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Abstract. Various applications in signal processing and machine learning give rise to highly
structured spectral optimization problems characterized by low-rank solutions. Two important ex-
amples that motivate this work are optimization problems from phase retrieval and from blind
deconvolution, which are designed to yield rank-1 solutions. An algorithm is described that is based
on solving a certain constrained eigenvalue optimization problem that corresponds to the gauge dual
which, unlike the more typical Lagrange dual, has an especially simple constraint. The dominant
cost at each iteration is the computation of rightmost eigenpairs of a Hermitian operator. A range
of numerical examples illustrate the scalability of the approach.
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1. Introduction. There are a number of applications in signal processing and
machine learning that give rise to highly structured spectral optimization problems.
We are particularly interested in the class of problems characterized by having solu-
tions that are very low rank and by involving linear operators that are best treated by
matrix-free approaches. This class of problems is sufficiently restrictive such that it
allows us to design specialized algorithms that scale well and lend themselves to prac-
tical applications, but it is still sufficiently rich to include interesting problems. Two
examples include the nuclear-norm minimization for problems such as blind decon-
volution (Ahmed, Recht, and Romberg, 2014) and the PhaseLift formulation of the
celebrated phase retrieval problem (Candès, Strohmer, and Voroninski, 2013). The
problems can be cast generically in the semidefinite programming (SDP) framework,
for which a variety of algorithms are available. However, typical applications can
give rise to enormous optimization problems that challenge the very best workhorse
algorithms.

Denote the set of complex-valued n×n Hermitian matrices by Hn. The algorithm
that we propose is designed to solve the problems

minimize
X∈Hn

traceX subject to ‖b−AX‖ ≤ ε, X � 0,(1a)

minimize
X∈Cn1×n2

‖X‖1 :=
∑
i

σi(X) subject to ‖b−AX‖ ≤ ε,(1b)

where the parameter ε controls the admissible deviations between the linear model
AX and the vector of observations b. (The particular properties of the vectors b and
of the linear operators A are detailed in section 1.2.) Our approach for both problems
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is based on first solving a related Hermitian eigenvalue optimization problem over a
very simple constraint and then using that solution to recover a solution of the original
problem. This eigenvalue problem is highly structured, and because the constraint is
easily handled, we are free to apply a projected first-order method with inexpensive
per-iteration costs that scales well to very large problems.

The key to the approach is to recognize that the problems (1) are members of
the family of gauge optimization problems, which admit a duality concept different
from the Lagrange duality prevalent in convex optimization. Gauges are nonnegative,
positively homogeneous convex functions that vanish at the origin. They significantly
generalize the familiar notion of a norm, which is a symmetric gauge function. The
class of gauge optimization problems, as defined by Freund’s seminal 1987 work, can be
stated simply: find the element of a convex set that is minimal with respect to a gauge.
These conceptually simple problems appear in a remarkable array of applications and
include an important cross-section of convex optimization. For example, all of conic
optimization can be phrased within the class of gauge optimization; see Friedlander,
Macêdo, and Pong (2014, Example 1.3) and section 2 below.

Problem (1a) is not explicitly stated as a gauge problem because the objective is
not nonnegative everywhere on its domain, as required in order for it to be a gauge
function. It is, however, nonnegative on the feasible set, and the problem can easily
be cast in the gauge framework simply by changing the objective function to

(2) traceX + δ(X | · � 0), where δ(X | · � 0) =

{
0 if X � 0,

+∞ otherwise.

This substitution yields an equivalent problem, and the resulting convex function
is nonnegative and positively homogeneous—and therefore a gauge function. More
generally, it is evident that any function of the form γ + δ(· | K) is a gauge, in which
γ is a gauge and δ(· | K) is the indicator of a convex cone K.

The method that we develop applies to the much broader class of semidefinite op-
timization problems with nonnegative objective values, as described in section 6. We
pay special attention to the low-rank spectral problems just mentioned because they
have a special structure that can be exploited both theoretically and computationally.

1.1. Notation. To emphasize the role of the vector of singular values σ(X),
we adopt the Schatten p-norm notation for the matrix-norms referenced in this pa-
per, i.e., ‖X‖p := ‖σ(X)‖p. Thus, the nuclear, Frobenius, and spectral norms of
a matrix X are denoted by ‖X‖1, ‖X‖2, and ‖X‖∞, respectively. The notation
for complex-valued quantities, particularly in the SDP context, is not entirely stan-
dard. Here we define some objects we use frequently. Define the complex inner
product 〈X,Y 〉 := traceXY ∗, where Y ∗ is the conjugate transpose of a complex ma-
trix Y , i.e., Y ∗ = Y T . The set of n × n Hermitian matrices is denoted by Hn,
and X � 0 (resp., X � 0) indicates that the matrix X is both Hermitian and
positive semidefinite (resp., definite). Let λ(A) be the vector of ordered eigenval-
ues of A ∈ Hn, i.e., λ1(A) ≥ λ2(A) ≥ · · · ≥ λn(A). (An analogous ordering is
assumed for the vector of singular values.) For B � 0, let λ(A,B) denote the vec-

tor of generalized eigenvalues of the pencil (A,B), i.e., λ(A,B) = λ(B−
1/2AB−

1/2).
Let R(·) and I(·) denote the real and imaginary parts of their arguments. The norm
dual to ‖ · ‖ : Cm → R+ is defined by

(3) ‖x‖∗ := sup
‖z‖≤1

R〈z, x〉.
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The positive part of a scalar is denoted by [·]+ = max{0, ·}.
When we make reference to one- and two-dimensional signals, our intent is to

differentiate between problems that involve discretized functions of one and two vari-
ables, respectively, rather than to describe the dimension of the ambient space. Hence
the terms two-dimensional signals and two-dimensional images are used interchange-
ably.

Generally we assume that the problems are feasible, although we highlight in
section 2 how to detect infeasible problems. We also assume that 0 ≤ ε < ‖b‖, which
ensures that the origin is not a trivial solution. In practice, the choice of the norm
that defines the feasible set will greatly influence the computational difficulty of the
problem. Our implementation is based on the 2-norm, which often appears in many
practical applications. Our theoretical developments, however, allow for any norm.

1.2. Problem formulations. Below we describe two applications, in phase re-
trieval and blind deconvolution, that motivate our work. There are other relevant
examples, such as matrix completion (Recht, Fazel, and Parrilo, 2010), but these two
applications require optimization problems that exemplify properties we exploit in
our approach.

1.2.1. Phase retrieval. The phase retrieval problem is concerned with recovery
of the phase information of a signal—e.g., an image—from magnitude-only measure-
ments. One important application is X-ray crystallography, which generates images
of the molecular structure of crystals (Harrison, 1993). Other applications are de-
scribed by Candès, Strohmer, and Voroninski (2013) and Waldspurger, d’Aspremont,
and Mallat (2015). They describe the following recovery approach, based on convex
optimization.

Magnitude-only measurements of the signal x ∈ Cn can be described as quadratic
measurements of the form

bk = |〈x, ak〉|
2

for some vectors ak that encode the waveforms used to illuminate the signal. These
quadratic measurements of x can be understood as linear measurements

bk = 〈xx∗, aka
∗
k〉 = 〈X,Ak〉

of the lifted signal X := xx∗, where Ak := aka
∗
k is the kth lifted rank-1 measurement

matrix.
In the matrix space, the trace of the unknown lifted signalX acts as a surrogate for

the rank function. This is analogous to the 1-norm, which stands as a convex surrogate
for counting the number of nonzeros in a vector. This leads us to an optimization
problem of the form (1a), where A : Hn → Rm is defined by (AX)k := 〈X,Ak〉. The
parameter ε anticipates noise in the measurements. Candès, Strohmer, and Voroninski
(2013) call this the PhaseLift formulation. In section 5.1, we give numerical examples
for recovering one- and two-dimensional signals with and without noise.

