based solvers
to problems with ✏ > 0, which could be useful in recovering signals with noise.
For this purpose, it is convenient to generate problems instances with noise and
known primal-dual solutions, which we can do by using Corollary 4.1.1. Each
instance is generated by first sampling octanary masks C

k

—as described by
Candès et al. (2015a)—and real Gaussian y 2 Rm

; a solution x
0

2 Cn is then
chosen as a unit-norm rightmost eigenvector of A⇤y, and the measurements are
computed as b := A(x

0

x⇤
0

)+✏y/ kyk , where ✏ is chosen as ✏ := kb�A(x
0

x⇤
0

)k =

⌘ kbk , for a given noise-level parameter 0 < ⌘ < 1.
For these experiments, we generate 100 instances with n = 128 for each

pairwise combination (L, ⌘) with

L 2 {6, 9, 12} and ⌘ 2 {0.1%, 0.5%, 1%, 5%, 10%, 50%}.

Table 5.2 summarizes the results of applying the solvers GAUGE, GAUGE-feas,
and WFLOW to these problems. It is not clear that GAUGE-feas and WFLOW
are relevant for this experiment, since they do not directly attempt to solve
the norm-constrained PSD trace minimization problem, but for interest we
include them in the results. GAUGE is generally successful in recovering the
rank-1 minimizer for most problems—even for cases with significant noise,
though in these cases the overall cost increases considerably.
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Table 5.2: Phase retrieval comparisons for problems with noise, i.e., ✏ > 0.
Numbers of the form n�e

are a shorthand for n · 10�e.

GAUGE GAUGE-feas WFLOW

L ⌘ nDFT xErr % nDFT xErr % nDFT xErr %

12 0.1% 29,988 2.9�3

100 936 3.4�3

100 14,856 7.1�4

100

9 0.1% 36,292 2.7�3

100 774 2.9�3

100 11,511 7.7�4

100

6 0.1% 50,235 2.9�3

100 612 3.2�3

100 8,922 1.2�3

98

12 0.5% 27,252 4.9�3

100 936 4.6�3

100 14,808 2.5�3

100

9 0.5% 31,032 5.0�3

100 774 4.4�3

100 11,430 3.5�3

100

6 0.5% 38,766 5.2�3

100 606 5.9�3

100 8,790 5.7�3

98

12 1.0% 22,620 8.5�3

97 936 7.2�3

100 14,712 5.1�3

100

9 1.0% 24,813 8.5�3

96 774 7.3�3

100 11,331 7.1�3

99

6 1.0% 2 · 105 7.1�3

98 600 9.9�3

53 8,634 1.1�2

8

12 5.0% 9 · 105 4.7�3

90 936 3.3�2

0 14,148 2.6�2

0

9 5.0% 8 · 105 4.2�3

90 774 3.4�2

0 10,701 3.5�2

0

6 5.0% 5 · 105 4.8�3

98 600 4.4�2

0 7,728 5.4�2

0

12 10.0% 1 · 106 4.1�3

89 912 6.7�2

0 13,548 5.3�2

0

9 10.0% 7 · 105 3.6�3

91 765 6.7�2

0 10,125 7.1�2

0

6 10.0% 5 · 105 3.2�3

100 588 8.2�2

0 7,098 1.1�1

0

12 50.0% 5 · 105 2.7�3

94 888 3.7�1

0 11,424 3.3�1

0

9 50.0% 3 · 105 2.0�3

99 738 3.5�1

0 8,586 4.3�1

0

6 50.0% 2 · 105 2.4�3

95 588 3.7�1

0 7,176 6.3�1

0

5.1.3 Two-dimensional signal

We conduct a third experiment on a stylized application in order to assess the
scalability of the approach to larger problem sizes. In this case the measured
signal x

0

is a two-dimensional real-valued image of size 1600 ⇥ 1350 pixels,
a grayscale version of the image shown in Figure 5.1, which corresponds to
n = 2.16 · 106. The dimension of the ambient space of the primal lifted for-
mulation is

�

n+1

2

�

> 2.3 · 1012, which makes it clear that the resulting SDP
is enormous, and must be handled by a specialized solver. We have excluded
TFOCS from the list of candidate solvers because it cannot make progress on
this example. We generate 10 and 15 octanary masks. Table 5.3 summarizes
the results. The column headers carry the same meaning as Table 5.1.
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5.1. Phase recovery

Figure 5.1: Image used for phase retrieval experiment; size 1600⇥ 1350 pixels
(7.5MB).

Table 5.3: Phase retrieval comparisons on a 2-dimensional image.

