
Optimization with Costly Subgradients

By

Gabriel Goh

B.S. (Simon Fraser University) 2001

DISSERTATION

Submitted in partial satisfaction of the requirements for the degree of

DOCTOR OF PHILOSOPHY

in

MATHEMATICS

in the

OFFICE OF GRADUATE STUDIES

of the

UNIVERSITY OF CALIFORNIA

DAVIS

Approved:

Michael Friedlander

Jesus De Loera

Matthias Koeppe

Committee in Charge

2017

-i-

c© First M. Last, 20XX. All rights reserved.

To my Family, and Marcos.

Contents

Abstract vii

Acknowledgments ix

Part 1. Introduction 1

Chapter 1. A tour of the thesis 2

1.1. Introduction 2

1.1.1. Notation 3

1.2. Parametric optimization 4

1.2.1. Efficient first-order algorithms 6

1.2.2. Models with Inexact Subgradients 12

1.2.3. The inexact epigraph cutting plane method 17

1.3. Composite problems 18

1.3.1. Composite optimization 18

1.3.2. Preconditioned quasi newton 19

1.3.3. Stochastic gradient with error 24

1.3.4. Tail bounds 27

1.4. The problem of costly subgradients 28

Chapter 2. Convex duality 29

2.1. Polar cones 30

2.2. Conjugate functions 31

2.2.1. infimal convolution 33

2.3. Fenchel duality 35

2.4. Lagrange duality 36

-iii-

Part 2. The anatomy of a linear model 39

Chapter 3. Optimization for machine learning 40

3.1. Introduction to supervised learning 40

3.1.1. Loss functions 42

3.1.2. Regularizers 49

3.1.3. Dataset constraints 53

Part 3. Cutting plane methods 59

Chapter 4. Epigraphical cutting plane methods 60

4.1. Introduction 60

4.2. Cutting plane methods 61

4.3. Epigraph cutting plane methods 65

Chapter 5. Constructing inexact oracles 69

5.1. Supremal Projection 69

5.1.1. Finding the lower bound 70

5.1.2. Finding the upper bound 70

5.1.3. Controlling the tolerance 71

5.2. Parametrized optimization 73

5.2.1. Finding the upper bound 73

5.2.2. Finding the lower bound 73

5.3. Numerical approaches to obtaining primal-dual pairs 75

5.3.1. Pure Dual Solver 75

5.3.2. Saddle Point Solver 75

Chapter 6. The inexact epigraph cutting plane algorithm 77

6.1. The inexact epigraph center of gravity method 79

6.1.1. Stopping condition 79

6.1.2. Outer convergence 80

6.1.3. Total effort 83

-iv-

6.2. The inexact epigraph method of inscribed ellipsoids 83

6.2.1. Stopping criteria 84

6.2.2. Outer convergence 85

6.2.3. Total effort 87

Chapter 7. The parabolic inexact epigraph cutting plane algorithm 88

7.1. Introduction 88

7.2. The parabolic inexact epigraph method of inscribed ellipsoids 91

7.2.1. Outer convergence 91

Part 4. Proximal methods 97

Chapter 8. Proximal gradient 98

8.1. Problems with composite form 98

8.2. Computing the proximal operator 100

Chapter 9. Efficient evaluation of the scaled proximal operator 102

9.1. Quadratic-support functions 102

9.2. Building quadratic-support functions 106

9.3. The proximal operator as a conic QP 108

9.4. Primal-dual methods for conic QP 109

9.5. Evaluating the proximal operator 111

9.6. A proximal quasi-Newton method 118

9.6.1. Limited-memory BFGS updates 118

9.7. Numerical experiments 119

9.7.1. Timing the proximal operator 119

9.7.2. Synthetic least-square problems 120

9.7.3. Sparse logistic regression 124

Chapter 10. Stochastic oracles 127

10.1. Population Assumptions 128

10.2. Sampling With Replacement 128

-v-

10.3. Sampling Without Replacement 129

Chapter 11. Stochastic gradient descent 131

11.1. Proximal Gradient with Error 132

11.2. Probabilistic bounds for gradient descent with random error 137

11.2.1. Generic error sequence 137

11.2.2. Unconditionally bounded error sequence 140

11.3. From tail bounds to moment-generating bounds 144

11.4. Convergence rates for linearly decreasing errors 146

11.4.1. Expectation-based and deterministic bounds 146

11.4.2. Tail bounds 147

11.5. Numerical experiments 150

Part 5. Paths forward 152

Chapter 12. Paths forward 153

12.1. Forward backward envelope 153

12.2. Proximal Quasi-Newton 153

Part 6. Appendix 155

Appendix A. Appendix: Cutting plane methods 156

A.1. Some General Facts 156

Appendix B. Appendix: Tail bounds for proximal gradient descent 158

B.1. Auxiliary results 158

B.2. Sampling Bounds 161

Appendix C. Apendix: Proximal methods 162

C.1. QS Representation for a quadratic 162

Bibliography 164

-vi-

Gabriel Goh
May 2017

Abstract

This thesis concerns the exploitation of two related classes of convex optimization problems

that arise frequently in practice. The first are problems of two distinct blocks of variables, h(x, y)

where the objective is written implicitly as either the minimization or maximization over the second

block. Problems with this structure present immediate computational challenges: any computation

of a subgradient, or for that matter the objective, requires the solution of a convex program. While

this may make the problem appear intractable superficially, it is often the case that a precise

computation of first-order information is an overkill. Indeed, a suboptimal solution will yield an

approximate subgradient, and when used in conjunction with a cutting-plane algorithm, yields a

shallow-cut. When tuned appropriately, linear convergence, which is a property of the idealized

algorithm, can still be preserved: this is the shallow-cut cutting-plane algorithm. In this thesis,

we propose an alternative to this classical algorithm : the epigraph inexact cutting-plane method.

This method allows us to use two approximate cuts at every step, one from an upper bound on the

optimal solution, and one from a lower bound on f , an approximate subgradient, both found via

duality. This technique makes full use of all the information obtained from an approximate solution

and it is also far easier to quantify the total amount of work needed for convergence in terms of both

the number of cuts used and the amount of effort spent in computing the first-order approximation.

The second class of structures of interest are those with an additive structure, f + g, where f is

smooth and g is convex and simple. Furthermore, we assume f can be written as an expectation

over some random variable. In a typical application, f is a loss term, taken over data, and g is a

regularizer. The standard tool for solving problems with composite structure is the proximal-gradient

algorithm. Its convergence, unfortunately, depends strongly upon the conditioning of the problem,

and stalls in many real-world situations. This issue can be mitigated in part by using curvature

approximation. Quasi-newton methods, an effective tool for approximating curvature in first-order

smooth optimization, can be applied in the proximal setting, though at a significant price because

-vii-

their extensions to problems with additive structure may require a potentially costly computation

of the scaled proximal operator. We show, however, that for quadratic support functions, we can

exploit the simultaneous structure of f and g to compute the scaled proximal operator efficiently.

When f and g have the right structure, the proximal map can be computed with cost nearly linear

in the input size.

Finally, for problems involving large-scale statistical modeling, f is often a function written

as expectation over a random variable, one with large, or potentially infinite support. In such a

situation, even a single gradient computation is infeasible, requiring a costly integration. Stochastic

approximation algorithms, however, demonstrate that it is unnecessary to compute the true gradient,

and one only needs an unbiased estimator of it. It is known that by appropriately decreasing

the variance of the error at each iteration, the expected rate of convergence matches that of the

underlying deterministic gradient method. We show by appropriately decreasing an upper bound

on the moment generating function, we have convergence with overwhelming probability. This

guarantee rivals its deterministic counterpart.

In both these structures, first-order information is costly to compute but cheap, controllable

approximations are available, thus reflecting the unifying theme of this work, “optimization with

costly subgradients.”

-viii-

Acknowledgments

This thesis was written in two universities — first, at the University of Britsh Columbia, and then

at the University of Califonia, Davis. A constant through both, however, has been my supervisor

Michael Friedlander. This thesis would not have been possible without his support and guidance,

his attention to detail, his exacting standards and impeccable craftsmanship that extends both to

papers and code. Thank you for making this possible.

My thanks also go to my dissertation committee, Jesus De Loera, Mattias Mkoeppe. Thank

you for the detailed feedback, encouragement, and conversation. Thank you too, to Nick Harvey

and Nando De Fredas for serving on my qualification committee, and being inspirational teachers in

general.

Part 3 of this thesis was done in collaboration with my colleagues at Google, Andrew Cotter, and

Maya Gupta. It is an immense pleasure working with you, and the ideas we’ve discussed continue

to resonate with me to this day.

My thanks also go to the administrative staff of UBC, Joyce Poon, and UC Davis, Tina Denena

and Sarah Driver. Thank you especially to Tina and Sarah for making the transfer smooth and for

tolerating my occasional ignorance on matters administrative.

To my senior colleagues, Ting Kei Pong, Nathan Krislock, Ives Macedo and Ernie Esser (who

passed away far too soon), my conversations with each one of you have shaped and sharpened

my thinking about optimization immensely. You have been my unofficial mentors, and for your

generosity of time and spirit, I thank you. And to my colleagues Will Wright, Ziyu Wang, Julie

Nutini, Sasha Aravkin, and Rob Hocking, thank you for being excellent company and the delightful

discussions. All of you have made this pursuit worthwhile.

To Shawn Carter and Chris Olah, it was a pleasure working with you on distill. Many of your

innovative ideas on presentation and writing have found their way into this thesis. Thanks too, to

Bill Aiello, Jason Swanson and Michael Todd for your valuable technical contributions.

Thanks to Marcos Ginestra, for the neverending support.

And to the many others I did not thank explicitly but helped me on this journey, thank you.

-ix-
Research supported by ONR award N00014-17-1-2009.

Part 1

Introduction

CHAPTER 1

A tour of the thesis

1.1. Introduction

The applications of convex programming touch nearly every quantitative discipline, but in recent

times there has been demand for fast, scalable algorithms for highly structured problems arising in

the quickly growing field of machine learning. Machine learning is, to dramatically and unfairly

simplify, the endeavor of fitting a model to data. This process of model fitting (sometimes referred to

as training) involves a search over the model parameters to minimize misfit—a task usually phrased

as an optimization problem. Convexity has planted deep roots in the field, which go back to the

maximum likelihood formulations in exponential families [Bro86], maximum-margin classification

[VK82], and boosting [FS95], and underlies many algorithms, especially in applications where fast,

robust algorithms are required for training simple models on large data.

The advantages of convex programming in machine learning are twofold. First, convex opti-

mization provides strong theoretical guarantees of optimality. These come in the form of optimality

certificates and a rich collection of algorithms with convergence guarantees. These guarantees

allow for a clean decoupling of the interests of modeling and optimization—it is the model, not the

algorithm, that determines the solution to any model. Second, convexity provides a rich palette of

functions for crafting models. These functions, in the right hands, allow the practitioner to exercise

fine-grained control in the expression of beliefs about the data. The peculiarities of convex functions,

such as non-smoothness, can be recast as a strength. The kinks and ridges of these functions can

be engineered to encourage solutions with certain useful properties. We begin our thesis in Part 2

with a gentle introduction to convex modeling, to serve as a guide to the applications that drive the

algorithms. We divide the problem of modeling into three parts: a loss, a regularizer and dataset

constraints, the final of which is a novel framework published in Goh et al. [GCGF16].

2

1.1. INTRODUCTION

The problems discussed in the previous section are, for the most part, fairly routine convex

optimization programs and can be solved using standard tools. The demands of scale, however,

require specialized algorithms for exploiting structure within a problem. We identify two classes of

problems of interest—parametric optimization, and optimization with composite structure.

1.1.1. Notation. We use the symbol 1 to denote the constant vector of all ones. To isolate

the ith component of a vector we use the notation [·]i to denote 1Ti x where 1i is the ith standard

Euclidean vector. Horizontal vector concatenation is denoted, as is convention, with [x1, · · · , xn],

but to avoid the need for cumbersome transposes, we borrow notation from Matlab [MAT10] and

let [x1; · · · ;xn] denote vertical concatenation. To denote an interval, we bold brackets [a, b]–though

the difference is subtle, the distinctions should be made clear from context. As is per convention, we

use ‖ · ‖p to denote the p-norm, and set the default norm ‖ · ‖ := ‖ · ‖2. Quadratic norms, denoted

‖ · ‖H for H positive definite, are defined as ‖x‖H = xTHx.

Let us now review some basic concepts in convex analysis. Consider a finite-dimensional convex

function f takin values on the extended reals R ∪ {∞}. We refer to the domain of the function f

as all the points where it is real valued, dom(f) = {x | f(x) <∞}. In this thesis we only consider

proper convex functions, functions where dom(f) 6= ∅. The epigraph of a function is denoted by

epi(f) = {(t, x) | t ≥ f(x)}, and the level set of a function is denoted by lvlf (t) = {x | f(x) = t}.
The closure of a convex function, cl(f), is defined as the greatest lower semi-continuous function

majorized by f . A closed convex function is a function where cl(f) = f . Closed convex functions

which are proper are exactly the set of lower semi-continuous functions [Roc70, Theorem 7.1], and

thus we will refer to them interchangeably.

A subgradient of a function f : Rn → R ∪ {∞} at x is a element g ∈ Rn which proves a global

affine minorant, i.e.,

(1.1.1) f(x̄) ≥ f(x) + gT (x̄− x) for all x̄.

The set of all vectors for which this is true defines the subdifferential ∂f(x). When the sub-

differential is a singleton, then the function is differentiable at that point and ∂f(x) = {∇f(x)}. A

simple example of a non-differentiable convex function is the absolute value function, f(x) = |x|.
3

1.2. PARAMETRIC OPTIMIZATION

Though differentiable almost everywhere, it is not differentiable at 0, and it is easy to show

that ∂| · |(0) = [−1, 1]. For the n-dimensional 1-norm function, f(x) = ‖x‖1, the points of non-

differentiability are the points where any coordinate is 0. These sets are of particular interest, as

solutions of optimization problems tend to lie on these sets. Another useful extended real valued

function is the convex indicator

(1.1.2) δC(x) ≡ δ(x|C) =


0 if x ∈ C

∞ if x /∈ C.

The convex indicator is used when enforcing a constraint, since infx∈C f(x) = infx{f(x) + δ(x|C)}.
Optimality in a convex function is easy to characterize. If 0 ∈ ∂f(x) then by definition

f(x̄) ≥ f(x) + 0T (x̄− x) ≥ f(x) ∀x̄,

which implies immediately that x is a minimizer of f . The converse is true too, by observing that

for any minimizer x̄, f(x) + 0T (x̄− x) is a lower minorant, and hence 0 ∈ ∂f(x).

A differentiable function has L-Lipschitz gradients if ‖∇f(y)−∇f(x)‖ ≤ L ‖y − x‖, and is

strongly convex when (∇f(x)−∇f(y))T (x−y) ≥ µ‖x−y‖2, or equivalently when there exists a µ such

that f admits a quadratic, rather than linear lower bound, f(y) ≥ f(x)+∇f(x)T (x̄−x)+ µ
2‖x̄−x‖2

for all x̄. When f is twice differentiable, these two properties allow the convenient characterization

µI � ∇2f(x) � LI, where � indicates an ordering with respect to the cone of positive semidefinite

matrices.