1.2.2. Biconvex compressed sensing and blind deconvolution. The bi-
convex compressed sensing problem (Ling and Strohmer, 2015) aims to recover two
signals from a number of sesquilinear measurements of the form

bk = 〈x1, a1k〉〈x2, a2k〉,

where x1 ∈ Cn1 and x2 ∈ Cn2 . In the context of blind deconvolution, x1 and x2
correspond to coefficients of the signals in some bases. The lifting approached used in
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the phase retrieval formulation can again be used, and the measurements of x1 and
x2 can be understood as coming from linear measurements

bk = 〈x1x
∗
2, a1ka

∗
2k〉 = 〈X,Ak〉

of the lifted signal X = x1x
∗
2, where Ak := a1ka

∗
2k is the lifted asymmetric rank-1

measurement matrix. Ahmed, Recht, and Romberg (2014) study conditions on the
structure and the number of measurements that guarantee that the original vectors
(up to a phase) may be recovered by minimizing the sum of singular values of X
subject to the linear measurements. This leads to an optimization problem of the
form (1b), where A : Cn1×n2 → Cm is defined by (AX)k := 〈X,Ak〉.

In section 5.2, we describe a two-dimensional blind deconvolution application
from motion deblurring, and there we provide further details on the structure of the
measurement operators Ak and report on numerical experiments.

1.3. Reduction to Hermitian SDP. It is convenient, for both our theoretical
and algorithmic development, to embed the nuclear-norm minimization problem (1b)
within the symmetric SDP (1a). The resulting theory is no less general, and it permits
us to solve both problems with what is essentially a single software implementation.
The reduction to the Hermitian trace-minimization problem (1a) takes the form

(4)

minimize
U∈Hn1 ,V ∈Hn2

X∈Cn1×n2

r1,r2∈R
m

1

2

〈(
I 0
0 I

)
,

(
U X
X∗ V

)〉

subject to
1

2

〈(
0 Ak
A∗k 0

)
,

(
U X
X∗ V

)〉
+ r1k = Rbk,

i

2

〈(
0 Ak
−A∗k 0

)
,

(
U X
X∗ V

)〉
+ r2k = Ibk,

‖r1 + ir2‖ ≤ ε,
(
U X
X∗ V

)
� 0, k = 1, . . . ,m.

The residual variables r1, r2 ∈ Rm merely serve to allow the compact presentation
above, as they can be eliminated using the equality constraints. The additional vari-

ables U and V, at the minimizer, correspond to (XX∗)
1/2 and (X∗X)

1/2, respectively;
the variable X retains its original meaning. This reduction is based on a well-known
reformulation of the nuclear norm as the optimal value of an SDP; see Fazel (2002,
Lemma 2) or Recht, Fazel, and Parrilo (2010, Proof of Proposition 2.1).

Although this reduction is convenient for our presentation, it is not strictly nec-
essary, as will be clear from the results in section 6. In fact, the resulting increase
in problem size might affect a solver’s performance, as would likely be noticeable if
dense linear solvers are employed. Our focus, however, is on large problems that re-
quire matrix-free operators and exhibit low-rank solutions. Throughout this paper,
we focus entirely on the SDP formulation (1a) without loss of generality.

1.4. Approach. Our strategy for these low-rank spectral optimization problems
is based on solving the constrained eigenvalue optimization problem

(5) minimize
y∈Rm

λ1(A∗y) subject to 〈b, y〉 − ε‖y‖∗ ≥ 1

resulting from applying gauge duality (Friedlander, Macêdo, and Pong, 2014; Freund,
1987) to a suitable reformulation of (1a). This is outlined in section 2. The dimension
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of the variable y in the eigenvalue optimization problem corresponds to the number
of measurements. In the context of phase retrieval and blind deconvolution, Candès
and Li (2014) and Ahmed, Recht, and Romberg (2014) show that the number of
measurements needed to recover with high probability the underlying signals is within
a logarithmic factor of the signal length. The crucial implication is that the dimension
of the dual problem grows slowly as compared to the dimension of the primal problem,
which grows as the square of the signal length.

In our implementation, we apply a simple first-order projected subgradient method
to solve the eigenvalue problem. The dominant cost at each iteration of our algorithm
is the computation of rightmost eigenpairs of the n × n Hermitian linear operator
A∗y, which are used to construct descent directions for (5). The structure of the
measurement operators allows us to use Krylov-based eigensolvers, such as ARPACK
(Lehoucq, Sorensen, and Yang, 1998), for obtaining these leading eigenpairs. Primal
solution estimates X are recovered via a relatively small constrained least-squares
problem, described in section 4.

An analogous approach based on the classical Lagrangian duality also leads to a
dual optimization problem in the same space as our dual eigenvalue problem:

(6) maximize
y∈Rm

〈b, y〉 − ε‖y‖∗ subject to A∗y � I.

Note that the Lagrange dual possesses a rather simple objective and a difficult linear
matrix inequality of order n as a constraint. Precisely the reverse situation holds for
the gauge dual (5), which has a relatively simple constraint.

It is well known that SDPs with a constant-trace property—i.e., AX = b implies
trace(X) is constant—have Lagrange dual problems that can be formulated as uncon-
strained eigenvalue problems. This approach is used by Helmberg and Rendl (2000)
to develop a spectral bundle method. The applications that we consider, however, do
not necessarily have this property.

1.5. Reproducible research. The data files and MATLAB scripts used to gen-
erate the numerical results presented in section 5 can be obtained at the following
URL: http://www.cs.ubc.ca/∼mpf/low-rank-opt.

1.6. Related work. Other researchers have recognized the need for algorithms
with low per-iteration costs that scale well for large-scale, low-rank spectral opti-
mization problems. Notable efforts include Hazan (2008), Laue (2012), and Freund,
Grigas, and Mazumder (2015), who advocate variations of the Frank–Wolfe (FW)
method to solve some version of the problem

(7) minimize
X

f(X) subject to trace(X) ≤ τ, X � 0,

where f is a differentiable function. For example, the choice f(X) = 1
2‖AX−b‖

2
2 yields

a problem related to (1a). The asymmetric version of the problem with ‖X‖1 ≤ τ
is easily accommodated by simply replacing the above constraints. For simplicity,
here we focus on the symmetric case, though our approach applies equally to the
asymmetric case. The main benefit of using FW for this problem is that each iteration
requires only a rightmost eigenvalue of the gradient ∇f(X), and therefore has the
same per-iteration cost of the method that we consider, which requires a rightmost
eigenvalue of the same-sized matrix A∗y. The same Krylov-based eigensolvers apply
in both cases.

There are at least two issues that need to be addressed when comparing the FW
algorithm to the approach we take here. First, as Freund, Grigas, and Mazumder

http://www.cs.ubc.ca/~mpf/low-rank-opt
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(2015) make clear, even in cases where low-rank solutions are expected, it is not pos-
sible to anticipate the rank of early iterates Xk generated by the FW method. In
particular, they observe that the rank of Xk quickly increases during early iterations
and only slowly starts to decrease as the solution is approached. This motivates their
development of algorithmic devices that attenuate rank growth in intermediate it-
erates. Any implementation, however, must be prepared to increase storage for the
factors of Xk during intermediate iterates. In contrast, a subgradient method ap-
plied to the gauge dual problem can be implemented with constant storage. Second,
although in principle there exists a parameter τ that causes the optimization prob-
lems (7) and (1a) to share the same solution, this parameter is not generally known
in advance. One way around this is to solve a sequence of problems (7) for varying
parameters τk using, for example, a level-set procedure described by Aravkin et al.
(2016).

As an alternative to applying the FW algorithm to (7), we might instead consider
applying a variation of the FW method directly to the gauge dual problem (5). Be-
cause the gauge dual objective is not differentiable and the feasible set is not compact
if ε = 0, some modification to the standard FW method is required. Argyriou, Sig-
noretto, and Suykens (2014), Bach (2015), and Nesterov (2015) propose variations of
FW that involve smoothing the objective. These smoothing approaches are typically
based on infimal convolution with a smooth kernel, which may lead to a function whose
gradient is expensive to compute. For example, the “soft-max” smooth approxima-
tion of λ1(·) is the function µ log

∑
i=1,...,n exp(λi(·)/µ). Forming the gradient of this

smooth function requires computing all eigenvalues of an n-by-n Hermitian matrix.
Laue (2012) proposes a hybrid algorithm that interleaves a nonconvex subproblem

within the FW iterations. If the local minimum of the nonconvex subproblem improves
the objective value, it is used to replace the current FW iterate. This approach
is similar in spirit to the primal-dual refinement that we describe in section 4.3,
but because Laue’s method is entirely primal, it has the benefit of not requiring a
procedure to feed the improved primal sequence back to the dual sequence.