GAUGE GAUGE-feas WFLOW

L nDFT xErr nDFT xErr nDFT xErr

15 200,835 2.1 · 10�6

5,700 2.1 · 10�6

8,100 4.1 · 10�6

10 195,210 5.8 · 10�7

12,280 9.1 · 10�7

12,340 2.1 · 10�5
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5.2. Blind deconvolution

5.2 Blind deconvolution

In this blind deconvolution experiment, the convolution of two signals s
1

2 Cm

and s
2

2 Cm are measured. Let B
1

2 Cm⇥n1 and B
2

2 Cm⇥n2 be two bases.
The circular convolution of the signals can be described by

b = s
1

⇤ s
2

= (B
1

x
1

) ⇤ (B
2

x
2

)

= F�1

diag

�

(FB
1

x
1

)(FB
2

x
2

)

T

�

= F�1

diag

�

(FB
1

)(x
1

x⇤
2

)(FB
2

)

⇤�
=: A(x

1

x⇤
2

),

where A is the corresponding asymmetric linear map with the adjoint
A⇤y := (FB

1

)

⇤
Diag(Fy)(FB

2

).

Because F is unitary, it is possible to work instead with measurements
bb ⌘ Fb = diag

�

(FB
1

)(x
1

x⇤
2

)(FB
2

)

⇤�

in the Fourier domain. For the experiments that we run, we choose to work
with the former real-valued measurements b because they do not require ac-
counting for the imaginary parts, and thus the number of constraints in (3.9)
that would be required otherwise is reduced by half.

We follow the experimental setup outlined by Ahmed et al. (2014) and use
the data and code that they provide. In that setup, B

1

is a subset of the
Haar wavelet basis, and B

2

is a mask corresponding to a subset of the identity
basis. The top row of Figure 5.2 shows the original image, a depiction of the
motion blur kernel, and the observed blurred image. The second row of the
figure shows the image reconstructed using the augmented Lagrangian code
provided by Ahmed et al. (2014), GAUGE, and GAUGE-feas. Table 5.4 summa-
rizes the results of applying the three solvers. The columns headed “nDFT”
and “nDWT” count the number of discrete Fourier and wavelet transforms re-
quired by each solver; the columns headed “xErr1” and “xErr2” report the rela-
tive errors kx

i

� bx
i

k
2

/ kx
i

k
2

, i = 1, 2, where bx
i

are the recovered solutions; the
column headed “rErr” reports the relative residual error

�

�

�

b�A(bx
1

bx
⇤
2

)

�

�

�

2

/ kbk
2

.
Although the non-convex augmented Lagrangian approach yields visibly bet-
ter recovery of the image, the table reveals that the solutions are numerically
similar, and are recovered with far less work.

It is noteworthy that this scenario is extremely limited in the context of
blind deconvolution problems. Our aim with its setup is to compare the com-
putational approach described in Chapter 4 against the augmented Lagrangian
method used by Ahmed et al. (2014) for the numerical solution of the nuclear
norm minimization problem arising from relaxing the lifted formulation pre-
sented in §1.1.2.
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5.2. Blind deconvolution

(a) (b) (c)

(d) (e) (f)

Figure 5.2: Images used for the blind deconvolution experiments: (a) original
image; (b) zoom of the motion-blurring kernel; (c) blurred image; (d) image
recovered by the augmented Lagrangian approach; (e) image recovered by
GAUGE; (f) image recovered by GAUGE-feas. The shaded background on the
recovered images is an artifact of the uniform scaling used to highlight any
error between the original and recovered signals.

Table 5.4: Blind deconvolution comparisons.

solver nDFT nDWT xErr1 xErr2 rErr

augmented Lagrangian 92,224 76,872 7.9 · 10�2

5.0 · 10�1

1.4 · 10�4

GAUGE 17,432 8,374 1.9 · 10�2

5.4 · 10�1

3.8 · 10�4

GAUGE-feas 4,128 2,062 8.4 · 10�2

5.5 · 10�1

4.0 · 10�4
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Chapter 6

Conclusions

The reconstruction of low-complexity signals from given data, under differ-
ent measurement and noise models comprises an important field of research
that generalizes many recent developments in compressed sensing, and has
an impact on a broad range of applications. It encompasses different notions
of complexity—e.g., sparsity, low rank, atomic norms—, reconstruction algo-
rithms and the theoretical conditions under which these achieve recoverability,
either exactly or approximately. Recent approaches to these problems rely on
convexifying a suitable, but hard, optimization reformulation and providing
conditions under which, for certain measurement and noise models, the so-
lution of the resulting convex optimization problem will very likely yield a
solution of the original problem.

This thesis focused on the practical aspect of providing an effective ap-
proach to numerically solve the large spectral optimization problems arising
from the matrix lifting convex relaxation approach for phase recovery (Candès
et al., 2013b) and blind deconvolution (Ahmed et al., 2014). By identifying
both problems as particular cases of a class of gauge optimization problems,
via suitable reformulations, we were able to abstract some of the structure
and contribute results useful to our approach while expanding the theoretical
framework of gauge optimization.

In the following paragraphs, we discuss our salient developments while
presenting some interesting opportunities for further investigation.

A theoretical framework based on gauge duality. Chapter 2 focused
on presenting and extending the duality theory of gauge optimization to a
particular—but still rather broad—class of problems, and on providing the-
oretical tools to simplify the manipulations commonly involved in modeling
problems that fit this framework. Some results for dealing with antipolar sets
were presented in §2.2 which can be invoked in the derivation of dual problems.