1.2. Parametric optimization

The first class of problems we are interested in are problems defined implicitly over a subset of

variables. For a real-valued function h(·, ·) jointly convex over its first and second arguments, these

are problems where f is defined implicitly over a second inner optimization problem, i.e.,

(1.2.1) minimize
x∈X

f(x) := min
y
h(x, y).

4

1.2. PARAMETRIC OPTIMIZATION

We assume X is a compact, convex set with a non-empty interior, and h(x, ·) attains its minimum.

A similar situation happens for a function h(·, ·) convex in the first argument, i.e.,

(1.2.2) minimize
x∈X

f(x) := max
y
h(x, y).

We assume that the max is attained, and thus do not need to use sup. Problems of this kind emerge

when there is useful structure in a subset of the variables (grouped here as y) that is not present

jointly in (x, y). An example of this is the basis pursuit denoise problem. This is the problem of

solving

minimize
y

‖y‖1 s.t.
1

2
‖Ay − b‖2 ≤ ε.

In this situation it is sometimes convenient to solve the one dimensional dual,

(1.2.3) minimize
x≥0

sup
y
h(x, y) =

x

2

(
‖Ay − b‖2 − ε

)
+ ‖y‖1.

Each query for first-order information in (1.2.3) (a subgradient of the objective function) can be

found by solving the the unconstrained inner problem

(1.2.4) minimize
y

x

2
‖Ay − b‖2 + ‖y‖1,

which admits efficient algorithms [VDBF08].

Since subgradients of f can be obtained, under mild assumptions (see Sections 5.1 and 5.2), by

solving the subproblem of minimizing or maximizing h in its second variable and taking derivatives

at the optimum, we can in principle apply any first-order method for optimizing f . Charging at

this blindly with just any first-order method, however, is ill advised. First, each call for first-order

information (such as a subgradient) is expensive, and we seek to use the most economical use of

this information. Next, if evaluating f requires solving the inner problem numerically, intermediate

steps of the optimization in h often yield partial solutions that can be integrated into the outer

first-order algorithm.

The problem of efficient use of gradient information in convex optimization has been studied

under the umbrella of informational complexity [Nem94]. An algorithm’s information complexity,

as the name suggests, is the number of subgradient calls required to drive down the objective value

5

1.2. PARAMETRIC OPTIMIZATION

of a closed convex function below a certain tolerance [Nem94, Lecture 1]. Given how such calls to

the subgradient are at a premium, it is natural for us to look for methods that are informationally

efficient.

1.2.1. Efficient first-order algorithms. We begin our discussion with cutting plane methods,

a class of methods capable of achieving optimal information efficiency. Newman [New65] motivates

the development of cutting plane methods as a generalization of bisection. Recall that for a smooth,

unimodal function, bisection works by progressively shrinking an interval Pk that contains the

optimum by a factor of two. First, we choose the midpoint of the interval of Pk and query the

function’s gradient. Then, we rule out exactly half the interval by noting that a positive gradient

at x implies the function is increasing, and hence the optimum lies to the left of x. A negative

gradient implies the reverse—allowing us to cut Pk in half, increasing the precision of our estimate

by exactly one bit each iteration.

When f is convex, a subgradient gives us similar localization information. Indeed, any lineariza-

tion of f gives us an affine lower bound, and hence

f(x̄) ≥ f(x) + gT (x̄− x) ≥ min
x
f(x) ∀x̄ such that gT (x̄− x) ≥ 0.

Each query to the subgradient of f , thus, rules out a halfspace from containing the optimum,

{x | gT (x̄− x) ≥ 0}. Thus given any polytope P0 which contains the optimum (this is known as the

localization polytope), we can refine it by choosing a point in Pk and calling the subgradient oracle,

and intersecting the halfspace with Pk, yielding the iteration

(1.2.5) Pk+1 = Pk ∩ {x | gT (x̄− xk) ≤ 0};

see Figure 1.2.1.

What remains undecided is what point to select. In one dimension the choice is obvious—the

midpoint of an interval. But in higher dimensions, it is clear that a perfect generalization of the

midpoint is impossible. There is no generic point in every convex set that neatly divides every

half-space through that point into two equal parts. Methods must thus resort to some form of

compromise. These are the methods of central selectors.

6

1.2. PARAMETRIC OPTIMIZATION

xk

xk+1

Pk

Pk+1

xk+2

Pk+2

The next gradient query
is chosen to be the center
of gravity of Pk

We query the subgradient
oracle to get a separat-
ing hyperplane between
xk and the optimal set.

{x | gk(x− xk) ≤ 0}

x∗

Figure 1.2.1. Graphical illustration of the cutting plane method

1
4

3
4

2
3

1
3

1
2

1
2

The center of
gravity lies 1

n+1

from the base

Figure 1.2.2. For a circular cone with n dimensions of height 1, the center of gravity
lies at distance 1/(n+ 1) from the base, and the hyperplane {x | x1 ≤ 1/(n+ 1)}
divides the cone into sets of volume V (1 + 1

n)n and V − V (1 + 1
n)n, where V is the

volume of the cone. As n→∞, the ratio of the volume of the shaded region to the
cone approach 1− exp(−1), making the bound (1.2.6) asymptotically tight.

1.2.1.1. Center of Gravity Method. Levin [Lev65] and Newman [New65] suggested that the

center of gravity would be a reasonable substitute for the midpoint. This choice takes advantage of

Grünbaum’s theorem [Grü60], a classical theorem in convex geometry. This theorem states that any

hyperplane through the center of gravity necessarily splits the polytope “evenly”, in the sense that

7

1.2. PARAMETRIC OPTIMIZATION

if x is the center of gravity of Pk, the ratio of the volumes of Pk to Pk ∩ {x̄ | gT (x− x̄) ≤ 0} will not

exceed 1− exp(−1) (see Figure 1.2.2 for an example where this bound is tight). Thus, rather than

a decrease of a factor of 2 at every iteration, we settle for a factor of approximately 1.58—a sensible

compromise 1. With update (1.2.5) where xk is the center of gravity of Pk,

(1.2.6)
vol(Pk+1)

vol(Pk)
≤ 1− exp(−1).

This linear decrease in volume can be translated into a convergence rate to obtain a rate of

convergence in the function value. The following result relies on Theorem 4.2.2, a reproduction of a

classic proof adapted in Bubeck [Bub15].

Theorem 1.2.1. Consider the problem of minimizing a convex function f over a convex, compact

set X . Let P0 = X . Let x1, . . . , xk be the centers of gravity of P1, . . . , Pk, respectively. Then

min{f(x1), . . . , f(xk)} − inf
x
f(x) ≤ (1− exp(−1))

k
n ·
(

max
x∈X

f(x)−min
x∈X

f(x)

)

A few remarks are in order. The center of gravity method enjoys universal, linear rate of

convergence that is oblivious to the structure of the function itself. One can see this intuitively

in the fact that the center of gravity is affine invariant, and hence the iterates are, up to a linear

transform, equal for any affine scaling of f . Surprisingly, this method is optimal in the number of

gradient queries, up to a constant factor, which makes it an excellent candidate for our problem

[Nem94].

But this method is not without its shortcomings. First, this scheme degrades quickly in

its effectiveness as the dimensions of the problem increase. The rate of convergence decreases

exponentially as the dimensions increase, and thus the convergence rate slows down quickly for

problems of any substantial dimension. Moreover, even for problems with modest dimension, the

computation of the center of gravity quickly becomes an insurmountable task because the number

of floating point operations (flops) needed to compute it is exponential in d [Nem94].

1We note in passing that the center of gravity of method can be applied to convex mixed-integer optimization under
an appropriately defined measure, see Basu and Oertel [BO17].

8

1.2. PARAMETRIC OPTIMIZATION

1.2.1.2. Ellipsoid Method. The Ellipsoid method, first proposed by Shor, Yudin, A. S. Nemirovskii

[BGT81] replaces the localization polytopes Pk with ellipsoids Ek. This modification resolves several

thorny issues present in the center of gravity method. First, the number of floating-points needed

for representation is constant, O(n2). Compare this, for example, to a polytope, which accumulates

all information gathered so far. More importantly, there is little ambiguity concerning the choice

of center—the center of the ellipsoid is a perfect generalization of the midpoint, for which every

hyperplane divides Ek into two equal parts. With these observations, the ellipsoid method presents

itself. Given an ellipse Ek, we query the gradient oracle at its center and choose the next ellipsoid as

Ek+1 = smallest ellipsoid containing Ek ∩ {x | gT (x̄− x) ≤ 0}.

It is clear that every ellipsoid in this sequence contains the optimum. But rather miraculously this

update is sufficient to preserve linear convergence, as the ratio of volumes of the two ellipsoids can

be shown never to exceed exp (−1/2n) [GLS12, Lemma 3.1.28].

Theorem 1.2.2. [Bub15, Theorem 2.4] Let E0 ⊆ X be a point which contains the optimum, and

x1, . . . , xk be the centers of the spheres E1, . . . , Ek respectively. Then

min{f(x1), . . . , f(xk)} − inf
x
f(x) ≤ exp

(
− 1

2n

) k
n+1

·
(

max
x∈X

f(x)−min
x∈X

f(x)

)

Indeed, this method, coupled with minor modifications to account for rounding errors, gave rise

to Khachiyan’s [Kha79] celebrated result resolving the then open question of the computational

complexity of linear programming. Despite this, the rate of volume decrease is rather disappointing—

the ellipsoid method has a doubly exponential dependence on dimension. And despite the initial

optimism, and many refinements, using for example multiple or deep cuts [BGT81], it has not

proved to be practical numerically.

1.2.1.3. Bundle Methods. Bundle methods take a different route altogether. These methods

use the observation that we can “combine” any collection of lower affine minorants of the form

f(xi) + gTi (· − xi) to form a lower model for f , and any collection of function values f(xi) to form

9

1.2. PARAMETRIC OPTIMIZATION

u∗k

l∗k

The next iterate is chosen
as the projection of xk on
to the level set of lk at
uk − αδk.

xk

xk+1

best lower bound from col-
lection of lower minorants

δk

αδk

{x | l∗k(x) ≤ uk − αδk}

best upper bound on
optimal value from
function values eval-
uated

Figure 1.2.3. Graphical illustration of the level bundle method.

an upper bound on infx f(x). These bounds are

l∗k(x) = max
0≤i<k

{f(xi) + gTi (x− xi)}, the best lower bound on f and(1.2.7)

u∗k = min {f(x0), . . . , f(xk−1)}, the best upper bound on optimal objective.(1.2.8)

Bundle methods then optimize the lower model in some way to find the next iterate. Its simplest

variation is Kelly’s method [Kel60], where this lower model is simply minimized at each iteration:

xk = argmin
x∈X

l∗k(x).

This iteration is valid due to the compactness of X . This method is regarded as unstable and

superseded by stabilized methods [LHU96], which add a quadratic term that encourages the next

iterate to stay close to the current one, i.e.,

xk = argmin
x∈X

{l∗k(x) +
αk
2
‖x− xk−1‖2}.

The choice of αk, which plays a similar role to a stepsize in descent methods, is chosen via a

linesearch like method combining serious and null steps to ensure descent. The level bundle method

10

1.2. PARAMETRIC OPTIMIZATION

[LNN95] projects the next iterate onto some level set of the polyhedral lower bound,

(1.2.9) xk+1 = argmin
x∈X

{
1
2‖x− xk‖2 | {x | l∗k(x) ≤ uk − αδk}

}
, where δk = uk −min li(x),

where α is a number between 0 and 1. There are many more variations of this method [LNN95],

and though they work well in practice, their theoretical guarantees are weak. Unlike the cutting

plane methods, these algorithms do not succeed in obtaining a universal linear rate of convergence,

only a sublinear one comparable to subgradient descent.

1.2.1.4. The method of inscribed ellipsoids. In a parallel development, Tarasov and Khachiyan

[Tar88] returned to the method of central selectors, proposing a new choice of center. The center of

the maximally inscribed ellipsoid (MIE) of Pk might serve as the generalization of the midpoint

in lieu of the center of gravity. This method proved to be an excellent compromise. Via a subtle

argument, Tarasov and Khachiyan showed that the following bound on the ratios of the volumes of

the maximum inscribed ellipsoids of Pk,

(1.2.10)
volume of maximum inscribed ellipsoid in Pk

volume of maximum inscribed ellipsoid in Pk+1
≤ 0.843,

cf. Chapter 1.2.1.2. This theorem leads to a characterization of the convergence rate of the method

of inscribed ellipsoids, stated in Theroem 4.2.2, reproduced below:

Theorem 1.2.3. Let P0 = X , and x1, . . . , xk be the centers of gravity of P1, . . . , Pk respectively.

Then

min{f(x1), . . . , f(xk)} − inf
x∈X

f(x) ≤ 0.843
k
n+1 ·

(
max
x∈X

f(x)−min
x∈X

f(x)

)
.

Like the center of gravity method, the method of inscribed ellipsoids is affine invariant, and has

optimal informational complexity, up to a constant factor. But the real value of this choice lies in

the fact that the MIE is computable in polynomial time by solving a moderately sized semidefinite

program. This puts the method of inscribed ellipsoids squarely in the purview of practical usage.

Indeed, we find the method of inscribed ellipsoids to be very practical in situations when the cost

of computing the maximally inscribed ellipsoid is dwarfed by the work required in computing the

subgradient.

11

1.2. PARAMETRIC OPTIMIZATION

Informationally Efficient

Cheaper Subproblems

informationally optimal

linearly converging

polynomial time computable in npolynomial time approximable in n

Centerpoint
Algorithm

[BO17]

Center of
gravity
[Lev65,
New65]

O(0.63
k
n)

Method of
inscribed
ellipsoids

[Tar88]

O(0.79
k
n)

Volumetric
Center
[Meh00]

O((n+k)1/n

exp(O(1) k
n)

)

Ellipsoid
Method
[Kha79]

O(exp(−4kn2))

Analytic
Center

[AV95, Ye96]

O(1/k)

Bundle
Methods
[LSB81,
Kel60]

O(1/k)

Subgradient
Descent
[Sho12,

Chapter 2]

O(1/k)

Figure 1.2.4. Visual summary of convergence rates of first-order methods on
general convex functions.

1.2.1.5. Miscellanious Central Selectors. We note two more choices of central selectors that have

since been developed. First, the volumetric center [Vai89] comes within a log factor of being optimal

and has the advantage that the center can be updated in O(n3) arithmetic operations. Second, the

analytic center can also be used [AV95, Ye96], with this choice permitting updates to the center in

O(n) time. Unfortunately, this method is no longer affine invariant and can only be proven to have

sublinear convergence. Despite this, there has been incredible success in the use of the analytic

center method for solving large-scale, high dimensional optimization problems [BVS08, BGVDM94,

Section 6]. We provide a visual summary of the methods discussed in this section in Figure 1.2.4.

1.2.2. Models with Inexact Subgradients. The above discussion assumes access to an

oracle which returns a subgradient of f . This requires, in principle, an exact solution of the inner

optimization problems of both (1.2.1) and (1.2.2). Such precision is often an overkill, however, and

intermediate results of this inner optimization still yield useful information.