2. Spectral gauge optimization and duality. The derivation of the eigen-
value optimization problem (5) as a dual to (1a) follows from a more general theory
of duality for gauge optimization. Here we provide some minimal background for
our derivations related to spectral optimization; see Freund (1987) and Friedlander,
Macêdo, and Pong (2014) for fuller descriptions. We begin with a general description
of the problem class.

Let κ : X 7→ R ∪ {+∞} and ρ : Y 7→ R ∪ {+∞} be gauge functions, where
A : X 7→ Y is a linear operator that maps between the finite-dimensional real inner-
product spaces X and Y. The polar

f◦(y) := inf {µ > 0 | 〈x, y〉 ≤ µf(x) ∀x }

of a gauge f plays a key role in the duality of gauge problems. The problems

minimize
x∈X

κ(x) subject to ρ(b−Ax) ≤ ε,(8a)

minimize
y∈Y

κ◦(A∗y) subject to 〈b, y〉 − ερ◦(y) ≥ 1(8b)

are dual to each other in the following sense: all primal-dual feasible pairs (x, y) satisfy
the weak-duality relationship

(9) 1 ≤ κ(x)κ◦(A∗y).
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Moreover, a primal-dual feasible pair is optimal if this holds with equality. This
strong-duality relationship provides a certificate of optimality.

The SDP problem (1a) can be cast into the mold of the canonical gauge formu-
lation (8a) by using the redefined objective (2) and making the identifications

κ(X) = traceX + δ(X | · � 0) and ρ(r) = ‖r‖.

We use the polar calculus described by Friedlander, Macêdo, and Pong (2014, section
7.2.1) together with the definition of the dual norm to obtain the corresponding polar
functions:

κ◦(Y ) = [λ1(Y )]+ and ρ◦(y) = ‖y‖∗.

It then follows from (8) that the following are a dual gauge pair:

minimize
X∈Hn

traceX + δ(X | · � 0) subject to ‖b−AX‖ ≤ ε,(10a)

minimize
y∈Rm

[λ1(A∗y)]+ subject to 〈b, y〉 − ε‖y‖∗ ≥ 1.(10b)

The derivation of gauge dual problems relies on the polarity operation applied to
gauges. When applied to a norm, for example, the polar is simply the dual norm. In
contrast, Lagrange duality is intimately tied to conjugacy, which is what gives rise
to the dual problem (6). Of course, the two operations are closely related. For any
gauge function κ, for example, κ∗(y) = δκ◦

(·)≤1(y). These relationships are described

in detail by Rockafellar (1970, section 15) and Friedlander, Macêdo, and Pong (2014,
section 2.3).

We can simplify the dual objective and safely eliminate the positive-part operator:
because κ(X) is necessarily strictly positive for all nonzero X, and is additionally finite
over the feasible set of the original problem (1a), it follows from (9) that κ◦(A∗y) is
positive for all dual feasible points. In other words,

(11) 0 < [λ1(A∗y)]+ = λ1(A∗y)

for all dual feasible points y. Hence we obtain the equivalent dual problem (5).
In practice, we need to be prepared to detect whether the primal problem (10a)

is infeasible. The failure of condition (11) in fact furnishes a certificate of infeasibility
for (1a): if λ(A∗y) = 0 for some dual-feasible vector y, it follows from (9) that κ(X)
is necessarily infinite over the feasible set of (10a)—i.e., X 6� 0 for all X feasible
for (10a). Thus, (1a) is infeasible.

3. Derivation of the approach. There are two key theoretical pieces needed
for our approach. The first is the derivation of the eigenvalue optimization prob-
lem (5), as shown in section 2. The second piece is the derivation of a subproblem
that allows recovery of a primal solution X from a solution of the eigenvalue prob-
lem (5).

3.1. Recovering a primal solution. Our derivation of a subproblem for primal
recovery proceeds in two stages. The first stage develops necessary and sufficient
optimality conditions for the primal-dual gauge pair (10a) and (10b). The second
stage uses these to derive a subproblem that can be used to recover a primal solution
from a dual solution.
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3.1.1. Strong duality and optimality conditions. The weak duality condi-
tion (9) holds for all primal-feasible pairs (X, y). The following result asserts that if
the pair is optimal, then that inequality must necessarily hold tightly.

Proposition 1 (strong duality). If (1a) is feasible and 0 ≤ ε < ‖b‖, then

(12)

 min
X∈Hn

‖b−AX‖≤ε

traceX + δ(X | · � 0)

 ·
 inf

y∈Rm

〈b,y〉−ε‖y‖∗≥1

[λ1(A∗y)]+

 = 1.

Proof. We proceed by reasoning about the Lagrangian-dual pair (1a) and (6). We
then translate these results to the corresponding gauge-dual pair (10a) and (10b).

The primal problem (1a) is feasible by assumption. Because its Lagrange dual
problem (6) admits strictly feasible points (e.g., y = 0), it follows from Rockafellar
(1970, Theorems 28.2 and 28.4) that the primal problem attains its positive minimum
value and that there is zero duality gap between the Lagrange-dual pair.

Moreover, because the primal problem (1a) attains its positive minimum value

for some X̂, and there is zero duality gap, there exists a sequence {yj} such that

[λ1(A∗yj)]+ ≤ 1 and 〈yj , b〉 − ε‖yj‖∗ ↗ trace X̂. Because trace X̂ > 0, we can take
a subsequence {yjk} for which 〈yjk , b〉 − ε‖yjk‖∗ is uniformly bounded above zero.

Define the sequence {ŷk} by ŷk := yjk(〈yjk , b〉−ε‖yjk‖∗)
−1. Then 〈ŷk, b〉−ε‖ŷk‖∗ = 1

for all k, which is a feasible sequence for the gauge dual problem (10b). Weak gauge
duality (9) and the definition of ŷk then imply that

(trace X̂)−1 ≤ [λ1(A∗ŷk)]+ ≤ (〈yjk , b〉 − ε‖yjk‖∗)
−1 ↘ (trace X̂)−1.

Multiply the series of inequalities by trace X̂ to obtain (12).

Note the lack of symmetry in the statement of Proposition 1: the primal problem
is stated with a “min” but the dual problem is stated with an “inf”. This is because
the dual Slater condition—i.e., strict feasibility of the corresponding Lagrange-dual
problem (6)—allows us to assert that a primal optimal solution necessarily exists.
However, we cannot assert in general that a dual optimal solution exists because the
corresponding primal feasible set does not necessarily satisfy the Slater condition.

Although in this work we do not attempt to delineate conditions under which
dual attainment holds, a practical case in which it always does is when the primal
objective is a norm and the measurement operator is surjective. In that case, the
dual gauge objective ‖A∗ · ‖∗ defines a norm in Rm, which has compact level sets.
Hence a dual solution always exists. We comment further on this theoretical question
in section 7.

The following result characterizes gauge primal-dual optimal pairs. It relies on
von Neumann’s trace inequality: for Hermitian matrices A and B,

〈A,B〉 ≤ 〈λ(A), λ(B)〉,

and equality holds if and only if A and B admit a simultaneous ordered eigende-
composition, i.e., A = U Diag[λ(A)]U∗ and B = U Diag[λ(B)]U∗ for some unitary
matrix U ; see Lewis (1996).