The structure particular to gauge optimization allows for an alternative to
the usual Lagrange duality (a parallel explored in §2.3), which was later useful
for providing an avenue of exploration for modeling and algorithm develop-
ment. Depending on the particular application, it may prove computationally
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6. Conclusions

convenient or more efficient to use existing algorithms to solve the gauge dual
rather than the Lagrange dual problem. For example, a variation of the pro-
jected subgradient method was used to exploit the relative simplicity of the
gauge dual constraints in the eigenvalue optimization problem (3.7). As with
methods that solve the Lagrange dual problem, a procedure would be needed
to recover the primal solution. Although this is difficult to do in general, for
specific problems it is possible to develop a primal-from-dual recovery proce-
dure via the optimality conditions, an approach undertaken later in Chapter 4.

More generally, an important question left unanswered is if there exists a
class of algorithms that can leverage this special structure. It is intriguing
the possibility of developing a primal-dual algorithm specialized to the gauge-
constrained primal-dual gauge pair.

The sensitivity analysis presented in §2.5 relied on existing results from
Lagrange duality. It would be preferable, however, to develop a line of analysis
that is self-contained and based entirely on gauge duality theory and some
form of “gauge multipliers”. In this regard, if we define the value function as
ṽ(b, �) = inf

x

{(x) + �
epi ⇢

(b� Ax, �) }, then ṽ is a gauge. It is conceivable
that sensitivity analysis could be carried out based on studying its polar, given
by

ṽ�(y, ⌧) = inf {µ � 0 | (y, ⌧) 2 µD } = �
(A⇤y) + �

⇢

�
(·)·(y,�⌧),

where D = { (y, ⌧) | �
(A⇤y)  1, ⇢�(y)  �⌧ }. This formula follows from

Proposition 2.1.2(iv) and a computation of ṽ⇤ similar to the one leading to
(2.27). This approach would be in contrast to the usual sensitivity analysis,
which is based on studying a certain (convex) value function and its conjugate.

Extensions of the standard primal-dual gauge pair are presented in §2.6.
They were motivated by subproblems that show up in iteratively reweighted
algorithms for trace and nuclear-norm minimization. These are further special-
ized in Chapter 3 to provide concrete primal-dual pairs for trace minimization
in the PSD cone, connecting our spectral optimization problems to the gauge
framework.

An approach to low-rank spectral optimization. One of the criticisms
that have been leveled at relaxation approaches based on matrix lifting is that
they lead to problems that are too difficult to be useful in practice due to
the quadratic increase in the primal ambient space. This has led to work
on non-convex recovery algorithms that may not have as-strong statistical re-
covery guarantees, but are nonetheless effective in practice; Netrapalli et al.
(2013); Candès et al. (2015a); White et al. (2015). A major motivation for
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this work was to determine whether it would be possible to develop convex
optimization algorithms that are as efficient as non-convex approaches. The
numerical experiments on these problems presented in Chapter 5 suggest that
the gauge-dual approach may prove effective. Indeed, other convex optimiza-
tion algorithms may be possible, and clearly the key to their success will be
to leverage the special structure of these problems.

A theoretical question not addressed here is to delineate conditions under
which dual attainment will hold. In particular, the conclusion (4.5) of The-
orem 4.1.1 is asymmetric: it is possible to assert that, if the primal problem
is feasible, a primal point exists that attains the primal optimal value while
satisfying the constraints (because the Lagrange dual is strictly feasible), but
in general one cannot assert that a dual point exists such that it attains the
dual optimal value while still being feasible. A related theoretical question is
to understand the relationship between the quality of a “near optimal” dual
solution, and the quality of the primal estimate obtained from it by the primal
recovery procedure.

During the course of our experiments, we noticed that the rightmost eigen-
value of A⇤y seems to remain fairly well separated from the others across
iterations. This appears to contribute to the overall effectiveness of the dual-
descent method. Is there a special property of these problems or of the algo-
rithm that encourages this separation? It seems likely that there are solutions
y at which the objective is not differentiable, and in that case, one can wonder
if there are algorithmic devices that might be used to avoid such points.

The dual-descent method used to solve the dual subproblem (cf. §4.2.1) is
only one possible algorithm among many. Other more specialized methods,
such as the spectral bundle method of Helmberg and Rendl (2000), its second-
order variant (Helmberg, Overton, and Rendl, 2014), or the stochastic-gradient
method of d’Aspremont and Karoui (2014), may prove effective alternatives.
Chapter 3 includes the construction of a family of lower models for the dual
gauge objective which might be exploited to construct bundle-type methods
for its minimization, this seems an interesting avenue for further investigation.

It was convenient to embed the nuclear-norm minimization problem (4.1b)
in the SDP formulation (4.1a) because it allows us to use the same solver for
both problems. Further efficiencies, however, may be gained by implementing
a solver that applied directly to the corresponding gauge dual

minimize

y2Cm
kA⇤yk1 subject to R hy, bi � ✏ kyk⇤ � 1.

This would require an iterative solver for evaluating leading singular values
and singular vectors of the non-symmetric operator A⇤y, such as PROPACK
(Larsen, 2001).
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