Consider problem (1.2.2) where f(x) = supy h(x, y). For a fixed vector x, any vector ȳ in

the domain of h(x, ·) certifies a lower bound on f , viz. h(x, ȳ). Together with any subgradient

12

1.2. PARAMETRIC OPTIMIZATION

g ∈ ∂h(·, ȳ)(x), this lower bound generates a global affine minorant

f ≥ h(·, ȳ) ≥ h(x, ȳ) + gT (x− ·).

Furthermore, if an upper bound u on f(x) is known, then this yields the inexact cutting plane

{x̄ | gT (x− x̄) ≤ u− h(x, ȳ)}.

For both classes of problems (1.2.1) and (1.2.2), both upper bounds on f(x) and lower affine

minorants can be found through duality. We explore such constructions with examples in Chapter 5.

1.2.2.1. Shallow Cuts. The center of gravity discussed in Section 1.2.1.1 can be adapted for use

with the inexact cutting planes. The key to doing so is a generalization of Grünbaum’s theorem

proved by Bertsimas and Vempala [BV04], presented here in a modified way. Define the covariance

of a convex set cov to be

cov(P) := E[(z −Ez)(z −Ez)T]

where z is a random variable distributed uniformly on P . This generalization then states that

vol(P ∩ {x̄ | gT (x− x̄)) ≤ ε‖g‖cov(P)}
vol(P)

≤ 1− exp(−1) + ε,

see Figure 1.2.5 for a worked example of this result. This motivates the definition of a shallow cut

oracle [GLS12, Def 3.3.8].

Definition 1.2.4 (Shallow cut oracle Oracle). Let f be a convex function. Then f is equipped

with a shallow cut oracle if we can find for each (x,H, ε) a

g := s-oracle(x,H, ε)

such that for all x̄, f(x) + gT (x̄− x) ≤ ε‖g‖H .

Since s-oracle(x,H, 0) ∈ ∂f(x), it is clear that an algorithm which generates a sequence of

vectors gk converging to g ∈ ∂f(x) will satisfy the shallow cut oracle condition eventually. The

amount of work needed, however, is a complex interaction between g and H and is, in the absence

of additional assumptions, difficult to bound a priori.

13

1.2. PARAMETRIC OPTIMIZATION

ε

The isotropic circular cone
has cov(P) = I and center
of gravity at the origin. Let
the volume of this cone be V

(
1− 1

n

)
hn

hn = n+
√

1 + 2
n

1
nhn

0

height of isotropic circular cone

ε is the distance to the origin

Figure 1.2.5. Example of approximate error bound on the circular, isotropic cone.
The volume of the unshaded region is V (1 − 1

n + ε
hn

)n and the shaded region is

V − V (1− 1
n + ε

hn
)n. Thus the ratio of the volume of the shaded region to the whole

cone is 1− (1− 1
n + ε

hn
)n ≤ 1− exp(ε− 1) ≤ 1− exp(−1) + ε.

Assuming a shallow cut oracle is available, the center of gravity method can be modified trivially

for use with shallow cuts. First choose a cutting plane, g = s-oracle(x, cov(Pk), ε) for some

ε < exp(−1). Then updating the localization polytope according to

Pk+1 = Pk ∩ {x̄ | gT (x− x̄) ≤ ε‖g‖cov(Pk)},

it is clear, by a similar line of reasoning to Theorem 4.2.2, that the shallow cut center of gravity

method converges linearly, with a rate of 1− exp(−1) + ε.

Theorem 1.2.5. Let P0 = X . Let x1, . . . , xk be the centers of gravity of P1, . . . , Pk respectively.

Then

min{f(x1), . . . , f(xk)} − inf
x∈X

f(x) ≤ (1− exp(−1) + ε)k/(n+1) ·
(

max
x∈X

f(x)−min
x∈X

f(x)

)
.

A inexact version of the ellipsoid method exists. Let Ek = {x | (x− x̄k)TE−1
k (x− x̄k) ≤ 1}. If

we let gk = s-oracle(x,Ek, ε), where ε < 1/n and

Ek+1 = smallest ellipsoid containing Ek ∩ {x | gT (x̄− x) ≤ ε‖g‖Ek}.
14

1.2. PARAMETRIC OPTIMIZATION

Then the shallow cut ellipsoid method guarantees linear convergence [GLS12]. This is the shallow

cut ellipsoid method. The hit taken by using shallow cuts is encapsulated in the following theorem.

Theorem 1.2.6. [GLS12, Lemma 3.3.21] Let E0 ⊆ X be a point which contains the optimum, and

x1, . . . , xk be the centers of the spheres E1, . . . , Ek respectively. Then

min{f(x1), . . . , f(xk)} − inf
x∈X

f(x) ≤ exp

(
−(1− nε)2

4n

)k/(n+1)

·
(

max
x∈X

f(x)−min
x∈X

f(x)

)

1.2.2.2. Inexact Bundle Methods. Bundle methods can also be modified to incorporate inexact

information, though these methods require a different oracle to that in Definition 1.2.4. Here we

measure the quality of a lower affine minorant, l+ gT (· − x) and an upper bound u on the optimum

in a more straightforward way, simply by u− l (see Figure 1.2.6). An inexact controllable oracle

is one that demands a lower affine minorant in the form of a tuple (u, l, g) where l − u does not

exceed ε.

l + gT (· − x)

(l, x)

f(x)

u

The ineact controllable
oracle measures optimal-
ity in terms of the func-
tion value.

The shallow cut oracle
measures accuracy in dis-
tance from the query
point.

Figure 1.2.6. Different ways of measuring optimality of an approximate subgradient.

Definition 1.2.7 (Inexact Controllable Oracle). Let f be a convex function. Then f is equipped

with an inexact controllable oracle if we can find, for a pair (x, ε) the tuple

(u, l, g) := c-oraclef (x, ε),

such that l + gT (x̄− x) ≤ f(x̄) for all x̄, f(x) ≤ u and u− l ≤ ε.
15

1.2. PARAMETRIC OPTIMIZATION

The construction of such oracles are discussed in detail in Chapter 5. There we show that on

many problems of interest, if we apply a primal-dual algorithm on the inner problem, we generate a

sequence of upper bounds uk, lower bounds lk + gTk (· − x) for which

uk → f(x), lk → f(x), gk → g, where g ∈ ∂f(x).

Therefore, terminating this process at an appropriate point, we can obtain an affine lower minorant

of any accuracy demanded by the inexact controllable oracle. We model the amount of work required

to call c-oraclef (·, ε) as ε−1, reflecting the fact that higher tolerances require greater computational

effort (a more detailed justification of this model is given in Chapter 5).

Remark 1.2.1. If the upper bound is u = f(x), then we can say for (u, l, g) = c-oraclef (x, ε), g

is in the familiar (see e.g. Claude and Lemaréchal [CL93, Equation 1.2]) ε-subgradient of f , written

as g ∈ ∂εf(x).

In the inexact level bundle method, Fabian [Fáb00] observes that the level bundle method (1.2.9)

can be adapted to incorporate these inexact lower minorants. For a choice of 0 < γ < (1 − α)2,

where α is the level parameter set in equation (1.2.9), if we choose

(1.2.11) (uk, lk, gk) = c-oraclef (xk, εk), where εk = γ · (u∗k −min
x
l∗k(x))

and apply the updates

l∗k(x) = max
i<k
{lk + gTi (x− xi)}, in place of update (1.2.7) and(1.2.12)

u∗k = min {u1, . . . , uk−1}, in place of update (1.2.8),(1.2.13)

the convergence rate would only be impacted by a constant factor depending only on γ. This

method, the inexact level bundle method, dynamically adjusts the error according to information

available about the optimality of the problem, using rough estimates when far from optimality, and

precise estimates as we approach it. This idea was subsequently refined by Oliveira and Sagastizábal

[dOSL14] and Emiel and Sagastizabal [ES10].

16

1.2. PARAMETRIC OPTIMIZATION

1.2.3. The inexact epigraph cutting plane method. The method we propose draws in-

spiration from bundle methods and cutting plane methods, and attempts to synthesize the best

features of both. The first observation comes from the fact that we can apply the cutting plane

method to the epigraph of a problem, because the set

epi(l∗k) ∩ {(t, x) | t ≤ u∗k}

is a localizing polytope for both the optimal function value and an optimum, (f(x∗), x∗). By choosing

the next search point to be the center of this polytope, projected on to the search space, each query

to an oracle now gives us two cutting planes,

(1.2.14)
{(t, x) | t ≤ uk}, an upper bound on infx f(x) and

{(t, x) | lk + gTk (x− xk) ≤ t}, a lower bound.

At least one of these cutting planes is guaranteed to cut off the center, and thus any of the choices

of central selectors discussed above will guarantee the same decrease.

The epigraph cutting plane method that we describe above, the name of which we inherit from

Boyd’s lecture notes [BV07, Section 6], is not new. We have found scattered reference to this

approach in the literature, with the earliest in [BGVDM94] and also [BV07, GV99, Meh00]. Our

innovation lies in the observation that this method is particularly well suited to problems with

inexact controllable oracles. Indeed, by switching our cutting plane to epigraph form, we can use

the inexact controllable oracle 1.2.7, rather than the shallow cut oracle 1.2.4, thus allowing us to

precisely bound the amount of work needed at each iteration. This forms the basis for the inexact

epigraph cutting plane method described in Section 6.

In Section 7 we push this idea even further. We show that if f is strongly convex we can use

parabolic lower bounds instead of linear lower bounds. This additional information ensures that

the best lower bound on f is strongly convex at every iteration, and that this property prevents

certain degeneracies of the localization polytope. This allows us to show that the sequence {εk} can

be chosen in a geometrically decreasing series, allowing a bound on the total computational effort

independent of the starting point.

17

1.3. COMPOSITE PROBLEMS

1.3. Composite problems

We now consider problems of the form

(1.3.1) minimize
x

f(x) + g(x), where f(x) = Eξ[h(x, ξ)] =

∫
h(x, ξ) dξ.

We assume h(·, ξ) is smooth, convex, with L-Lipschitz gradients for all ξ, and that the expectation is

well defined for all x, and the minimum of f + g is attained. The function g is possibly nonsmooth,

but typically simple—a term that will be made concrete shortly. In machine learning applications,

h(·, ξ) is typically a loss function, and the expectation is taken over the data generating process,

where ξ is usually a feature-response pair.

1.3.1. Composite optimization. The properties of convexity and smoothness of h(·, ξ) are

preserved in f , and thus f is smooth and convex. For simplicity, let us first consider the generic

problem of a smooth function added to a convex function,

(1.3.2) minimize
x

f(x) + g(x).

Problems of this kind are studied under the umbrella of optimization with composite structure. No

function composition is involved, however, and the name is a historical misnomer. The proximal

update, a generalization of the method of steepest descent, is the tool of choice for exploiting this

structure. The iteration can be interpreted as first constructing a local quadratic model of f at xk,

(1.3.3) f(x) + g(x) ≈ f̂k(x) + g(x) where f̂k(x) = f(xk) +∇f(xk)
T (x− xk) +

αk
2
‖x− xk‖2,

and then choosing the minimizer of that quadratic model, f̂ + g, as the next iterate. By completing

the square we obtain the iterates for a sequence of stepsizes αk. The iterates are defined by

xk+1 = proxg/αk(xk − α−1
k ∇f(xk)),

where the proximal operator, a generalization of the projection, is defined as

(1.3.4) proxg(x) = argmin
x̄

{
1
2‖x̄− x‖2 + g(x̄)

}
.

18

1.3. COMPOSITE PROBLEMS

When g is the indicator of a set, proxδC (x) is exactly the projection of x onto C. Since the minimizer

is always unique, the proximal operator is well defined. When αk ≥ L, where L is the Lipschitz

coefficient of the gradients, f ≤ f̂k, and the iteration is monotonic and converges.

The burden of computation for this iteration is spread over two operations—computing prox

and evaluating the gradient. The former, though seemingly daunting, is often simple. When g is

simple, proxg can be evaluated in linear time, in closed form. For example, when g is the indicator

on [−1, 1]n, the proximal operator is simply the projection onto a box, easily computable by doing

a coordinate-wise clipping of x. And g, for most applications of interest in machine learning is

simple—an extensive catalog of proximal operators is provided in the appendix of a survey by

Combettes and Pesquet [CP11], which can be used out of the box.

For most problems of interest, therefore, the workhorse of computation lies in the evaluation

of the gradient of f . For a generic ξ and h, this must be done numerically via Monte Carlo or

quadrature, which is hard to compute to high accuracy, even for moderate dimensions. And even

in situations where the formula can be computed in closed form, say, when ξ has finite support,

this may still require a sum over a large dataset. It is thus imperative that we keep the gradient

computations to a minimum. It is therefore of interest to understand the convergence rate of

proximal gradient.

1.3.2. Preconditioned quasi newton. Let f be strongly convex with coefficient µ and with

L-Lipschitz gradients, and let κ be the condition number of f , defined to be τ = µ/L. The

convergence rate of proximal gradient with a fixed stepsize equal to 1/L can be shown to have

linear convergence [LT93b]. We characterize the convergence rate in the following Lemma 11.1.1,

reproduced below.

Theorem 1.3.1. Let

(1.3.5) πk := [f + g](xk)−min
x

[f + g](x).

For the iteration (1.3.4),

πk =

(
1− 1

1 + 40τ2

)k
π0.

19

1.3. COMPOSITE PROBLEMS

A curious feature of the above theorem is that, unlike cutting plane methods, the convergence

rate depends not on the dimension of f , but the conditioning of the problem, τ . The relationship

between the condition number of f and convergence is no artifact of the proof—constructing failure

modes for f is easy. Even for a two dimensional quadratic function, it is possible to construct simple

numerical examples where a rescaling of the variables cause the iterations to slow down arbitrarily.

We thus seek a way to reduce the number of oracle calls to ∇f(x).

The scaled proximal-gradient method attempts to address ill-conditioning at its root. The

strategy proceeds by using a different quadratic approximation of curvature in (1.3.3),

f(x) ≈ f(xk) +∇f(xk)
T (x− xk) +

1

2
‖x− xk‖2H + g(x)

where H is an approximation of the curvature of the problem. This results in a scaled proximal

iteration,

xk+1 = proxHkg (xk −H−1
k ∇f(xk)),

where we define the scaled proximal operator as

(1.3.6) proxHg (x) = argmin
x̄

{
1
2‖x̄− x‖2H + g(x̄)

}
.

To understand why this works, let us consider the simple example where Hk = H for a symmetric

and positive definite matrix H, where f is twice differentiable. We can then see the scaled proximal

gradient iteration as proximal gradient on Problem 1.3.2 with the change of variables y = H1/2x.

The new condition number is now derived from uniform bounds on the symmetrically preconditioned

Hessian

H1/2∇2f(x)H1/2.

The preconditioned matrix has the potential to be dramatically better conditioned. In the extreme

case where f(x) = 1
2x

THx, the scaled proximal gradient algorithm trivially converges in a single

step.

Of course, we cannot ignore the sleight of hand involved here. The careful reader may have

observed we have merely shifted the work from one place to another. Though we may have reduced

the number of gradient calls needed, we must now evaluate the scaled proximal operator (1.3.6).