Proposition 2 (optimality conditions). If (1a) is feasible and 0 ≤ ε < ‖b‖,
then (X, y) ∈ Hn × Rm is primal-dual optimal for the gauge dual pair (10a) and
(10b) if and only if the following conditions hold:
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1. X � 0 and ‖b−AX‖ = ε;
2. 〈y, b〉 − ε‖y‖∗ = 1;
3. 〈y, b−AX〉 = ‖y‖∗‖b−AX‖;
4. λi(X) · (λ1(A∗y)− λi(A

∗y)) = 0, i = 1, . . . , n;
5. X and A∗y admit a simultaneous ordered eigendecomposition.

Proof. By strong duality (Proposition 1), the pair (X, y) ∈ Hm × Rm is primal-
dual optimal if and only if they are primal-dual feasible and the product of their
corresponding objective values is equal to one. In this case,

1 = [traceX + δ(X | · � 0)] · [λ1(A∗y)]+(strong duality)

= 〈e, λ(X)〉 · λ1(A∗y)

= 〈λ1(A∗y) · e, λ(X)〉
≥ 〈λ(A∗y), λ(X)〉(λ1(A∗y) ≥ λi(A

∗y) and X � 0)

≥ 〈A∗y,X〉(von Neumann’s trace inequality)

= 〈y,AX〉
= 〈y, b〉 − 〈y, b−AX〉
≥ 〈y, b〉 − ‖y‖∗‖b−AX‖(Cauchy–Schwarz inequality)

≥ 〈y, b〉 − ε‖y‖∗(primal feasibility)

≥ 1.(dual feasibility)

Thus all of the above inequalities hold with equality. This proves conditions 1–4.
Condition 5 follows from again invoking von Neumann’s trace inequality and noting its
implication that X and A∗y share a simultaneous ordered eigenvalue decomposition.
Sufficiency of those conditions can be verified by simply following the reverse chain
of reasoning and again noticing that the inequalities can be replaced by equalities.

3.2. Primal recovery subproblem. The optimality conditions that are stated
in Proposition 2 furnish the means for deriving a subproblem that can be used to re-
cover a primal solution from a dual solution. The next result establishes an explicit
relationship between primal solutions X and A∗y for an arbitrary optimal dual solu-
tion y.

Corollary 3. Suppose that the conditions of Proposition 2 hold. Let y ∈ Rm

be an arbitrary optimal solution for the dual gauge program (10b), r1 ∈ {1, . . . , n}
be the multiplicity of λ1(A∗y), and U1 ∈ Cn×r1 be the matrix formed by the first r1
eigenvectors of A∗y. Then a matrix X ∈ Hn is a solution for the primal problem (10a)
if and only if there exists an r1 × r1 matrix S � 0 such that

(13) X = U1SU
∗
1 and (b−AX) ∈ ε∂‖ · ‖∗(y).

Proof. The assumptions imply that the optimal dual value is positive. If y ∈ Rm is
an optimal solution to (10b), the positive homogeneity of its objective and constraint,
and the positivity of the optimal value, allow us to deduce that the dual constraint
must be active, i.e., 〈y, b〉 − ε‖y‖∗ = 1. Thus condition 2 of Proposition 2 holds.

The construction of X in (13) guarantees that it shares a simultaneous ordered
eigendecomposition with A∗y and that it has rank of r1 at most. Thus, conditions 4
and 5 of Proposition 2 hold.

We now show that conditions 1 and 3 of the proposition hold. The subdifferential
∂‖ · ‖∗ corresponds to the set of maximizers of the linear function that defines the
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dual ball; see (3). Then because (b−AX) ∈ ε∂‖ · ‖∗(y), it holds that ‖b−AX‖ ≤ ε
and ε‖y‖∗ = 〈y, b − AX〉 ≤ ‖y‖∗‖b − AX‖ ≤ ε‖y‖∗, implying that ‖b − AX‖ = ε
and 〈y, b−AX〉 = ‖y‖∗‖b−AX‖. This way, conditions 1 and 3 of Proposition 2 are
also satisfied. Hence, all the conditions of the proposition are satisfied, and the pair
(X, y) ∈ Hn × Rm is optimal.

Suppose now that X ∈ Hn is optimal for (10a). We can invoke Proposition 2
on the pair (X, y) ∈ Hn × Rm. Condition 4 implies that any eigenvector of A∗y
associated to an eigenvalue λi(A

∗y) with i > r1 is in the nullspace of X; therefore,
there is an r1×r1 matrix S � 0 such that X = U1SU

∗
1 . Conditions 1 and 3 imply that

‖b−AX‖ ≤ ε and 〈y, b−AX〉 = ε‖y‖∗, thus verifying that (b−AX) ∈ ε∂‖ · ‖∗(y), as
required.

Corollary 3 thus provides us with a way to recover a solution to our model prob-
lem (1a) after computing a solution to the gauge dual problem (10a). When the
residual in (1a) is measured in the 2-norm, condition (13) simplifies and implies that
the matrix S that defines X = USU∗ can be obtained by solving

(14) minimize
S�0

‖A(U1SU
∗
1 )− bε‖

2, with bε := b− εy/‖y‖.

When the multiplicity r1 of the eigenvalue λ1(A∗y) is much smaller than n, this
optimization problem is relatively inexpensive. In particular, if r1 = 1—which may
be expected in some applications such as PhaseLift—the optimization problem is over
a scalar s that can be obtained immediately as

s = [〈A(u1u
∗
1), bε〉]+/‖A(u1u

∗
1)‖2,

where u1 is the rightmost eigenvalue of A∗y. This approach exploits the complemen-
tarity relation on eigenvalues in condition 4 of Proposition 2 to reduce the dimension-
ality of the primal solution recovery. Its computational difficulty effectively depends
on finding a dual solution y at which the rightmost eigenvalue has low multiplicity r1.

4. Implementation. The success of our approach hinges on efficiently solving
the constrained eigenvalue optimization problem (6) in order to generate solution es-
timates y and rightmost eigenvector estimates U1 of A∗y that we can feed to (14).
The two main properties of this problem that drive our approach are that it has a
nonsmooth objective and that projections on the feasible set are inexpensive. Our
implementation is based on a basic projected-subgradient descent method, although
certainly other choices are available. For example, Nesterov (2009) and Richtárik
(2011) propose specialized algorithms for minimizing positively homogeneous func-
tions with affine constraints; some modification of this approach could possibly apply
to (6). Another possible choice is the spectral bundle method of Helmberg and Rendl
(2000). For simplicity, and because it has proven sufficient for our needs, we use a
standard projected subgradient method, described below.

4.1. Dual descent. The generic subgradient method is based on the iteration

(15) y+ = P(y − αg),

where g is a subgradient of the objective at the current iterate y, α is a positive
steplength, and the operator P : Rm → Rm gives the Euclidean projection onto the
feasible set. For the objective function f(y) = λ1(A∗y) of (5), the subdifferential has
the form

∂f(y) = {A(U1TU
∗
1 ) | T � 0, traceT = 1 } ,(16)
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where U1 is the n × r1 matrix of rightmost eigenvectors of A∗y; see Overton (1992,
Theorem 3). A Krylov-based eigenvalue solver can be used to evaluate f(y) and
a subgradient g ∈ ∂f(y). Such methods require products of the form (A∗y)v for
arbitrary vectors v. In many cases, these products can be computed without explicitly
forming the matrix A∗y. In particular, for the applications described in section 1.2,
these products can be computed entirely using fast operators such as the FFT. Similar
efficiencies can be used to compute a subgradient g from the forward map A(U1TU

∗
1 ).

For large problems, further efficiencies can be obtained simply by computing a
single eigenvector u1, i.e., any unit-norm vector in the range of U1. In our imple-
mentation, we typically request at least two rightmost eigenpairs: this gives us an
opportunity to detect whether the leading eigenpair is isolated. If it is, then the sub-
differential contains only a single element, which implies that f is differentiable at
that point.

Any sequence of steplengths {αk} that satisfies the generic conditions

lim
k→∞

αk = 0,
∞∑
k=0

αk =∞

is sufficient to guarantee that the value of the objective at yk converges to the optimal
value (Bertsekas, 2015, Proposition 3.2.6). A typical choice is αk = O(1/k). Our im-
plementation defaults to a Barzilai–Borwein steplength (Barzilai and Borwein, 1988)
with a nonmonotonic linesearch (Zhang and Hager, 2004) if it is detected that a se-
quence of iterates is differentiable (by observing separation of the leading eigenpair);
and otherwise it falls back to a decreasing step size.

The projection operator P onto the dual-feasible set (5) is inexpensive when the
residual is measured in the 2-norm. In particular, if ε = 0, the dual-feasible set is a
halfspace, and the projection can be accomplished in linear time. When ε is positive,
the projection requires computing the roots of a one-dimensional degree-4 polynomial,
which in practice requires little additional time.

4.2. Primal recovery. At each iteration of the descent method (15) for the
eigenvalue optimization problem (5), we compute a corresponding primal estimate

(17) X+ = U1S+U
∗
1

maintained in factored form. The matrix U1 has already been computed in the evalu-
ation of the objective and its subgradient; see (16). The positive semidefinite matrix
S+ is the solution of the primal-recovery problem (14).

A byproduct of the primal-recovery problem is that it provides a suitable stopping
criterion for the overall algorithm. Because the iterations yk are dual feasible, it
follows from Corollary 3 that if (14) has a zero residual, then the dual iterate yk and
the corresponding primal iterate Xk are optimal. Thus, we use the size of the residual
to determine a stopping test for approximate optimality.

4.3. Primal-dual refinement. The primal-recovery procedure outlined in sec-
tion 4.2 is used only as a stopping criterion and does not directly affect the sequence of
dual iterates from (15). In our numerical experiments, we find that significant gains
can be had by refining the primal estimate (17) and feeding it back into the dual
sequence. We use the following procedure, which involves two auxiliary subproblems
that add relatively little to the overall cost.

The first step is to refine the primal estimate obtained via (14) by using its solution

to determine the starting point Z0 = U1S
1/2
+ for the smooth unconstrained nonconvex
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problem

(18) minimize
Z∈Cn×r

h(Z) := 1
4‖A(ZZ∗)− bε‖

2.

In effect, we continue to minimize (14), where additionally U1 is allowed to vary.
Several options are available for solving this smooth unconstrained problem. Our
implementation has the option of using a steepest-descent iteration with a spec-
tral steplength and nonmonotone linesearch (Zhang and Hager, 2004), or a limited-
memory BFGS method (Nocedal and Wright, 2006, section 7.2). The main cost at
each iteration is the evaluation of the gradient

(19) ∇h(Z) = A∗(A(ZZ∗)− bε)Z.

We thus obtain a candidate improved primal estimate X̂ = ẐẐ∗, where Ẑ is a solution
of (18). When ε = 0, this nonconvex problem coincides with the problem used by
Candès, Li, and Soltanolkotabi (2015). They use the initialization Z0 = γu1, where
u1 is a leading eigenvector of A∗b, and γ = n

∑
i bi/

∑
i ‖ai‖

2. Our initialization, on
the other hand, is based on a solution of the primal-recovery problem (14).

The second step of the refinement procedure is to construct a candidate dual
estimate ŷ from a solution of the constrained linear-least-squares problem

(20) minimize
y∈Rm

1
2‖(A

∗y)Ẑ − λ̂Ẑ‖2 subject to 〈b, y〉 − ε‖y‖∗ ≥ 1,

where λ̂ := 1/ trace X̂ ≡ 1/‖Ẑ‖2F is the reciprocal of the primal objective value asso-

ciated with X̂. This constrained linear-least-squares problem attempts to construct a
vector ŷ such that the columns of Ẑ correspond to eigenvectors of A∗ŷ associated with
λ̂. If f(ŷ) < f(y+), then ŷ improves on the current dual iterate y+ obtained by the
descent method (15), and we are free to use ŷ in its place. This improved estimate,
which is exogenous to the dual descent method, can be considered a “spacer” iterate,
as described by Bertsekas (1999, Proposition 1.2.6). Importantly, it does not inter-
fere with the convergence of the underlying descent method. The projected-descent
method used to solve the dual sequence can also be applied to (20), though in this
case the objective is guaranteed to be differentiable.

4.4. Algorithm summary. The steps at the end of this section summarize
one iteration of the dual-descent algorithm: y is the current dual iterate, and y+ is
the updated iterate. The primal iterate X is maintained in factored form. Steps 5–7
implement the primal-dual refinement strategy described in section 4.3 and constitute
a heuristic that may improve the performance of the dual descent algorithm without
sacrificing convergence guarantees.

In step 1, the rightmost eigenpair (λ1, U1) of A∗y is computed. The eigenvectors
in the matrix U1 are used in step 2 to compute a subgradient g for the dual objective.
Any PSD matrix T that has trace equal to 1 can be used in step 2. For example,
the case where only a single rightmost eigenvector u1 can be afforded corresponds to
setting T so that U1TU

∗
1 = u1u

∗
1. Step 3 is a projected subgradient iteration with

steplength α. Step 4 solves the primal-recovery problem to determine the matrix S+

used to define a primal estimate X+ = U1S+U
∗
1 ; cf. (13). We use the factorization

Z0 := U1S
1/2
+ to initialize the algorithm in the next step. Step 5 applies an algorithm

to the nonlinear least-squares problem (18) to obtain a stationary point Ẑ used to
define the dual-refinement problem used in the next step. Step 6 computes a candidate
dual solution ŷ that—if it improves the dual objective—is used to replace the latest
dual estimate y+.
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1 (λ1, U1)← λ1(A∗y) [ eigenvalue computation ]
2 g ← A(U1TU

∗
1 ) [ gradient of dual objective; cf. (16) ]

3 y+ ← P(y − αg) [ projected subgradient step; cf. (15) ]
4 S+ ← solution of (14) [ primal recovery subproblem ]

5 Ẑ ← solution of (18) initialized with S+ [ primal refinement ]

6 ŷ ← solution of (20) initialized with Ẑ [ dual refinement ]
if λ1(A∗ŷ) < λ1 then

7 y+ ← ŷ [ spacer step ]

end

5. Numerical experiments. This section reports on a set of numerical exper-
iments for solving instances of the phase retrieval and blind deconvolution problems
described in section 1.2. The various algorithmic pieces described in section 4 have
been implemented as a MATLAB software package. The implementation uses the
MATLAB eigs routine for the eigenvalue computations described in section 4.1. We
implemented a projected gradient-descent method, which is used for solving (15),
(18), and (20).

5.1. Phase recovery. We conduct three experiments for phase retrieval via the
PhaseLift formulation. The first experiment is for a large collection of small one-
dimensional random signals, and is meant to contrast the approach against a general-
purpose convex optimization algorithm and a specialized nonconvex approach. The
second experiment tests problems where the vector of observations b is contaminated
by noise, hence testing the case where ε > 0. The third experiment tests the scalability
of the approach on a large two-dimensional natural image.

Our phase retrieval experiments follow the approach outlined in Candès, Li, and
Soltanolkotabi (2015). The diagonal matrices Ck ∈ Cn×n encode diffraction patterns
that correspond to the kth “mask” (k = 1, . . . , L) through which a signal x0 ∈ Cn is
measured. The measurements are given by

b = A(x0x
∗
0) := diag


FC1

...
FCL

 (x0x
∗
0)

FC1
...

FCL


∗ ,

where F is the unitary discrete Fourier transform (DFT). The adjoint of the associated
linear map A is then

A∗y :=

L∑
k=1

C∗kF
∗Diag(yk)FCk,

where y = (y1, . . . , yL) and Diag(yk) is the diagonal matrix formed from the vector yk.
The main cost in the evaluation of the forward map A(V V ∗) involves L applications
of the DFT for each column of V . Each evaluation of the adjoint map applied to a
vector v—i.e., (A∗y)v—requires L applications of both the DFT and its inverse. In
the experimental results reported below, the columns labeled “nDFT” indicate the
total number of DFT evaluations used over the course of a run. The costs of these
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Table 1
Phase retrieval comparisons for random complex Gaussian signals of size n = 128 measured

using random complex Gaussian masks. Numbers of the form n−e are shorthand for n · 10
−e

.