20

1.3. COMPOSITE PROBLEMS

Fewer Outer Iterations

Cheaper Subproblems

Proximal
Newton
[LSS14]

∇2f(xk)

Proximal
L-BFGS

[SvdBFM09]

σkI +BkDkB
T
k

SR1
[BF12]

σkI + uuT

IMRO
[KV14]

σkI − uuT

Barzwell-
Borwein
[BB88,

WNF07]

σkI

Figure 1.3.1. A summary of various proximal quasi-newton approximations in the
literature

In the case where g = δ(·|[−1, 1]n), for example, for a generic H, computing the scaled proximal

operator (1.3.6) is a generic bound constrained quadratic program.

The choice of H remains very much an art. There is, by virtue of the freedom in selecting H, an

entire continuum of algorithms that can be designed, depending on the intricacy of the curvature

approximation. At one extreme, if f is twice differentiable, we can use the Hessian matrix directly.

This is the proximal Newton method [LSS14], which admits super-linear convergence. At the other

extreme, we have H as a multiple of the identity, which reduces to proximal gradient, perhaps with

a carefully chosen steplength [BB88, WNF07]. The trick to an effective scaling is to find the right

balance of structure and approximability—simple, structured matrices H that also approximate the

Hessian well.

1.3.2.1. Proximal Quasi-Newton. We turn to a class of quasi-Newton methods that generate

matrices which approximate second order information from first-order information, effectively

approximating curvature on the fly. We follow Nocedal and Wright [NW99, §6.1], who use Hk

to denote the current approximation to the inverse of the Hessian of f . Let xk and xk−1 be two

consecutive iterates, and define the vectors

sk = xk+1 − xk, and yk = ∇f(xk+1)−∇f(xk).

Here we give a summary of a few popular quasi-Newton methods used to obtain curvature approxi-

mations of a smooth function f .

21

1.3. COMPOSITE PROBLEMS

Symmetric Rank-1 (SR1): The SR1 update uses the recursion

H0 = σI, Hk+1 = Hk +
(sk −Hkyk)(sk −Hkyk)

T

(sk −Hkyk)T yk
,

for some positive parameter σ that defines the initial approximation. For numerical stability,

we skip the update (i.e. Hk+1 = Hk) when |(sk −Hkyk)
T yk| ≥ r‖sk‖‖sk −Hkyk‖.

Symmetric Rank-0 (SR0): The SR0 update uses a single update in the SR1 recursion,

where σ is chosen carefully. The curvature approximation is

H̄ =
sTk yk
‖yk‖2

I, Hk = H̄ +
(sk − H̄yk)(sk − H̄yk)T

(sk − H̄yk)T (yk)

if (sk − H̄yk)T yk ≥ ε‖yk‖‖sk −H0yk‖, and Hk = H̄ otherwise.

BFGS: The BFGS method updates the approximation Hk via the recursion

H0 = σI, Hk+1 = Hk −
Hksks

T
kHk

sTkHksk
+
yky

T
k

yTk sk
,

for some positive parameter σ that defines the initial approximation.

L-BFGS: The limited-memory variant of the BFGS update (L-BFGS) maintains the most

recent m pairs (sk, yk), discarding older vectors. In all cases, m� n, e.g., m = 10. This

ensures that Hk permits the representation

Hk = σkI +BkDkB
T
k ,

where Bk is a n× 2m matrix and Dk is a 2m× 2m matrix.

Global quasi-Newton: The globalization strategy advocated by Scheinberg and Tang

[ST16] may add a small multiple of the identity to Hk. This modification takes the place

of a potentially expensive linesearch, and the correction is increased at each iteration if a

certain condition for decrease is not satisfied.

These methods have its origin in smooth optimization [NW99], but there has been considerable

work adapting these curvature approximations to proximal gradient. The primary challenge in this

approach is to effectively exploit the simultaneous structure of H and g to efficiently compute (1.3.6)

to high precision. The first generation of techniques uses generic optimization tools to compute the

22

1.3. COMPOSITE PROBLEMS

scaled proximal operator. Schmidt et al. [SvdBFM09] computes proxHg using proximal gradient,

and demonstrates extremely promising improvements in the number of required calls to ∇f . But

the use of proximal gradient for the subproblems is not without flaws: many flops are required

to compute the scaled proximal operator to high precision, which is exacerbated when H is ill

conditioned—exactly the kinds of matrices H that make good models of curvature when f is ill

conditioned. Other proposals to compute the scaled proximal operator include coordinate descent,

when g is separable, or active-set Newton [BCNO12], when g = ‖x‖1. The latter, which may achieve

high accuracy, is not guaranteed to converge, and may cycle [BCNO12, Chapter 4.1]. Furthermore,

the algorithm becomes very intricate for any function g which is not separable.

Becker and Fazeli [BF12] made a first attempt in this direction for matrices H of the form

H = Σ+aaT , where Σ is a diagonal matrix and a is a vector. The scaled proximal operator was solved

by dualizing to obtain a one-dimensional problem, and subsequently solving that via bisection—a

generalization of the Sherman-Morrison formula. This result applies to the SR0 and performs

admirably in practice, but is severely restrictive in the choice of quasi-Newton approximations. For

example, even the L-BFGS matrix with memory 1 is not covered in this framework. A very similar

structure is exploited in computing the proximal operator for matrices of the form H = Σ− aaT

[KV14], but this technique has similar limitations.

In summary, what we require is a method for computing the scaled proximal operator that is

highly precise, and allows us to take advantage of any structure in H and g insofar as they might

exist. We propose such a technique in Chapter 1.3.6, published in Friedlander et al. [FG17]. Central

to our method is the observation that many functions g of interest fall into a class of piecewise

linear quadratic functions, a generalization of the sub-linear support function [Roc70, Chapter 13]

and a modification of the piecewise linear quadratic functions [ABP13].

The advantages of this method are not theoretical. This algorithm forms the basis for the solver

QSip, a quasi-newton L-BFGS proximal solver. In Section 9.6, we subject our solver to a battery of

tests and show that we can make considerable gains in wall-clock time in solving dense problems

with composite structure.

23

1.3. COMPOSITE PROBLEMS

1.3.3. Stochastic gradient with error. While reducing the number of calls to ∇f provides

some welcome reprieve, there are many situations where even a single evaluation of ∇f is beyond

our computational reach. Recall that in (1.3.1) f can be written as

f(x) = Eξ[h(x, ξ)] =

∫
h(x, ξ) dξ.

This expectation may be taken, for example, over an infinite stream of data, say one produced from

a natural source such as the internet. Barring waiting for an inordinate amount of time to collect

enough samples, it might be beneficial to use an approximation with the samples already collected.

Assuming we have, for simplicity, an independent and identically distributed stream of random

variables ξi, taken from the same distribution as ξ, one possible approximation averages ∇h(·, ξ)
over the samples, i.e.,

(1.3.7) gk =
1

m

m∑
i=0

∇xh(xk, ξi).

Because gk is an unbiased estimator of ∇f(x), it seems reasonable for one to use g as a drop in

replacement for ∇f(x):

(1.3.8) xk+1 = proxHkg (xk −H−1
k gk).

It is thus convenient to think of this as proximal gradient with error, because

gk = ∇f(xk) + ek where ek =
1

m

m∑
i=0

∇xh(xk, ξi)−E[∇xh(xk, ξi)].

In (1.3.7), gk is an example of a gradient approximation coming from a stochastic oracle—which we

define as any unbiased estimator of the gradient with finite variance. The quality of a stochastic

oracle depends on the magnitude of ‖ek‖, and we can measure this in three different ways. In

Section 10, we introduce three different stochastic oracles, A-sto-oracle, which measures the error

deterministically, B-sto-oracle, which measures the error in terms of high probability bounds, and

C-sto-oracle, which measures the error in expectation. More detailed discussion of stochastic

oracles, and their construction, can be found in Section 10.

24

1.3. COMPOSITE PROBLEMS

With the introduction of the Monte-Carlo estimator gk, our iterates are now random variables.

We consider the default mode of convergence to be convergence in probability:

lim
k→∞

Pr(πk ≥ ε) = 0 for all ε.

Convergence rates, where shown, are typically done by bounding the expectation E[πk] though

we have more to say on this issue shortly. Note that by the non-negativity of πk and Markov’s

inequality, convergence in expectation also implies convergence in probability.

1.3.3.1. Stochastic Approximation. Let us consider, for simplicity, the unscaled proximal iteration

where Hk = 1
LI. The simplest method we can think of uses the iteration (1.3.8) with no modification,

and is based on using the same number of samples at every iteration. Unfortunately, this naive

approach fails to converge. The expected rate of function decrease can be proven to be, for πk

defined in equation (1.3.5)

Eπk ≤ ρkπ0 +
1

ϑ

k−1∑
i=0

ρk−1−iE‖ei‖2,

where

ρ = 1− 1

1 + 40τ2
∈ (0, 1) and ϑ = L ·

(
1

40τ2
+ 1

)
> 0,

where τ is the condition number of the problem. This result is described fully in Lemma 11.1.1 of

Section 11.1—and this expression is telling. The first term on the right-hand side of the inequality

decreases at a linear rate, and depends on the condition number through ρ. This term is also

present for any deterministic first-order method with constant step size. The second is an additive

quantity depending on the level of the error. This suggests that in the naive approach to proximal

gradient descent, each run can be broken into two phases. First, a “transient phase”, where the

decrease is dominated by ρ, and progress rapid. And second, a “fine-tuning” phase, where the

optimization stalls. The goal, thus, of a converging stochastic gradient algorithm is to suppress this

latter, fine-tuning phase, so that steady convergence is achieved.

Decreasing Step Size. One way to control the accumulation of error is to decrease the step size.

This approach dates back to the classical results of Robbins and Monoro [RM51], and suggest a

25

1.3. COMPOSITE PROBLEMS

schedule of step sizes going down according to a divergent-series rule

αk > 0,
∞∑
k=1

αk =∞,
∞∑
k=1

α2
k <∞.

The harmonic sequence αk = O(1)/k, for example, satisfies this property. Under mild conditions it

can be shown that with this schedule, proximal gradient convergences in probability to the optimum

[NB00, Proposition 3.2] with probability 1. With strong convexity and a very carefully chosen step

size, Nemirovski [NJLS09] proves a convergence rate of O(1/k).

Iterate Averaging. The convergence rate shown in the Nemirovski’s proof [NJLS09], however,

very brittle, and requires a precise choice of step size based on the coefficient of strong convexity

of f . Stochastic averaging sacrifices some convergence speed for robustness, and uses the same

iterative scheme (1.3.8) with a constant step size but suggests a twist: the output of the algorithm

is the average of the iterates,

x̄k =
1

k

k∑
i=1

xi,

not the xk’s themselves. Though the iterates themselves do not converge, the average then can

be shown to converge at a slightly slower rate O(1/
√
k). This averaging scheme, though slower,

does not require a precise choice of the step size and thus is termed robust stochastic approximation.

Note that the rate of O(1/k) can be restored in if the errors are summable,
∑∞

i=1 ‖ek‖2 <∞, even

in the absence of strong convexity [SRB11, Proposition 1]. A similar result is proved by Friedlander

and Schmidt [FS12].

Dynamic batching. The third strategy, dynamic batching, changes the sample size while keeping

the step size constant. Luo and Tseng [LT93b] show that under certain error conditions, when g

is an indicator and for a decreasing ‖ek‖ = O(‖xk+1 − xk‖), the function values converge to the

optimal value linearly. Friedlander and Schmidt [FS12] suggest decreasing the errors according

to explicit schedule, determined by the condition number of the problem, and show that linear

convergence can be achieved by decreasing the errors at the rate

(1.3.9)
‖ek‖2 ≤ τβk in the deterministic case and

E‖ek‖2 ≤ τβk in the stochastic case.

26

1.3. COMPOSITE PROBLEMS

for some τ and β. A suggestive result from Byrd [BCNW12] shows that in limited situations, such

a schedule of exponentially increasing batch sizes in fact improves the total sample complexity,

the total number of independent samples needed to achieve optimality of a certain tolerance over

methods involving a decreasing stepsize methods and iterate averaging.

1.3.4. Tail bounds. All the convergence rates discussed above discuss convergence in expecta-

tion. This, in principle, tells us how the convergence of the algorithm fares over repeated runs, and

says less about the concentration of our estimates, or how tightly these runs are grouped about the

mean. One may instead be interested in confidence level solutions, as proposed by Nesterov [NV08]:

Pr(πk ≥ ε) ≤ 1− β,

for some ε > 0 and 0 < β < 1 with πk defined in (1.3.5). Of course, one can trivially get such a

bound via Markov’s inequality, to deduce

Pr(πk ≥ ε) ≤
Eπk
ε
.

But we can do much better with a more refined analysis. Indeed, it is often the case that under very

light assumptions on the distribution we are sampling, it can be shown that the iterates concentrate

exponentially around the mean. Nemirovski, Juditsky, Lan and Shapiro [NJLS09] provides such an

analysis show that for decreasing stepsizes αk = O(1/k), and Nesterov [NV08, Theorem 3] proves

such confidence level bounds in the context of iterate averaging.

In Chapter 11, we provide a rigorous analysis of the tail bounds for the generic proximal

gradient algorithm with error with a constant step size. The primary observation here connects the

sub-gaussianity of the components of ek,

Pr ([ek]i ≥ δ) ≤ exp
(
−δ2/ε

)
to the concentration around the mean in the iterates. We give tools for translating bounds on

the moment generating function of ‖ek‖2 to tail bounds on πk, with an application to batching

with exponentially increasing batchsizes [FS12]. The work in this chapter has been compiled in the

paper [FG13].

27

1.4. THE PROBLEM OF COSTLY SUBGRADIENTS

1.4. The problem of costly subgradients

A common ingredient in both these structures is the scarcity of first-order information and

the availability of cheap, controllable approximations to the gradient that can be made arbitrarily

accurate. Thus the title of the thesis, “optimization with costly subgradients”, reflects the unifying

theme of this work.

28

CHAPTER 2

Convex duality

Duality is the study of the pairing of convex programs, a primal and a dual, where the properties

of one can be related to the other. The exercise of deriving an optimization program’s dual, though

largely a mechanical process, is often an instructive one. The dual often provides fresh perspective

on the problem’s structure, properties, and gives new insight into ways of tackling it.

The theory of convex duality is a generalization of the theory of linear programming duality

[GKT51], and in this presentation we favor the duality framework advocated by Fenchel [ET99] and

Rockafellar [Roc64, R+66, Roc67] that relies heavily on the concept of convex conjugacy [Fen49].

This current presentation does not attempt to provide a comprehensive view of the theory of convex

duality, but serves merely as a gentle introduction to the concepts and notation used in this thesis.

We refer the reader to Rockafellar and Wets [RW98] for a through treatment of these topics.

A familiar example of convex duality, the Pythagorean equation, serves as a starting point for

the oncoming discussion. Given two orthogonal subspaces A and A⊥, and a point b, the Pythagorean

equation states that

(2.0.1) min
x
{1

2‖x− b‖2 + δ(x|A)}+ min
v
{1

2‖v − b‖2 + δ(y|A⊥)} = 1
2‖b‖2.