GAUGE GAUGE-feas TFOCS WFLOW

L nDFT xErr nDFT xErr nDFT xErr % nDFT xErr %

12 18,330 1.6−6 3,528 1.3−6 2,341,800 3.6−3 100 5,232 1.2−5 100
11 19,256 1.5−6 3,344 1.4−6 2,427,546 4.3−3 100 4,906 1.6−5 100
10 19,045 1.4−6 3,120 1.6−6 2,857,650 5.5−3 100 4,620 2.1−5 100

9 21,933 1.6−6 2,889 1.4−6 1.2 · 10
7

7.5−3 89 4,374 2.5−5 100

8 23,144 2.1−6 2,688 1.9−6 1.1 · 10
7

1.2−2 22 4,080 3.3−5 100
7 25,781 1.8−6 2,492 2.0−6 6,853,245 2.4−2 0 3,836 5.2−5 95
6 34,689 3.0−6 2,424 2.5−6 2,664,126 6.4−2 0 3,954 9.5−5 62

DFT evaluations are invariant across the different algorithms and dominate the overall
computation.

5.1.1. Random Gaussian signals. In this section we consider a set of experi-
ments for different numbers of masks. For each value of L = 6, 7, . . . , 12, we generate
a fixed set of 100 random complex Gaussian vectors x0 of length n = 128 and a set
of L random complex Gaussian masks Ck.

Table 1 summarizes the results of applying four different solvers to each set of
100 problems. The solver GAUGE is our implementation of the approach summarized
in section 4.4; TFOCS (Becker, Candès, and Grant, 2011) is a first-order conic solver
applied to the primal problem (1a). The version used here was modified to avoid
explicitly forming the matrix A∗y (Strohmer, 2013). The algorithm WFLOW (Candès,
Li, and Soltanolkotabi, 2015) is a nonconvex approach that attempts to recover the
original signal directly from the feasibility problem (18), with ε = 0. To make sensible
performance comparisons to WFLOW, we add to its implementation a stopping test based
on the norm of the gradient (19); the default algorithm otherwise uses a fixed number
of iterations.

We also show the results of applying the GAUGE code in a “feasibility” mode
that exits as soon as the primal-refinement subproblem (see step 7 of the algorithm
summary in section 4.4) obtains a solution with a small residual. This resulting solver
is labeled GAUGE-feas. This variant of GAUGE is in some respects akin to WFLOW,
with the main difference that GAUGE-feas uses starting points generated by the dual-
descent estimates and generates search directions and step-lengths for the feasibility
problem from a spectral gradient algorithm. The columns labeled “xErr” report the
median relative error ‖x0x

∗
0 − x̂x̂

∗‖F/‖x0‖
2
2 of the 100 runs, where x̂ is the solution

returned by the corresponding solver. The columns labeled “%” give the percentage
of problems solved to within a relative error of 10−2. At least on this set of artificial
experiments, the GAUGE solver (and its feasibility variant GAUGE-feas) appear to be
most efficient. Table 2 provides an additional comparison of GAUGE with the variation
GAUGE-nodfp, which ignores the “spacer” iterate computed by (20). There seems to
be significant practical benefit in using the refined primal estimate to improve the dual
sequence. The columns labeled “%” are excluded for all versions of GAUGE because
these solvers obtained the prescribed accuracy for all problems in each test set.

Note that the relative accuracy “xErr” is often slightly better for GAUGE-feas than
for GAUGE. These small discrepancies are explained by the different stopping criteria
between the two versions of the solver. In particular, GAUGE will continue iterating
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Table 2
Additional comparisons for the random examples of Table 1.

GAUGE GAUGE-nodfp

L nDFT xErr nDFT xErr

12 18,330 1.6−6 277,722 1.6−6

11 19,256 1.5−6 314,820 1.6−6

10 19,045 1.4−6 374,190 2.0−6

9 21,933 1.6−6 485,658 1.9−6

8 23,144 2.1−6 808,792 1.9−6

7 25,781 1.8−6 2,236,885 2.3−6

6 34,689 3.0−6 14,368,437 2.9−6

past the point at which GAUGE-feas normally terminates because it is searching for
a dual certificate that corresponds to the recovered primal estimate. This slightly
changes the computed subspaces U1, which influence subsequent primal estimates.
Similar behavior is exhibited in the noisy cases that we consider in the next section.

As the number of measurements (L) decreases, we expect the problem to be more
difficult. Indeed, we can observe that the total amount of work, as measured by
the number of operator evaluations (i.e., the ratio between nDFT and L), increases
monotonically for all variations of GAUGE.

5.1.2. Random problems with noise. In this set of experiments, we assess
the effectiveness of the SDP solver to problems with ε > 0, which could be useful in
recovering signals with noise. For this purpose, it is convenient to generate problem
instances with noise and known primal-dual solutions, which we can do by using
Corollary 3. Each instance is generated by first sampling octanary masks Ck—as
described by Candès, Li, and Soltanolkotabi (2015)—and real Gaussian vectors y ∈
Rm; a solution x0 ∈ Cn is then chosen as a unit-norm rightmost eigenvector of A∗y,
and the measurements are computed as b := A(x0x

∗
0) + εy/‖y‖, where ε is chosen as

ε := ‖b−A(x0x
∗
0)‖ = η‖b‖ for a given noise-level parameter η ∈ (0, 1).

For these experiments, we generate 100 instances with n = 128 for each pair-
wise combination (L, η) with L ∈ {6, 9, 12} and η ∈ {0.1%, 0.5%, 1%, 5%, 10%, 50%}.
Table 3 summarizes the results of applying the three variations of GAUGE, and the
WFLOW solver, to these problems. It is not clear that GAUGE-feas and WFLOW are rele-
vant for this experiment, but for interest we include them in the results. As with the
experiments in section 5.1.1, a solve is “successful” if it recovers the true solution with
a relative error of 10−2. The median relative error for all solvers is comparable, and
hence we omit the column “xErr.” GAUGE-nodfp is generally successful in recovering
the rank-1 minimizer for most problems—even for cases with significant noise, though
in these cases the overall cost increases considerably. On the other hand, GAUGE is less
successful: it appears that although the primal-dual refinement procedure can help
to reduce the cost of successful recovery in low-noise settings, in high-noise settings it
may obtain primal solutions that are not necessarily close to the true signal. For noise
levels over 5%, GAUGE-feas and WFLOW are unable to recover a solution within the pre-
scribed accuracy, which points to the benefits of the additional cost of obtaining a
primal-dual optimal point, rather than just a primal feasible point.

5.1.3. Two-dimensional signal. We conduct a second experiment on a stylized
application in order to assess the scalability of the approach to larger problem sizes.
In this case the measured signal x0 is a two-dimensional image of size 1600 × 1350
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Table 3
Phase retrieval comparisons for problems with noise, i.e., ε > 0. Numbers of the form n−e are

shorthand for n · 10
−e

.

GAUGE GAUGE-nodfp GAUGE-feas WFLOW

L η nDFT % nDFT % nDFT % nDFT %

12 0.1% 4,584 100 29,988 100 936 100 14,856 100
9 0.1% 3,222 100 36,292 100 774 100 11,511 100
6 0.1% 2,232 100 50,235 100 612 100 8,922 98

12 0.5% 3,768 100 27,252 100 936 100 14,808 100
9 0.5% 2,934 100 31,032 100 774 100 11,430 100
6 0.5% 2,148 100 38,766 100 606 100 8,790 98

12 1.0% 3,744 100 22,620 97 936 100 14,712 100
9 1.0% 2,934 100 24,813 96 774 100 11,331 99

6 1.0% 1 · 10
7

97 2 · 10
5

98 600 53 8,634 8

12 5.0% 95,952 26 9 · 10
5

90 936 0 14,148 0

9 5.0% 2 · 10
6

89 8 · 10
5

90 774 0 10,701 0

6 5.0% 2 · 10
6

82 5 · 10
5

98 600 0 7,728 0

12 10.0% 1 · 10
5

17 1 · 10
6

89 912 0 13,548 0

9 10.0% 8 · 10
5

78 7 · 10
5

91 765 0 10,125 0

6 10.0% 7 · 10
5

90 5 · 10
5

100 588 0 7,098 0

12 50.0% 2 · 10
5

53 5 · 10
5

94 888 0 11,424 0

9 50.0% 1 · 10
5

42 3 · 10
5

99 738 0 8,586 0

6 50.0% 1 · 10
5

24 2 · 10
5

95 588 0 7,176 0

Fig. 1. Image used for phase retrieval experiment; size 1600 × 1350 pixels ( 7.5MB).

pixels, shown in Figure 1, which corresponds to n = 2.2 · 106. The size of the lifted
formulation is on the order of n2 ≈ 1012, which makes it clear that the resulting SDP
is enormous and must be handled by a specialized solver. We have excluded TFOCS

from the list of candidate solvers because it cannot make progress on this example.
We generate 10 and 15 octanary masks. Table 4 summarizes the results. The column
headers carry the same meaning as Table 1.