The subspaces A and A⊥ are examples of orthogonal dual cones. The functions δ(x|A) and

δ(v|A⊥) are conjugate to each other, and the respective projections are dual convex programs. We

explore each of these dualities in order.

29

2.1. POLAR CONES

2.1. Polar cones

Any nonzero vector in Rn can be decomposed into two components, its magnitude ‖x‖ and its

direction x/‖x‖. A convex cone is a set of directions, or rays in Rn. Formally, the set K is a convex

cone if K is a convex set and for every α > 0, αx ∈ K. For any cone, we can define its polar to be

K◦ = {v | xT v ≤ 0, x ∈ K, v ∈ Rn},

and the dual cone K∗ = −K◦. In general K∗∗ = cl(conv(K)) [Roc70, Theorem 14.1], where conv(·)
is the convex hull of K. When a nonempty cone is closed and convex, it is clear that

K◦◦ = K, K∗∗ = K.

Every convex cone defines a partial ordering of the vectors in Rn, i.e.

(2.1.1) x �K y ⇐⇒ x− y ∈ K,

see [RW98, Proposition 3.38]. This property serves as the basis of conic programming, a generalization

of linear programming, where the linear inequality constraints are replaced with conic constraints of

the form Ax �K b. These conic constraints, far from a mathematical curiosity, have been found to

be of immense practical value in the modeling of real world problems. Here we consider several

examples of convex cones.

Subspaces: Rn is a cone, with dual and polar equal to trivial set {0}. More generally, all

subspaces are cones, and their polars are their orthogonal complements. The subspace {0}
induces the trivial ordering x �{0} y ⇐⇒ x = y.

Polyhedral Cones: Polyhedral cones are cones of the form K = {x | Bx ≤ 0} for some

matrix B. The polar is U◦ = {BT y | y ≤ 0}. The nonnegative orthant, R+, for example

is a convex cone, with polar equal to the negative orthant R−. R+ induces the ordering

x � y if and only if x ≤ y componentwise, which is the foundation of linear programming.

Another example of a polyhedral cone is the isotonic cone K = {x | x1 ≤ · · · ≤ xn}. The

ordering induced by the isotonic cone is x � y when the differences between successive

elements are elementwise positive.

30

2.2. CONJUGATE FUNCTIONS

Second-Order Cone: The second-order cone is the set

(2.1.2) Qm := {(τ, z) ∈ R×Rm−1|z ∈ τB2} where Bp = {z | ‖z‖p ≤ 1}.

It is self dual, i.e., (Qm)∗ = Qm. The order induced by the second-order cone can be

characterized by the ordering of positive semidefinite matrices induced by the arrow matrix,

i.e.

x � y ⇐⇒ arrow(x) � arrow(x)

where

(2.1.3) arrow(x) :=

x0 x̄T

x̄ u0I

 for x = [x, x̄].

The relationship between a cone and its polar satify a number of pleasing properties. Let K1

and K1 be nonempty closed and convex cones. Then the dual cone reverses inclusion, i.e. K1 ⊂ K2

implies K◦2 ⊂ K◦2. Furthermore, for the Minkowski products and sum

(2.1.4) λX = {λx | x ∈ X} , X1 + X2 = {x1 + x2 | x1 ∈ X1, x2 ∈ X2} ,

it is easy to show λK = K for λ > 0 and (K1 +K2)◦ = K◦1 ∩ K◦2, generalizing the familiar subspace

inequality that (A+B)⊥ = A⊥ ∩B⊥.

2.2. Conjugate functions

The Legendre-Fenchel transform is mapping of functions to functions f : Rn → R ∪ {∞} to

functions f∗ : Rn → R ∪ {∞} where

f∗(v) = sup
x
{vTx− f(x)}.

The function f∗, called the conjugate of f , can be interpreted as a bookkeeping tool that indexes all

affine functions majorized by f . Indeed, any point (t, g) ∈ epi(f∗) is an affine minorant of f of the

form x 7→ gTx− t [Roc70, Page 104].

31

2.2. CONJUGATE FUNCTIONS

The conjugate of any function f is convex (this can be seen from the fact that it is a supremeum

of linear functions), and the bi-conjugate f∗∗ fills in all the nonconvex gaps of f unreachable by

any affine minorant, i.e. f∗∗ = cl(conv(f)), where conv(f) is the convex envelope of a f [RW98,

Theorem 11.1]. When f is closed and convex, we get the pleasing duality

f∗∗ = f.

Since the subgradients of convex functions are, by the subgradient inequality, also lower affine

minorants, it stands to reason this conjugacy also gives us local variational information about f .

This is indeed the case—for smooth f with an invertable gradient map (e.g. if f is strongly convex),

(∇f)−1 = ∇f∗. For gradient maps which aren’t single valued or invertable, a more sophisticated

version of this theorem exists, which states that in general v ∈ ∂f(x) ⇐⇒ x ∈ ∂f∗(v) [RW98,

Proposition 11.3]. We describe several important examples of conjugate functions:

Linear Functions: The conjugate of a linear function’s support is the singleton equal to

the slope of the function, f(x) = aTx, f∗(x) = δ(x|{a}). The conjugate of the 0 function,

in particular, is the indicator on 0.

Quadratics: When Q is symmetric, and positive definite, the conjugate of a quadratic

function is the quadratic of its inverse,

f(x) =
1

2
xTQx, f∗(x) =

1

2
xTQ−1x.

The special case of f(x) = 1
2x

Tx is the unique self dual function.

Support Functions: Support functions are conjugates of convex indicators

f(x) = δ(·|C)∗(x) = sup
v∈C
{vTx},

and are useful for modeling penalties as they are positively homogeneous, f(λx) = λf(x).

We note two special cases. The conjugate of an indicator on the cone is the indicator on

the polar cone: δ(·|K)∗ = δ(·|K◦), and any norm (‖ · ‖) is the support function of the dual

32

2.2. CONJUGATE FUNCTIONS

norm (‖ · ‖∗) ball

‖x‖ = δ(·|{x | ‖x‖∗ ≤ 1})∗(x) = sup
‖v‖∗≤1

vTx.

The conjugate of the max function f(x) = max{x1, . . . , xn} is the support function of the

standard simplex
{
x | 1Tx = 1, x ≥ 0

}
.

Logs and Exponentials: The conjugates of the log and exponential functions are

f(x) = exp(x), f∗(v) = v log(−v) + v,

f(x) = log(x), f∗(v) = −1− log v,

see [Roc74, Eq 3.19]. The conjugate of the entropy function is the softmax function

f(x) = log
(∑

exp(xi)
)
, f∗(v) =


∑
vi log vi if 1T v = 1, v ≥ 0

∞ otherwise.

Where we use the convention 0 log 0 = 0. Finally the conjugate of the logistic function is

f(x) = log(1 + exp(−x)), f∗(v) =


v log(v) + (1− v) log (1− v) if v ∈ [0, 1]

∞ if v /∈ [0, 1].

We list a few more properties of convex functions of interest. Trivially, from the definition of a

convex conjugate we have f∗(x) + f(v) ≥ xT v, the Fenchel Young Inequality. In the same way the

polar of a cone reverses inclusion, convex conjugates reverse majorization, i.e., f > g then f∗ < g∗.

There is also a rich set of calculus rules which can be used to manipulate and derive conjugates.

For example, f(·+ a)∗ = f∗ − (aT ·) and (λf)∗ = λf∗(λ−1·). For a full exploration of these calculus

rules, refer to Rockafellar and Wets [RW98, Chapter 11]

2.2.1. infimal convolution. The conjugate of the sum of two functions is of particular

interest. Indeed, for closed convex functions f and g, if ri(dom(f)) ∩ ri(dom(g)) is nonempty

then (f + g)∗ = f∗ ⊗ g∗ [Roc70, Theorem 16.4] where ⊗ is the infimal convolution or epi-addition,

(f ⊗ g)(z) = inf
x+y=z

{f(x) + g(y)} = inf
x
{f(x− z) + g(x)}.

33

2.2. CONJUGATE FUNCTIONS

For any point x the in-
fimal convolution of f
and g is
(f ⊗ g)(x) = infy hy(x)

(f ⊗ g)(z) =

{
1
2z

2 if |z| ≤ 1

z − 1 if |z| > 1

g(x) = |x|

f(x) = 1
2x

2hy(x) = f(y − x) + g(y)

x

Figure 2.2.1. The Moreau envelope of the 1-norm

The name infimal convolution comes from the operator’s resemblance to the familiar convolution

operator, and epi-addition comes from the observation that epi(f⊗g) = epi(f)+epi(g). Of particular

significance is the infimal convolution of a convex function f with the quadratic function 1
2‖ · ‖2, the

Moreau envelope envf and the proximal operator proxf ,

envf (x) = f ⊗ 1
2‖ · ‖2 = min

z
{1

2‖z − x‖2 + f(z)},(2.2.1)

proxf (x) = argmin
z
{1

2‖z − x‖2 + f(z)}.(2.2.2)

The proximal operator is of particular interest to us as it is a generalization of the projection—indeed

for envδ(·|S) is the squared distance to S, and proxδ(·|S) the projection onto S. The proximal

operator, therefore, plays the same role the projection does in many convex optimization algorithms.

We devote Chapter 9 to the study of its computation for scaled g = 1
2‖ · ‖2H .

34

2.3. FENCHEL DUALITY

2.3. Fenchel duality

Finally, we are ready to approach Fenchel duality, a framework for constructing duals for

problems of the form

(P) minimize
x

f(x) + g(Ax)

We refer to the “original” problem as stated above a problem stated in the above as the primal (P)

for which we can construct a dual, another optimization problem which we can use to deduce certain

properties of the primal. We motivate this by searching for a lower bound for the optimal value

of (P). We begin with the observation that an convex function’s biconjugate always proves a lower

bound on f , i.e. f∗∗ < f and g∗∗ < g. Therefore, writing the biconjugate in conjugate form, we get

the following series of inequalities

inf
x
{f(x) + g(Ax)} ≥ inf

x

{
sup
u
{xTu− f∗(u)}+ sup

v
{(Ax)T v − g∗(v)}

}
≥ sup

u,v

{
inf
x
{xT (u+AT v)} − f∗(u)− g∗(v)

}
= sup

u
{−f∗(ATu)− g∗(u)}.

The second to last inequality comes from the fact that infx supy f(x, y) ≥ supy infx f(x, y). This is

weak duality.

Under certain constraint qualifications, primal-dual pairs of problems exhibit strong duality,

where the optimal value for both problems match, and the primal and dual programs play symmetric

roles. The following theorem gives the conditions for strong duality.

Theorem 2.3.1. Strong Fenchel Duality [Ber09, Prop. 5.3.8] Let f and g be convex functions,

and A be a m× n matrix. Then if f∗ is finite and A · ri(dom(f)) ∩ g 6= ∅

(2.3.1) inf
x
{f(x) + g(Ax)} = − inf

v
{f∗(−AT v) + g∗(v)},

Furthermore the pair (x, v) is optimal only if x ∈ argminx{f(x) + vTAx}.

35

2.4. LAGRANGE DUALITY

proxδ(·|K◦)(x)

proxδ(·|K)(x)

√
envδ(·|K)(x)

√
envδ(·|K◦)(x)

Figure 2.3.1. Geometric illustration of generalized Moreaus decomposition

Example 2.3.2 (Example: Moreau decomposition). We apply Fenchel duality to the proximal

operator, defined in equation (2.2.2). By using the identity (1
2‖ · −b‖2)∗(v) = 1

2‖v − b‖2 − 1
2‖b‖2,

and assuming that ri(dom(f)) is not empty, we have strong duality and hence

envf (x) + envf∗(x) =
1

2
‖x‖2, proxf (x) + proxf∗(x) = x.(2.3.2)

When f is an indicator on a subspace, we recover the Pythagorean equation, equation 2.0.1. When

f is an indicator on a convex cone, f∗ is the indicator on the polar cone, and hence we have a

Pythagorean inequality for cones—this is illustrated in Figure 2.3.1.

2.4. Lagrange duality

The classical calculus method of Lagrange multipliers relates the solution of a constrainted

optimization problem for smooth fi

(2.4.1) minimize f0(x) s.t fi(x) = 0.

36

2.4. LAGRANGE DUALITY

to the stationary points of the Lagrangian,

L(x, v) = f0(x) +
k∑
i=1

vifi(x).

Modern convex programming takes a different, game-theoretic interpretation of this classical result.

It has its genesis with Kuhn and Tucker [KT51], and starts with the observation that when f0 is

convex and fi’s are linear, for i ≥ 1, we can think of the stationary points of L as the equilibrium

points of a two player game, where (x∗, v∗) satisfy

L(x, v∗) ≤ L(x∗, v∗) ≤ L(x∗, v) for all v, x.

This interpretation admits a straightforward generalization to convex programs with inequality

constraints. For the convex program

(2.4.2) minimize
x

f0(x) s.t fi(x) ≤ 0,

one can similarly characterize all its solutions by looking for the equilibrium points of L on the set

v ≥ 0, with the caveat that the functions fi satisfy certain constraint qualifications. First observe

that supv≥0 L(x, v) = f0(x) + δ(x | {x̄ | fi(x̄) ≤ 0 ∀i}), therefore the solutions to the game where v

plays first are exactly the solutions of problem (2.4.2). By interchanging the sup and inf, we can

find a lower bound on the optimal value of problem (2.4.2),

inf
x
{f0(x) | fi(x) ≤ 0} = inf

x
sup
v≥0

L(x, v) ≥ sup
v≥0

inf
x
L(x, v),

and this allows the construction of the Lagrange dual,

minimize
v

g(v) := inf
x
L(x, v) s.t. v ≥ 0,

which will always prove a lower bound on the original program. This is weak duality. However,

an equilibrium point requires infx supv≥0 L(x, v) = supv≥0 infx L(x, v), i.e. strong duality, which is

realized only under certain conditions.

This form of duality, though formally different from Fenchel duality described earlier, turns out

to be equivalent, hence saving us the burden of having two expositions on the subject [Mag74]. We

37

2.4. LAGRANGE DUALITY

show how to derive this from Fenchel duality by noting that if strong duality holds,

inf
x
{f0(x) | fi(x) ≤ 0} (1)

= inf
x,y
{f0(x) + δ(x|{x | fi(x) ≤ y}) + δ+(y)}

(2)
= sup

x,y,u,v
{uTx+ vT y − f0(x)− δ(y|{y | fi(x) ≤ y})}+ 0∗(u)} | v ≤ 0, u = 0}

= sup
u,v
{uTx− f0(x) + sup

x,y
{vT y − δ(x|{x | fi(x) ≤ y})} | v ≤ 0, u = 0}

= sup
v
{∑k

i=1vifi(x)− f0(x) | v ≤ 0}.

The first equality (1) comes from the fact that {fi(x) ≤ y} ⊆ {fi(x) ≤ 0}, and hence there will

always exist an optimal solution to problem (2.4.2) with y = 0. Equality (2) comes from an

application of Fenchel duality, with the correspondence

f(x, y) = f0(x) + δ(y|{x | fi(x) ≤ y}) and g(x, y) = δ(y | R+).