5.2. Blind deconvolution. In this blind deconvolution experiment, the con-
volution of two signals s1 ∈ Cm and s2 ∈ Cm is measured. Let B1 ∈ Cm×n1 and
B2 ∈ Cm×n2 be two bases. The circular convolution of the signals can be described
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Table 4
Phase retrieval comparisons on a two-dimensional image.

GAUGE GAUGE-feas WFLOW

L nDFT xErr nDFT xErr nDFT xErr

15 200,835 2.1 · 10
−6

5,700 2.1 · 10
−6

8,100 4.1 · 10
−6

10 195,210 5.8 · 10
−7

12,280 9.1 · 10
−7

12,340 2.1 · 10
−5

by

b = s1 ∗ s2 = (B1x1) ∗ (B2x2)

= F−1 diag
(
(FB1x1)(FB2x2)T

)
= F−1 diag

(
(FB1)(x1x

∗
2)(FB2)∗

)
=: A(x1x

∗
2),

where A is the corresponding asymmetric linear map with the adjoint

A∗y := (FB1)∗Diag(Fy)(FB2).

Because F is unitary, it is possible to work instead with measurements

b̂ ≡ Fb = diag
(
(FB1)(x1x

∗
2)(FB2)∗

)
in the Fourier domain. For the experiments that we run, we choose to work with the
former real-valued measurements b because they do not require accounting for the
imaginary parts, and thus the number of constraints in (4) that would be required
otherwise is reduced by half.

We follow the experimental setup outlined by Ahmed, Recht, and Romberg (2014)
and use the data and code that they provide. In that setup, B1 is a subset of
the Haar wavelet basis, and B2 is a mask corresponding to a subset of the iden-
tity basis. The top row of Figure 2 shows the original image, the blurring kernel,
and the observed blurred image. The second row of the figure shows the image re-
constructed using the augmented Lagrangian code provided by Ahmed, Recht, and
Romberg (2014), GAUGE, and GAUGE-feas. Table 5 summarizes the results of applying
the three solvers. The columns headed “nDFT” and “nDWT” count the number of
discrete Fourier and wavelet transforms required by each solver; the columns headed
“xErr1” and “xErr2” report the relative errors ‖xi − x̂i‖2/‖xi‖2, i = 1, 2, where x̂i
are the recovered solutions; the column headed “rErr” reports the relative residual
error ‖b−A(x̂1x̂

∗
2)‖2/‖b‖2. Although the nonconvex augmented Lagrangian approach

yields visibly better recovery of the image, the table reveals that the solutions are
numerically similar and are recovered with far less work.

6. Extensions. The problems (1) that we have considered so far are stated in
their simplest form. General semidefinite optimization problems with nonnegative
optimal value, and reweighted formulations for rank minimization, as introduced by
Mohan and Fazel (2010) and Candès et al. (2013), are also useful and can be accom-
modated by our approach.

In the context of rank minimization over the PSD cone, an approximate minimum-
rank solution X̂ (e.g., computed via trace minimization) might be used to obtain
an even better approximation by using the weighted objective 〈C,X〉, where C :=

(δI + X̂)−1 and δ is a small positive parameter. We might reasonably expect that
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(a) (b) (c)

(d) (e) (f)

Fig. 2. Images used for the blind deconvolution experiments: (a) original image; (b) zoom of
the motion-blurring kernel; (c) blurred image; (d) image recovered by the augmented Lagrangian
approach; (e) image recovered by GAUGE; (f) image recovered by GAUGE-feas. The shaded background
on the recovered images is an artifact of the uniform scaling used to highlight any error between the
original and recovered signals.

Table 5
Blind deconvolution comparisons.

Solver nDFT nDWT xErr1 xErr2 rErr

aug Lagrangian 92,224 76,872 7.9 · 10
−2

5.0 · 10
−1

1.4 · 10
−4

GAUGE 17,432 8,374 1.9 · 10
−2

5.4 · 10
−1

3.8 · 10
−4

GAUGE-feas 4,128 2,062 8.4 · 10
−2

5.5 · 10
−1

4.0 · 10
−4

the objective value at a minimizer of this objective more closely matches the rank
function. Candès et al. (2013) show that such an iteratively reweighted sequence
of trace minimization problems can improve the range of signals recoverable using
PhaseLift. Each problem in that sequence uses the previous solution X̂ to derive a
weighting matrix C = (δI+ẐẐ∗)−1 for the next problem. The inverse of the matrix C

is a low-rank update ẐẐ∗ ≈ X̂ to a small regularizing multiple δ of the identity matrix.
This idea generalizes that of reweighting the 1-norm for cardinality minimization
problems in compressed sensing, where the number of nonzero entries of a vector x is
approximated by

∑
i |xi|/(|x̂i|+ δ) for small δ and an available approximation x̂ (e.g.,

computed via 1-norm minimization).
In the next sections we derive the corresponding gauge duals for the weighted

formulations of both trace minimization in the PSD cone and nuclear-norm mini-



A1634 MICHAEL P. FRIEDLANDER AND IVES MACÊDO

mization.

6.1. Nonnegative semidefinite optimization. Consider the semidefinite op-
timization problem

(21) minimize
X∈Hn

〈C,X〉 subject to ‖b−AX‖ ≤ ε, X � 0,

where C � 0. Define the maps

C(·) := C−
1
2 (·)C−

1
2 and AC := A ◦ C−1.

It is evident that X � 0 if and only if C(X) � 0, and so the SDP problem can be
stated equivalently as

minimize
X∈Hn

trace C(X) subject to ‖b−AC(C(X))‖ ≤ ε, C(X) � 0.

Because C is a bijection, we can optimize over X̂ := C(X) instead of X:

(22) minimize
X̂∈Hn

trace X̂ subject to ‖b−ACX̂‖ ≤ ε, X̂ � 0.

This clearly falls within the structure of (1a) and has the corresponding gauge dual

(23) minimize
y∈Rm

[λ1(A∗Cy)]+ subject to 〈b, y〉 − ε‖y‖∗ ≥ 1.

Observe that λ1(A∗Cy) = λ1(C−
1
2 (A∗y)C−

1
2 ) = λ1(A∗y, C). Then

(24) minimize
y∈Rm

[λ1(A∗y, C)]+ subject to 〈b, y〉 − ε‖y‖∗ ≥ 1.

This shows that the introduction of a weighting matrix C that is not a simple
multiple of the identity leads to a dual gauge problem involving the minimization of
the rightmost generalized eigenvalue of A∗y with respect to that weight. Now that
we have a formulation for the gauge dual problem, we focus on how a primal solution
to the original weighted trace minimization can be computed given a dual minimizer.
This extends Corollary 3.

Corollary 4. Suppose that problem (21) is feasible and 0 ≤ ε < ‖b‖. Let y ∈
Rm be an arbitrary optimal solution for the dual gauge (24), r1 ∈ {1, . . . , n} be the
multiplicity of λ1(A∗y, C), and U1 ∈ Cn×r1 be the matrix formed by the first r1
generalized eigenvectors of A∗y with respect to C. Then X ∈ Hn is a solution for the
primal problem (21) if and only if there exists S � 0 such that

X = U1SU
∗
1 and (b−AX) ∈ ε∂‖ · ‖∗(y).

Proof. A solution for (24) is clearly a solution for (23). We may thus invoke

Corollary 3 and assert that X̂ ∈ Hn is a solution for (22) if and only if there is

S � 0 such that X̂ = Û1SÛ
∗
1 and (b − ACX̂) ∈ ε∂‖ · ‖∗(y), where Û1 ∈ Cn×r1 is

a matrix formed by the first r1 eigenvectors of A∗Cy = C−
1
2 (A∗y)C−

1
2 . From the

structure of C, we have that X is a solution to (21) if and only if X = C(X̂). Thus,

X = C−
1
2 Û1SÛ

∗
1C
− 1

2 = U1SU
∗
1 , where U1 := C−

1
2 Û1 corresponds to the first r1

generalized eigenvectors of A∗y with respect to C.

Once again, this provides us with a way to recover a solution to the weighted
trace minimization problem by computing a solution to the gauge dual problem (now
involving the rightmost generalized eigenvalue) and then solving a problem of poten-
tially much reduced dimensionality.
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6.2. Weighted affine nuclear-norm optimization. We can similarly extend
the reweighted extension to the asymmetric case (1b). Let C1 ∈ H

n1 and C2 ∈ H
n2

be invertible. The weighted nuclear-norm minimization problem becomes

(25) minimize
X∈Cn1×n2

‖C1XC
∗
2‖1 subject to ‖b−AX‖ ≤ ε.

Define the weighted quantities

C(·) = C−11 (·)C−∗2 : Cn1×n2 → Cn1×n2 , AC = A ◦ C, and X̂ := C(X).

The weighted problem can then be stated equivalently as

minimize
X̂∈Cn1×n2

‖X̂‖1 subject to ‖b−ACX̂‖ ≤ ε,

which, following the approach introduced in Fazel (2002), can be embedded in a
symmetric problem:

(26)

minimize
Û∈Hn1

V̂ ∈Hn2

X̂∈Cn1×n2

〈
1

2
I,

(
Û X̂

X̂∗ V̂

)〉

subject to

(
Û X̂

X̂∗ V̂

)
� 0 and ‖b−ACX̂‖ ≤ ε.

Define the measurement operator from M : Hn1+n2 → Cm by the map(
Û X̂

X̂∗ V̂

)
7→ ACX̂,

and identify Cm with R2m as a real inner-product space. The adjoint of the measure-
ment operator is then given by

M∗y =

(
0 A∗Cy

(A∗Cy)∗ 0

)
,

where A∗Cy = 1
2

∑m
i=1 C

−1
1 AiC

−∗
2 yi. We can now state the gauge dual problem:

minimize
y∈Cm

[
λ1(M∗y, 12I)

]
+

subject to R〈b, y〉 − ε‖y‖∗ ≥ 1.(27)

Observe the identity

λ1
(
M∗y, 12I

)
= λ1(2M∗y)

=

[
λ1

(
0

∑m
i=1 C

−1
1 AiC

−∗
2 yi

(
∑m
i=1 C

−1
1 AiC

−∗
2 yi)

∗ 0

)]
+

=
[
‖C−11 (A∗y)C−∗2 ‖∞

]
+

= ‖C−11 (A∗y)C−∗2 ‖∞.

We can now deduce the simplified form for the gauge dual problem:

(28) minimize
y∈Cm

‖C−11 (A∗y)C−∗2 ‖∞ subject to R〈b, y〉 − ε‖y‖∗ ≥ 1.
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This weighted gauge dual problem can be derived from first principles using the
tools from section 2 by observing that the primal problem is already in standard
gauge form. We chose this approach, however, to make explicit the close connection
between the (weighted) nuclear-norm minimization problem and the (weighted) trace-
minimization problem described in section 6.1.

The following result provides a way to characterize solutions of the nuclear-norm
minimization problem when a solution to the dual gauge problem is available.

Corollary 5. Suppose that problem (25) is feasible and 0 ≤ ε < ‖b‖. Let y ∈
Cm be an arbitrary optimal solution for the dual gauge problem (28), r1 ∈ {1, . . . , n} be
the multiplicity of σ1(C−11 (A∗y)C−∗2 ), U1 ∈ Cn1×r1 and V1 ∈ Cn2×r1 be the matrices
formed by the first r1 left and right singular vectors of C−11 (A∗y)C−∗2 , respectively.
Then X ∈ Cn1×n2 is a solution for the primal problem (25) if and only if there exists
S � 0 such that X = (C−11 U1)S(C−12 V1)∗ and (b−AX) ∈ ε∂‖ · ‖∗(y).

Proof. A solution for (28) is clearly a solution for (27); in this way we invoke

Corollary 3 and have that (Û , V̂ , X̂) ∈ Hn1 ×Hn2 ×Cn1×n2 induce a solution for (26)

if and only if there is S � 0 such that X̂ = Û1SV̂
∗
1 and (b − ACX̂) ∈ ε∂‖ · ‖∗(y),

where Û1 ∈ Cn1×r1 and V̂1 ∈ Cn2×r1 are matrices formed by the first r1 left and right
singular vectors of A∗Cy = C−11 (A∗y)C−∗2 . From the structure of C, we have that X is

a solution to (25) if and only if X = C(X̂). This way, X = (C−11 Û1)S(C−12 V̂1)∗.

7. Conclusions. The phase retrieval and blind deconvolution applications are
examples of convex relaxations of nonconvex problems that give rise to large spectral
optimization problems with strong statistical guarantees for correctly reconstructing
certain signals. One of the criticisms that has been leveled at these relaxation ap-
proaches is that they lead to problems that are too difficult to be useful in practice.
This has led to work on nonconvex recovery algorithms that may not have as-strong
statistical recovery guarantees but are nonetheless effective in practice; see Netrapalli,
Jain, and Sanghavi (2013); Candès, Li, and Soltanolkotabi (2015); White, Sanghavi,
and Ward (2015). Our motivation is to determine whether it is possible to develop
convex optimization algorithms that are as efficient as nonconvex approaches. The
numerical experiments on these problems suggest that the gauge-dual approach may
prove effective. Indeed, other convex optimization algorithms may be possible, and
clearly the key to their success will be to leverage the special structure of these prob-
lems.

A theoretical question we have not addressed is to delineate conditions under
which dual attainment will hold. In particular, the conclusion (12) of Theorem 1
is asymmetric: we can assert that a primal solution exists that attains the primal
optimal value (because the Lagrange dual is strictly feasible), but we cannot assert
that a dual solution exists that attains the dual optimal value. A related theoretical
question is to understand the relationship between the quality of suboptimal dual
solutions, and the quality of the primal estimate obtained by the primal recovery
procedure.

In our experiments, we have observed that the rightmost eigenvalue of A∗y re-
mains fairly well separated from the others across iterations. This seems to contribute
to the overall effectiveness of the dual-descent method. Is there a special property
of these problems or of the algorithm that encourages this separation property? It
seems likely that there are solutions y at which the objective is not differentiable, and
in that case, we wonder whether there are algorithmic devices that could be used to
avoid such points.
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The dual-descent method we use to solve the dual subproblem (cf. section 4.1) is
only one possible algorithm among many. Other more specialized methods, such as
the spectral bundle method of Helmberg and Rendl (2000), its second-order vari-
ant (Helmberg, Overton, and Rendl, 2014), or the stochastic-gradient method of
d’Aspremont and El Karoui (2014), may prove effective alternatives.

We have found it convenient to embed the nuclear-norm minimization prob-
lem (1b) in the SDP formulation (1a) because it allows us to use the same solver
for both problems. Further efficiencies, however, may be gained by implementing a
solver that applies directly to the corresponding gauge dual

minimize
y∈Cm

‖A∗y‖∞ subject to R〈b, y〉 − ε‖y‖∗ ≥ 1.

This would require an iterative solver for evaluating leading singular values and sin-
gular vectors of the asymmetric operator A∗y, such as PROPACK (Larsen, 2001).
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