Thus we can recover the constraint qualifications for strong duality from Fenchel duality, since

dom(h0) = {(x, y) | f0(x) <∞, fi(x) ≤ y} and dom(h1) = {(x, y) | y ≥ 0}, therefore the conditions

for strong duality are such that

ri({(x, y) | f0(x) <∞, fi(x) ≤ y}) ∩ {(x, y) | y ≥ 0} 6= ∅.

38

Part 2

The anatomy of a linear model

CHAPTER 3

Optimization for machine learning

Modeling is the endeavor of translating qualitative phenomena into a quantitative one. Often

one begins with a question, real world need, or a goal, stated in a vague and ill-defined manner. The

task of modeling is taking this goal, viewing it through the prism of expert opinion, and rendering

it into quantitative form—a model. A model, for the purposes of this thesis, is a set of plausible

explanations (parameterized by some vector x) that have some hope of being predictive of unseen

data.

In certain statistical frameworks, such as maximum likelihood [HTF01], the model is chosen

based on beliefs about the data generating process. Maximum likelihood posits that the data is

generated from a random process for which some true signal xtrue can be recovered from noisy

measurements. Other frameworks, such as computational learning theory, look for solutions that

have the capacity to generalize under certain assumptions on the complexity of the data [VV98].

Discussion of these recovery results are beyond the scope of this thesis, but in this chapter, we

provide an overview of the optimization problems arising from machine learning and give motivation

for the algorithms discussed in later sections.

3.1. Introduction to supervised learning

In this thesis, we are concerned with the supervised learning problem. We are given a set

feature-label tuples, the training set (ai, bi), where ai ∈ Rn represents features we believe to be

predictive of the labels bi. Our goal is to learn a predictive function,

modelx(a) : Rn → label space

that takes in a (possibly) unseen feature a and gives us its best guess of what the label will be. Our

predictive function is parametrized by x, and our goal is to find the best x that represents the data.

40

3.1. INTRODUCTION TO SUPERVISED LEARNING

We consider two categories of label spaces. In regression, the outcome we wish to measure is

quantitative, and the label space is R. In classification, the outcome is categorical, and hence the

label space are positive and neative labels, {−1, 1}, or the interval [0, 1] which stand for the labels

in the former, the probability of a having a positive label in the latter.

The foremost goal of any model is that it must fit the data,

modelx(ai) ≈ bi.

The question of how it should fit the data is quantified in the loss. The loss, as the name suggests is

our expression of how close modelx(ai) is from bi, and examples of this are discussed in Section 3.1.1.

If this quantity is minimized, and the loss is small, our model has passed the first test of sanity, but

our job is not yet complete. In machine learning, we do not want our model just to do well on the

training set, but, in principle, everywhere—this is the problem of generalization.

If we had a large amount of data relative to the size the model, minimizing loss is often sufficient

to get a good predictive function. Under certain strict assumptions, minimizing the loss alone can

be asymptotically efficient; with the caveat that this holds only as the number of observed points go

to infinity. See for example Theorem 10.1.12 of [CB02].

When the data is too small, however, (or if our model is too big) minimizing loss alone isn’t

sufficient. To take an extreme scenario, consider the example where there are so many parameters the

model is under-determined. One must choose then between a potentially infinite number of models

which all fit the data perfectly. In such a situation, one might wish to pick “the simplest model”, or

“the model which is closest to my existing beliefs about the true nature of the parameters”. These

beliefs about x manifest in the regularizer. The regularizer controls a tradeoff between simplicity

and fit, and, when properly tuned, often greatly improves the model’s capacity for generaliztion.

We discuss a variety of regularizers in Section 3.1.2.

The loss function and the regularizer, when combined, are sufficient in most cases to yield a

workable model. In Section 3.1.3, we depart from the traditional purview of machine learning and

consider the challenges faced when a model is deployed as a decision-making agent. In a deployed

model, a model’s predictions represent actions, and thus it is not sufficient for the model to simply

41

3.1. INTRODUCTION TO SUPERVISED LEARNING

predict well—it has to also balance several competing goals, and act in accordance with some

external specifications. In the context of a system giving out loans, for example, the agent may

be constrained regarding the total number of loans that can be issued. Such a system might also

want to balance accuracy with fairness, by giving loans out at equal rates in certain subpopulations.

These challenges are discussed in Section 3.1.3, where we present a novel framework for tackling

such issues we refer to as dataset constraints. This work was published in [GCGF16].

3.1.1. Loss functions. In this thesis we consider linear models models of the form

modelx(a) = link(aTx).

These are models that consist of a linear function composed with link, a term we borrow from

the language of generalized linear models [McC84]. The linear predictor aTx expresses our model’s

beliefs, as it varies in a single dimension, and the link function rescales this belief into the label

space—the form the data is presented to us.

Each link function is augmented with a loss function, loss(·, ·), that represents the cost of a

datum’s deviation between link(aTx) and bi. To find the best model, we minimize the weighted

sum of the losses across all the data,

minimize
x

m∑
i=1

wiloss(aTi x, bi).(3.1.1)

The quantities wi, the weights, are a measure of scale, and we could choose to vary this parameter

if we could precisely quantify the accuracy of a label bi—the weights allow data of higher quality

to incur a greater penalty when fitted wrongly. Since the total loss is separable, it is sometimes

convenient to write it in vectorized form. Define the quantities (A, b, w) as

(3.1.2) A = [aT1 ; . . . ; aTn], b = (b1, . . . , bn) and w = (w1, . . . , wn).

We sometimes refer to a dataset as the tuple (A, b). Let us consider several examples of loss functions

that arise in practice.

3.1.1.1. Linear Regression. The familiar example of linear regression is a linear model with the

link function set to be the identity. The loss function is a penalty on the “vertical” distance from xi

42

3.1. INTRODUCTION TO SUPERVISED LEARNING

to the regression line, and thus the loss function can be written as

loss(α, β) = ϕ(α− β),

and the sum of the losses can be written as a inner product of a separable function operating on the

residual Ax− b.

Squared loss: In the classical theory of maximum likelihood, we assume a data generating

process for bi. Given ai and our true but unknown model parameters xtrue, we sample bi

according to the random procedure

(3.1.3) bi = aTi x
true + ε,

where ε is a normally distributed random variable with 0 mean and variance parameter w−1
i .

Our goal is to recover xtrue from noisy pairs bi, ai. One way to do this is by maximizing

the likelihood function

x 7→
m∏
i=1

exp(−wi 1
2(aTi x− bi)2),

since exp(−wi 1
2(aTi x− bi)2) is the unnormalized density of the normal distribution. Taking

logs on both sides, we obtain the quadratic loss

(3.1.4) ϕ(τ) = 1
2τ

2,

with the variances playing the role of the reciprocal weights in 3.1.1. The theory of

maximum likelihood estimation [CB02, Theorem 10.1.12] gives theoretical guarantees on

the consistency of the estimates, i.e. that the optimal solution to the minimization problem

approaches xtrue as the number of independent and identically distributed samples increase.

In unweighted vectorized form this loss is the familiar least squares problem,

(3.1.5) minimize
x

1
2‖Ax− b‖2,

and to minimize this loss one need only solve the normal equations AT (Ax− b) = 0.

43

3.1. INTRODUCTION TO SUPERVISED LEARNING

Robust loss: In 1964 Huber introduced a class of M -estimator [H+64] for situations where

the data collected do not satisfy the assumptions of the data generating process, in particular

that of (3.1.3). It is common, for example, for the labels bi to be contaminated by the

presence of outliers. The quadratic penalty may pose too strong a penalty for points lying

far from the regression line, and the absolute value

(3.1.6) ϕ(τ) = |τ |

may be used instead. These can also be interpreted in the framework of maximum likelihood

where the noise in equation (3.1.3) is replaced with a heavier tailed distribution [ABBP11].

Huber Loss: Another M -estimator, the Huber loss [Hub11] combines the robust and squared

losses—behaving like a squared loss for small errors, and a robust loss for large errors. The

loss is

(3.1.7) ϕ(τ) =


1
2τ

2 if |τ | ≤ ε

ε(|τ | − 1
2ε) if |τ | > ε

.

Note that this loss function is continuous and smooth everywhere, avoiding the non-

differential point at zero of the absolute value function. We have encountered the Huber

loss as the Moreau envelope of f , see Figure 2.2.1.

Quantile Loss: The quantile loss [Koe05, KBJ78] is useful when there is asymmetry in

the cost of a positive and negative error in the regression line. If we would prefer to

overestimate or underestimate a certain predictor, we can use the loss

(3.1.8) ϕ(τ) = (ε− 1) max{0, τ}+ εmax{0,−τ}.

Note that when ε = 0.5, we recover the robust 1-norm loss.

Vapnick ε-Insensitive Loss: The ε-insensitive loss, proposed by Vapnick [VV98], is one in

which we ignore errors less than ε. Errors larger than ε can either be penalized linearly

(3.1.9) ϕ(τ) = max{0, |τ | − ε},

44

3.1. INTRODUCTION TO SUPERVISED LEARNING

or if a smooth function is preferred, quadratically via the loss

(3.1.10) ϕ(τ) = max{0, |τ | − ε}2.

This loss may seem contrived but is appealing computationally—models produced with

this loss function allow for compact representation in dual form as a linear combination of

a small number of representative feature vectors, making it useful in situations where the

feature vectors are really a small number of observations lifted to very high dimensions.

It is instructive for us to work through the following simple example of a one-dimensional

regression problem.

Example 3.1.1 (Estimates of centrality). Consider the problem of estimating some central value

from a population of numbers. This can be thought of as a regression problem where ai = 1 and

bi ∈ R, where bi are the values of the population. We will attempt to find a “central” point which

minimizes the distance to these values,

minimize
x∈R

m∑
i=1

ϕ(x− bi).

The solution of the above minimization problem, x∗, for the quadratic loss (3.1.4), is the mean,

1
m

∑m
i=1 bi. The optimality conditions for the 1-loss (3.1.6) are that 0 ∈∑ ∂|·−bi|(x). The minimizers

are thus all points x∗ which satisfy the condition

|{bi | bi < x∗}| = |{bi | bi > x∗}|.

If there are an odd number of values, x∗ is the median of the values bi. If there are an even number

of values, this includes the median (defined conventionally to be the average of the middle two

digits), but also all the values between the central two digits. All optimal points of the quantile

loss (3.1.8) satisfy

|{bi | x < x∗}| =
(
1− ε−1

)
|{bi | x > x∗}|,

and thus gives us the εth quantile of a series of numbers.

45

3.1. INTRODUCTION TO SUPERVISED LEARNING

3.1.1.2. Binary classification. The two broad approaches to classification are maximum-margin

classification [BGV92, CV95] and maximum likelihood [HL00]. The former is an outgrowth of

computational learning theory, while the latter has its origins in frequentist statistics. Though

both approaches differ in philosophy, the techniques often result in similar models, and one’s

preferences for one over the another can sometimes be nothing more than a matter of taste. In

general maximum-margin approaches are more scalable—they can be solved very efficiently in

their dual representation, and their solutions often admit compact representations. Probabilistic

approaches, on the other hand, have advantages in inference. They assume a certain data generating

process, and hence one can back out the probabilities of a certain point belonging to a positive or

negative class.

Both methods determine classification by the sign of aTi x and thus we can write the loss function

in the following, abbreviated form

loss(α, β) = ϕ(αβ)

since bi ∈ {−1, 1}. For notational simplicity we sometimes use B = diag(b) and refer to the loss as

a separable function of BAx.

3.1.1.3. Maximum-margin classifiers. We take an unconventional approach to interpreting

maximum-margin classifiers—as upper bounds on the 0-1 loss functions. Maximum-margin methods

use the model

modelx(a) = sign(aTx),

which has a geometrical interpretation of finding a separating hyperplane {a | yTa = 0} such that all

positive labels are on one side of the hyperplane and all negative labels are on the other. In general

we wish to minimize the number of misclassified points via the optimization problem

(3.1.11) minimize
y

1T I(BAx) where I(τ) =


1 if τ > 0

0 if τ ≤ 0.

This problem is NP-hard to solve in general [BDEL03, FGRW12], however. Instead, we minimize a

convex upper bound on the 0-1 loss. We present several options

46

3.1. INTRODUCTION TO SUPERVISED LEARNING

Hinge Loss: The hinge loss

(3.1.12) ϕ(τ) = max{0, 1 + τ}

has a simple geometrical interpretation—we penalize the loss according to the distance to

the displaced separating hyperplane {a | yTa = bi}. One reason we do not choose the more

straightforward distance to the separating hyperplane, max{0, τ}, is to avoid the trivial

solution at 0.

Quadratic Hinge Loss: A smooth version of the hinge loss [LM01] can be constructed by

squaring the hinge loss,

(3.1.13) ϕ(τ) = max{0, 1 + τ}2.

Though this is convenient computationally due to its smoothness, unlike the hinge loss

above, this variation of the hinge is sensitive to the presence of outliers.

Logistic Hinge: The logistic hinge loss [LM01] ϕ(τ) = (log(1+exp[−ετ])/ε)2 is a relaxation

of the smooth hinge so it is twice differentiable. The parameter τ is a smoothing parameter,

and the loss converges pointwise to the smooth hinge as τ → 0 [LM01, Lemma 2.1].

These methods earn their namesake when the problem is under-determined, i.e. there are an

infinite number of separating hyperplanes that divide the two classes. The choice of the “right”

hyperplane was suggested by Vapnick to be the maximum-margin hyperplane [VK82], the hyperplane

that maximizes the distance from the sum of the closest points in both respective classes.

To find the maximum-margin hyperplane, we first assume that the first element of the feature

vector is a distinguished bias term, −1. Let ai = [−1, āi] and let x = [x1, x̄]. We add this feature to

allow arbitrary shifts of the separating hyperplane, {a | x̄T ā = x1, a = [a1, ā]}. Then, surprisingly,

the minimum-norm solution with the bias omitted (it does not make sense to penalize shifts of the

separating hyperplane),

(3.1.14) minimize
x=[x1,x̄]

1

2
‖x̄‖2 s.t.

n∑
i=1

ϕ(bia
T
i x) ≤ 0.

yields the classifier with the largest margin. A derivation of this result is shown in Figure 3.1.1.

47

3.1. INTRODUCTION TO SUPERVISED LEARNING

a+

a−

a+

a−

{a | aT ȳ − y1 = 0}
{a | aT ȳ − y1 = −1}

{a | aT ȳ − y1 = 1}

Consider any separating
hyperplane which has 0
loss

We can always construct,
through a shift and rescal-
ing another hyperplane ȳ
with lower or equal loss
such that aTi x = 1 for at
least 2 points

We refer to these two
points as support vectors

We can thus assume,
without loss of generality
that the optimal hyper-
plane will always be 1,-1
on the support vectors. |a+T x̄−x1|

‖x̄‖ = 1
‖x̄‖

1
‖x̄‖

The distance to the mar-
gin is 1/x̄, and hence min-
imizing ‖x̄‖2 maximizes
the margin

{a | aTρȳ − x1 = 0}
{a | aTρȳ − x1 = −1}

{a | aTρȳ − x1 = 1}

{a | aT x̄− x1 = 0}
{a | aT x̄− x1 = −1}

{a | aT x̄− x1 = 1}

Figure 3.1.1. Derivation of maximum-margin hyperplane from min-norm solutions.

3.1.1.4. Probabilistic Approaches. Like linear regression under the squared loss in equation (3.1.3),

logistic regression also assumes a probabilistic data generating process for the data. Given a feature

vector a and some unknown true parameter xtrue, we flip independently for every bi a biased coin

[Bis06, Section 4.3.2] with probabilities

Pr(bi = 1) =
1

1− exp(−aTi xtrue)
and Pr(bi = −1) =

1

1− exp(aTi x
true)

.

48

3.1. INTRODUCTION TO SUPERVISED LEARNING

Our goal is, from data, to recover the true parameters xtrue. We do this, following the framework of

maximum likelihood, by maximizing the probability of seeing a particular sequence of observations:

maximize
x

m∏
i=1

1

1− exp(biaTi x)
,

or equivalent by minimizing its logarithm,

minimize
x

m∑
i=1

ϕ(bia
T
i x), where ϕ(τ) = log(1 + exp[−τ]).

This loss function is smooth, twice differentiable, and is typically solved using a smooth solver such

as gradient descent or Newton’s method. If we had an estimate of xtrue, we could back out the

probabilities of a being in a positive or negative class, and hence

modelx(a) =
1

1− exp(−aTx)
.

An alternative model, probit regression, follows the same framework but determines class

probabilities by looking at the sign of a linear regression model,

bi = sign(aTi x+ εi).

Here each εi is an independently and identically distributed standard normal. The link function for

probit regression [Bis06, Section 4.3.5] is equal to the cumulative density of the normal distribution,

with a corresponding loss function found by taking its logarithm.

3.1.2. Regularizers. A canonical example of over-fitting arises in polynomial regression.

Consider the problem of linear regression, discussed earlier in Section 3.1.1.1 where we wish to fit a

sequence of distinct one dimensional feature αi to real valued outputs, bi. The lifted feature vector

ai = [1, αi, α
2
i , . . . , α

k
i]

fits a k-degree polynomial to the data, and when k = n, the data can be fit with no error, regardless

of αi and bi. This perfect fit tells us nothing about the actual relationship between ai and bi,

49

3.1. INTRODUCTION TO SUPERVISED LEARNING

whatever they may be, as it is indifferent to the values—we refer to this as overfitting. The regularizer

reg(x) : Rn → R+ ∪ {∞},

is an additive penalty in the space of the parameters which curbs our model’s instincts to overfit. It

serves both as a way of encoding expert knowledge about the problem, and as a way of penalizing

model complexity. Instead of minimizing the loss function alone, we now minimize

(3.1.15) minimize
x

∑
wiloss(ai, bi) + λ · reg(x).

When reg(x) is real valued, the parameter λ controls the trade-off between model simplicity and fit.

When the regularizer is positively homogeneous, the λ is equivalent to a rescaling of the variables,

and when the regularizer is just an indicator function the λ serves no function and can be set to 1.

3.1.2.1. Quadratic Regularizers. For an underdetermined model, the minimum norm solution—

the pseudoinverse in regression, and the maximum-margin hyperplane in classification, (see Sec-

tion 3.1.14)—is often considered to be the simplest and most parsimonious solution. It is thus

sensible to use the quadratic regularizer,

reg(x) =
1

2
‖x‖2,

as a direct penalty on the magnitude of a solution. The quadratic penalty is typically motivated via

a Bayesian interpretation, and it embodies the belief that, in the absence of any knowledge, the

model’s parameters are normally distributed with mean 0 and variance 1/λ.

Unnaturally large solutions are often a sign of instability in the solution space—and indeed, the

problem of overfitting is intrinsically connected to the problem of poor conditioning. Consider the

linear regression problem in 3.1.1.1 with squared loss. For the normal equations AT (Ax− b) = 0,

we can think of condition number of a matrix ATA as giving us a way of bounding the magnitude

of change in the solution of the system with respect to perturbations in b. To that effect, a poorly

conditioned matrix ATA implies that the solution is highly sensitive to changes in b, the labels.

However, if the tiniest change, one possibly induced by a subtle measurement error, causes our

model to fluctuate wildly, we have likely begun to fit the noise. Indeed, in the polynomial regression

50

3.1. INTRODUCTION TO SUPERVISED LEARNING

example in the introduction, the Vandermonde matrix Aij = αij (for most values of αi) is notorious

for being poorly conditioned. The quadratic penalty can thus be seen as a way of improving the

conditioning of a problem. Combined with linear regression, we now solve the better conditioned

normal equations

(ATA+ λI)x = AT b.

This is known as Tikhonov regression. Whatever the statistical motivations of adding the quadratic

penalty may be, its simplicity and useful conditioning problems make it a sensible default.

3.1.2.2. Sparse Regularizers. While having a solution with small norm has its virtues, there are

circumstances when a sparse solution is better. If we believe, for example, that certain components

of the feature vector have no predictive value, we might wish to eliminate these features altogether.

Two highly correlated features, in the same spirit, might give the same information that just one of

them does, making the other redundant. The task of pruning redundant features is the problem of

feature selection, and when done right increases model accuracy, interpretability, and computability.

Classical approaches to this problem include subset selection [HTF01, Section 3.3] and stepwise

regression [HL00, Section 4.3]—the former requires a search in the power set of feature vectors, and

the latter is a heuristic with dubious statistical properties. Convex optimization furnishes an elegant

solution in the form of sparsity promoting regularizers, which is both easily computable and has

strong theoretical backings (see e.g., [LTTT14] and the references therein).

The 1-norm regularizer, reg(x) = ‖x‖1 is one such example. Because of its nonsmooth structure,

it is sparsity promoting, i.e. when λ (3.1.15) is large, solutions of the problem tend to be sparse.

When used in regression in concert with the quadratic loss, this is the celebrated LASSO problem

[HTF01, Chapter 3.4.2]. And in classification, this appears as either sparse SVMs [BBE+03] or

sparse logistic regression [FHT10, YHL12].

Finer control of sparsity can be obtained by using the 2-norm, which promotes group sparsity

[YL06, JMBO10]. We organize our variables into possibly overlapping groups and encourage,

through the strength of the regularizer, a zeroing out of the entire group simultaneously. This is the

51

3.1. INTRODUCTION TO SUPERVISED LEARNING

group LASSO,

(3.1.16) reg(x) = ‖x1‖+ · · ·+ ‖xp‖,

where xi is a subset of the variables of x. This is useful when handling complex valued data, say,

and one wishes for the real and imaginary parts of the complex number to zero out simultaneously.

More sophisticated schemes of structured sparsity can be designed with overlapping groups,

such as hierarchical selection [ZRY09] and more. We refer the reader to the survey of Jenatton,

Audibert, and Bach [JAB11] for a thorough treatment of structured sparsity.

If the parameters of our regression correspond to elements of a time series or are pixels of a 2d

image [LZOX14], or most generally a graph [CMMP13], we may wish to minimize some measure of

smoothness on the graph [CMMP13], i.e. the difference between the values of two adjacent nodes.

Let

reg(x) = ‖Nx‖G with ‖z‖G =

p∑
i=1

‖zi‖2,

where zi is a partition of z and N is an m-by-n matrix. For anisotropic TV and the graph-based

1-norm regularizer, N is the adjacency matrix of a graph, and each partition zi has a single unique

element, so reg(x) = ‖Nx‖1. For isotropic TV, each partition captures adjacent pairs of variables,

and N is a finite-difference matrix.

A simple application of the TV regularizer is the signal denoising problem, where the labels

correspond to dimensions of a signal, and the features ai are columns of the identity. The signal

denoising problem is

(3.1.17) minimize
x

1

2
‖x− b‖2 + λ‖Lx‖1,

and the optimal solution tends to be a smooth approximation to b.

3.1.2.3. Isotonic Regularizers. Isotonic regularizers offer us a means of enforcing monotonicity

in the parameters, i.e. x1 ≤ x2 ≤ · · · ≤ xn. The isotonic regularizer is then the constraint

reg(x) = δ(Nx|R+) =


0 if x1 ≤ x2 ≤ · · · ≤ xn

∞ otherwise,

52

3.1. INTRODUCTION TO SUPERVISED LEARNING

where N is the adjacency graph; see previous Section 9.7.2.4. A simple application of this is isotonic

regression—given a sequence of data, bi, we wish to find a monotonically increasing sequence

xi which comes as close to the original sequence as possible. Like in the denoising problem in

equation 3.1.17, we use ai as columns of the identity and solve

minimize
x

1

2
‖x− b‖2 + δ(Nx|R+)

for N equal to the adjacency matrix of a path. This can be extended to any number of dimensions

by forcing the signal to respect the partial orderings on its respective discretization grid.

3.1.3. Dataset constraints. The objective function of an agent merely trying to understand

the world may differ significantly from one trying to act within it. When we treat the output of our

predictive function as actions, our objective must now reflect the goals and limitations of the agent

making these decisions. We make two observations in this regard.

First, in our experience, a fruitful way of characterizing the difference between an agent and pure

learning system is that an agent must juggle an array of conflicting interests, of which minimizing

misclassification error is just one. Barring exceptional circumstances, it is impossible to achieve

optimality on all objectives at once, and hence a compromise must be reached by navigating the

trade off curve between these differing goals. This is the problem of multi-objective optimization.

As a first pass, it is tempting and, in our opinion misguided, to somehow combine all these goals

linearly into one super-goal, giving each sub-goal linear weights according to our intuitions. This is

the approach of linear scalarization [Mie12, Section 3.1] and is flawed for the apparent reason that

these weights will be extremely contentious to set and depend highly on the scaling of these objective

functions. Furthermore, it may not be clear beforehand how these weights interact with the final

optimized result. A more principled method is to set a primary goal, and then to set tolerances on

the secondary objectives that we are willing to endure. This is the approach of ε-constraints [Mie12,

Section 3.2]. Since these constraints are often measured in meaningful units, this method provides a

far more natural way of framing the problem of multi-objective optimization.

The second observation we make concerns the nature of these secondary objectives. The loss

function, as we discussed above, is not only a measure of the mismatch but can be interpreted

53

3.1. INTRODUCTION TO SUPERVISED LEARNING

literally as a penalty for making a mistake. We can thus make a subtle redefinition of what a

“mistake” might be. Our agent makes mistakes not only when misclassifying a point, but acting in a

manner which we find unproductive. It thus stands to reason that we can, similarly, give our model

many examples of “right” and “wrong” ways to act, and measure how badly our agent is acting

using the same loss functions defined in Section 3.1.1.

We thus arrive at the following formalization. We consider problems defined on several datasets,

Ai = [aiT1 ; . . . ; aiTmi], bi = [bi1, . . . , b
i
mi] and wi = [wi1, . . . , w

i
mi],

for which we search for models only within the constraint set

(3.1.18)
{
x
∣∣∣ mi∑
j=1

wijloss(aiTj x, bi) ≤ 1
}
.

We call constraints of the form (3.1.18) dataset constraints. We discuss several examples of

meaningful constraints we have encountered in practice.

3.1.3.1. Regression. Here we narrow our focus to constraints of the form
{
x
∣∣ ‖Aix− bi‖2 ≤ εi} .

Predictive Intervals: Assuming the data generating process of our data follows equa-

tion (3.1.4), and let χσ,m be a percentage point of the chi-square distribution with m

degrees of freedom. Then the set

{x | ‖Aix− bi‖2 ≤ χ2
σ,m},

is a 1− σ confidence interval of parameters x containing xtrue [SP95, Equation 43]. Thus

for any new feature vector a, we can construct upper and lower confidence intervals for our

prediction b by maximizing aTx and −aTx subject to this constraint. In other words, we

can find a predictive interval [model+(a),model−(a)] where

model+(a) = sup{aTx | ‖Aix− bi‖2 ≤ χ2
σ,m}, model−(a) = inf{aTx | ‖Aix− bi‖2 ≤ χ2

σ,m}

For the simple linear regression problem (3.1.5), these formulas can be evaluated in closed

form. But this principle can be applied in more sophisticated situations. In isotonic

regression, we are given noisy observations (bi) of a one dimensional monotonic signal

54

3.1. INTRODUCTION TO SUPERVISED LEARNING

(btrue), and we wish to recover the signal. If we instead want monotonic upper and lower

confidence bounds [SP95], we can do this by solving

b+i = sup{xi | ‖x− b‖2 ≤ χ2
σ,m, x1 ≤ · · · ≤ xn}

b−i = inf{xi | ‖x− b‖2 ≤ χ2
σ,m, x1 ≤ · · · ≤ xn}.

where b+i and b+i are the upper and lower envelopes for btrue.

Compressed Sensing: Assume the existence of a sparse signal xtrue probed by noisy mea-

surements

bi = aTi x
true + e, ‖e‖2 ≤ ε.

We wish to recover the signal xtrue from noisy measurements (ai, bi). If xtrue has exactly k

nonzero elements and our measurements ai are appropriately chosen [CRT06, Don06] then

we can recover the true signal with dk log(n/k)e observations by solving the problem

minimize
x

‖x‖1 s.t. ‖Ax− b‖2 ≤ ε.

Coverage: If we knew the mean of the unlabeled population Ai with mi elements was µi,

we could enforce a constraint on the set

{x | ‖1TAix/mi − µi‖2 ≤ ε}

to keep the predictions within ε of the mean.

3.1.3.2. Classification. In the problem of classification, one can interpret the output of a

predictive function to directly control one of two possible decisions—to accept or to deny, to do

or not to do. Thus, the most obvious way to constrain our problem is in terms of counts on the

number of mistakes made, i.e. we perform optimization on sets of parameters with bounded error

measured in terms of the 0-1 loss function. Formally, for label pair (Ai, Bi) this is the set

{
x | 1T I(BiAix) ≤ k

}
, I(x)i =


1 if xi > 0

0 if xi ≤ 0.

55

3.1. INTRODUCTION TO SUPERVISED LEARNING

We can consider this in greater generality by introducing weighted sums of counts. Such weights

arise when certain errors are more costly than others. In medical applications, say, the cost of a

false negative is greatly outweighed by the cost of a false positive. Such weighted penalties also arise

when our model specifications are laid out most naturally in terms of bounds on the ratio of two

quantities. For two datasets (A1, B1) and (A2, B2), a bound on the ratio of counts of both datasets

can be turned into a weighted constraint via the transformation

{
x
∣∣1T I(B1A1x)/1T I(B2A2x) ≤ α

}
=
{
x | 1T I(B1A1x)− α1T I(B2A2x) ≤ 0

}
(3.1.19)

=
{
x | 1T I(B1A1x)− α[m2 − 1T I(B2A2x)] ≤ 0

}
=
{
x | 1T I(B1A1x) + α1I(B2A2x)] ≤ αm2

}
=
{
x | [1, α1]T I(BAx) ≤ αm2

}
where B = diag(B1, B2), A = [A1, A2].

The 0-1 loss, however, is merely aspirational. For practical purposes we use an inner approxima-

tion to this set instead. We can construct this inner approximation

{
x | wT I(BAx) ≤ k

}
⊇
{
x | wTΦ(BAx) ≤ k

}
if Φ is defined as the separable map

(3.1.20) Φ(x) = [ϕ(x1); · · · ;ϕ(xn)],

where ϕ is an upper bound on the 0-1 loss—see Section 3.1.1.2 for examples. Here are some examples

of dataset constraints for classification:

Churn: We define churn as a measure of mismatch between the predictions of two models—A

and B. Imagine that model A is 70% accurate, and that model B is 75% accurate. In the

best case, only 5% of test samples would be labeled differently, and all differences would be

“wins” for classifier B—classifier B classifies every point A did correctly, and then some. In

the worst case, model A would be correct and model B incorrect 25% of the time, model B

correct and model A incorrect 30% of the time, and both models correct the remaining 45%

56

3.1. INTRODUCTION TO SUPERVISED LEARNING

of the time. Then 55% of testing examples will be labeled differently. We define the churn

rate as the expected proportion of examples on which the prediction of the model being

considered (model B above) differs from that of the currently- deployed model (model A).

Let

A = examples used for comparison, B = labels from classifier 1 on A,

and k = αm where m is the height of A. Then the set
{
x |∑iw

TΦ(BAx) ≤ k
}

is the set

of parameters where at most k points differ in the two models.

Coverage: In classification, one may wish to control how often a classifier predicts the

positive (or negative) class on some distinguished population. For example, one may want

to ensure that only 10% of customers are selected to receive a printed catalog due to budget

constraints, or perhaps to compensate for a biased training set. If our population is of size

m and we desire at most an α ∈ [0, 1] proportion to be classified as positive, the set

{
x | 1TΦ(BiAix) ≥ αk

}
,

where (Ai, Bi) are the feature-label pairs of the distinguished population, ensures that

at least α of the population is positive. Coverage was also considered by [MM07], who

proposed what they call label regularization, in which one adds a regularizer penalizing

the relative entropy between the mean score for each class and the desired distribution,

with an additional correction to avoid degeneracies.

Nyanman-Pearson Learning: Requirements of real-world classifiers are often expressed

in terms of ratios of the false positives and false negatives, especially when examples

are highly imbalanced between positives and negatives. We can handle this problem via

Neyman-Pearson classification [SN05, DBS10], in which one seeks to minimize the false

negative rate subject to a constraint on the false positive rate. To do this, we let

A1 = positively labeled data, A2 = negatively labeled data.

57

3.1. INTRODUCTION TO SUPERVISED LEARNING

and solve the optimization problem

minimize 1TΦ(A1Tx) s.t. 1TΦ(−A2Tx) ≤ k.

Fairness: A practitioner may be required to guarantee fairness of a learned classifier, in the

sense that it makes positive predictions for members of different subgroups at certain rates.

For example, one might require that housing loans be given equally to people of different

genders. Hardt et al. [HPS+16] identify three types of fairness, specified in terms of ratios

of two groups, A1, B1 and the general population A2 and B2:{
x

∣∣∣∣αk − ε ≤ 1T I(B1A1x)

1T I(B2A2x)
≤ αk + ε

}
.

These are (i) demographic parity, in which positive predictions are made at the same rate

on each subgroup. Here A1 are the specialized subgroup, A2 is the entire population and

B1 = B2 = diag(1). (ii) equal opportunity, in which only the true positive rates must

match. Here A1 are the positively labeled entries in a subgroup, A1 are the positively

labeled entiries in the population, and B1 = B2 = diag(1), and finally (iii) equalized odds,

in which both the true positive rates and false positive rates must match. Here A1 and B1

are the labels for the distinguished subgroup, and A2 and B2 are the labels for the entire

population. This ratio can be converted into two constraints using Equation (3.1.19).

Egregious Examples: For certain classification applications, examples may be discovered

that are particularly embarrassing if classified incorrectly. We propose instead simply

adding a constraint ensuring that some proportion of a set of such examples is correctly

classified, with {
x | wTΦ(BAx) ≤ 0

}
,

where A and b are the set of k examples we must classify correctly.

Finally, we note in passing that if the bound on the set is too strict, we can use a ramp loss

instead of a hinge loss. The details can be found in [GCGF16].

58

Part 3

Cutting plane methods

CHAPTER 4

Epigraphical cutting plane methods

4.1. Introduction

Let X be a compact convex set with non-empty interior, and let f be a real valued convex

function. In this chapter, we discuss cutting plane methods for solving the problem

minimize
x∈X

f(x).

Cutting-plane methods operate by means of elimination, with successive points strategically placed

such that the uncertainty of the location of an optimal solution is maximally reduced. At any

iteration, the localization polytope Pk is our expression of this uncertainty—and in traditional

cutting plane methods, this is a convex subset of the search space (Rn) that contains at least one

optimal point. Each query then generates a new cutting plane that passes through the query point,

reducing the volume of Pk by a fixed proportion.

Epigraph cutting plane methods operate on the same principle but quantify both our uncertainty

in function value and location of the optimum. The localization polytope thus exists in epigraphical

space, Rn+1, and its center (tk, xk) gives us our new search point xk. In this new space, each

query generates two cuts, a function value cut, which upper bounds the optimum, and a supporting

hyperplane, which lower bounds f , see Figure 4.1.1. Of these two cuts, at least one is guaranteed

not to contain the query point, i.e., it is deep, thus reducing our uncertainty in Rn+1, by a fixed

proportion.

The epigraph cutting plane method was first proposed by Goffin, Haurie, and Vial [GV99] in

the context of the analytic center, and this method appears to have been reinvented in the literature

many times, e.g., [BV07, Meh00]. Despite this, a rigorous analysis of the convergence of the epigraph

60

4.2. CUTTING PLANE METHODS

{(t, x) | t ≤ uk}

If (tk, xk) ∈ epi(f) then
the upper bound is deep

If (tk, xk) /∈ epi(f) then
the lower bound is deep

{(t, x) | lk + gTk (x− xk) ≤ t}

epi(f)
(tk, xk)

upper bound

lower bound

(tk, xk)

xk

Figure 4.1.1. Two cuts of the cutting plane method.

cutting plane method still appears to be folklore, and thus we endeavor to describe here a complete

analysis.

4.2. Cutting plane methods

We begin with a review of two cutting plane methods: the center of gravity method, outlined

in Section 1.2.1.1 and the method of inscribed ellipsoids, outlined in Section 1.2.1.4. The two

algorithms are described in a single prototype algorithm, Algorithm 4.1 where the choice of size and

center determine the which algorithm we use.

Algorithm 4.1: Cutting Plane Method

εtol > 0, P0 = X
for k ∈ {0, 1, . . . } do

1 xk ← center(Pk)

2 gk ∈ ∂f(xk)

3 Pk+1 ← Pk ∩ {x | gTk (x− xk) ≤ 0}
4 if (maxx∈X f(x)−minx∈X f(x)) size(Pk)

1/n ≤ εtol then return Pk

end

61

4.2. CUTTING PLANE METHODS

Center of Gravity Method. The center of gravity method uses the choices

(4.2.1) size(P) = vol(P) :=

∫
P
dz, and center(P) := center of gravity of P =

∫
P zdz∫
P dz

.

This definition is valid when P is bounded and has a nonempty interior, which, assuming P0 = X ,

will hold true for any localization polytope.

The center of gravity can be computed in closed form by triangulating the polytope P into

simplices, computing the center of gravity for each simplex, and doing a weighted average of

these centers. This process, though computationally expensive, is still tractable for problems with

dimensions less than 4. The general problem of computing the centroid of a polytope is, however,

#P hard [Rad07] if n is not fixed.

Surprisingly, it is possible to find an estimate of the center of gravity via Monte Carlo. Lovasz

and Vempala [LV03] proposed a hit-and-run sampler for finding a uniform point on a convex body

with a Markov chain with stationary distribution equal to a uniform random point on the P—and

thus the center of gravity can be found by averaging these samples, with its accuracy increasing

with the number of samples collected. This method was applied by Bertsimas and Vempala [BV04]

in the random walk center of gravity method.

Method of Inscribed Ellipsoids. For a n× n matrix A and a ∈ Rn, let E = {Ax+ a | ‖x‖2 ≤ 1}
be the maximum inscribed ellipsoid of P . The method of inscribed ellipsoids uses

(4.2.2) size(P) = vol(E) = det(A), and center(P) = center of E = a.

If our localization polytope is polyhedral, i.e., P = {x | gTi x ≤ bi}, the maximum inscribed ellipsoid

can be computed in polynomial time by solving the convex program

(4.2.3) maximize
A�0,a

log detA s.t. ‖Agi‖2 + gTi a ≤ bi.

Since log det(·) is smooth on the cone of positive definite matrices, problem (4.2.3) can be solved

directly using a proximal gradient method (iteration (1.3.2)), say projected Newton, with a carefully

chosen steplength made so as to always remain in the interior of the set of positive definite matrices.

62

4.2. CUTTING PLANE METHODS

The problem can also be reduced to a linear conic program. First note that the objective

det(A)1/n is convex on the positive semidefinite cone A � 0 [AA13, Section 4.3.2]. Thus we use the

following characterization of the determinant: for rational numbers q ∈ [0, 1/n],

t ≤ det(X)q ⇐⇒

 A Z

ZT diag(Z)

 � 0 and (Z11Z22 · · ·Zmm)q ≥ t.

Thus, the optimal solution pair (A, a) in the following convex program

minimize
t,a,A,Z

t

s.t. ‖Agi‖2 + gTi a ≤ bi A Z

ZT diag(Z)

 � 0

t ≤ (Z11Z12, . . . , Znn)1/n,

yields the maximum inscribed ellipsoid. The final constraint of a geometric mean can be modeled

via an intersection of rotated second-order cones [AA13, Section 3.2.7], thus turning the problem

into a linear conic program, amenable to any off the shelf solver that supports inequalities on the

semidefinite and second-order cones.

4.2.0.1. Convergence of both cutting plane methods. We now provide a theorem that translates

the decrease of the volume of P to a concrete bound on the objective value at any point in the

iteration.

To offer a unified proof, we first observe the volume of the MIE of P satisfy certain measure-like

properties, making it an effective proxy for the volume of P . Indeed, the definition of d-measure,

proposed by Tarasov and Khachiyan [Tar88], encapsulates the properties we require in the cutting

plane methods of any proxy for volume.

Definition 4.2.1. The function size(·) is a d-measure of a set if it satisfies the following two

properties:

(1) P1 ⊆ P2 ⇒ size(P1) ≤ size(P2) (monotonicity with respect to inclusion)

(2) size(a+AP) = det(A)size(P) (homogeneity with respect to scaling)

63

4.2. CUTTING PLANE METHODS

Observe, of course, that both the volume of P and the volume of the MIE inscribed in P satisfy

the definition of a d-measure. We now proceed with the convergence proof—the following Theroem

is an adaptation of the proof of Bubeck [Bub15, Theorem 2.1] generalized to d-measures, described

in a remark in a remark in Tarasov and Khachiyan [Tar88].

x∗ xk

x̄

Pk

Pαk

(Pk\Pk+1) ∩ Pαk

Pαk is Pk shrunk at
an optimal point by
a factor of α about
an optimum

x̄ is any point in this set

x̂

Figure 4.2.1. Sketch of proof of Theorem 4.2.2.

Theorem 4.2.2. (Convergence rate for the center of gravity method and the method

of maximum inscribed ellipsoids) Let k ≥ 1 and x1, . . . , xk be the iterates of Algorithm 4.1.

Then

min{f(x1), . . . , f(xk)} −min
x∈X

f(x) ≤ α k
n ·
(

max
x∈X

f(x)−min
x∈X

f(x)

)
.

Here, α = 1− exp(−1) for the center of gravity method, and α = 0.843 for the method of inscribed

ellipsoids.

Proof. We prove this by induction. Let the total variation of f in Pk be defined by

δk = sup
x∈Pk

f(x)− inf
x∈Pk

f(x),

64

4.3. EPIGRAPH CUTTING PLANE METHODS

and P εk = {x | (1− ε)x∗ + εPk} where x∗ is any optimal solution. Then,

size(Pk+1)
(1)

≤ α · size(Pk)
(2)
= size(Pα

1/n

k),

where (1) comes from equation (1.2.6) for the center of gravity method and equation (1.2.10) for

the method of inscribed ellipsoids, and (2) comes from the homogeneity of size(·), Definition 4.2.1,

and the definition of P εk .

Thus, there must exist, by the monotonicity of size(·) (Definition 4.2.1), a point x̄ in (Pk\Pk+1)∩
Pαk . Let x̂ be point in Pk\Pk+1. Then the following inquality follows

f(xk)− f(x∗)
(a)

≤ f(x̄)−min
x∈X

f(x)
(b)

≤ ‖x̄− x‖‖x̂− x‖ [f(x̂)−min
x∈X

f(x)]
(c)

≤ α
1
n [f(x̂)−min

x∈X
f(x)] ≤ α 1

n δk

(a) comes from the fact that all points in Pk\Pk+1 are larger than f(xk) by the subgradient inequality.

(b) comes from the convex inequality

f(y)− f(x)

‖y − x‖ ≤ f(z)− f(x)

‖z − x‖ y ∈ [x, z],

implying for any x̂ on the boundary of Pk, implying

f(x̄)−min
x∈X

f(x) ≤ ‖x̄− x‖‖x̂− x‖ [f(x̂)−min
x∈X

f(x)],

and (c) comes from the definition of P εk . Applying this result inductively, we obtain the final result.

�

Note that above lemma can be applied with minimal modification to oracles which use shallow

cuts, such as those discussed in Section 1.2.2.1.

4.3. Epigraph cutting plane methods

The epigraph cutting plane method looks almost identical to Algorithm 4.1, with two conspicuous

differences—the algorithm operates in the lifted space Rn+1, as we have observed in equation (1.2.14),

yields two cuts per iteration. Like the cutting plane method, there are two variations of this method

we discuss, the epigraph center of gravity method, and the epigraph method of inscribed ellipses,

invoked by the same choices of center and size(·) as in Section 4.2. Let l0 and u0 be lower and

65

4.3. EPIGRAPH CUTTING PLANE METHODS

upper bounds on f on X , respectively:

(4.3.1) l0 ≤ min
x∈X

f(x) ≤ max
x∈X

f(x) ≤ u0,

and

(4.3.2) κ :=
u0 − l0

size(K)1/(n+1)
,

where K is the inner conic approximation

(4.3.3) K = conv{{u0} × X , (f(x∗), x∗)}.

The prototype epigraph cutting plane method is shown in Algorithm 4.2.

Algorithm 4.2: Epigraphical Cutting Plane Methods

εtol > 0, P0 = [l0, u0]×X where l0, u0 are defined in (4.3.1)

for k ∈ {0, 1, . . . } do

1 xk ← center(Pk)

2 (uk, gk)← oraclef (xk)

3 Pk+1 ← Pk ∩ {(t, x) | t ≤ uk} ∩ {(t, x) | lk + gTk (x− xk) ≤ t}
4 if κ · size(Pk)

1/(n+1) ≤ εtol then return Pk

end

For the epigraphical variants of the cutting plane algorithm, we have

Lemma 4.3.1. (Relationship between size of localization polytope and optimality) For

a convex compact epigraphical polytope, i.e.,

P = {(t, x) | t ≤ u} ∩ epi(l(·) + δX),

where minx∈X f(x) ≤ u ≤ u0, and l(·) is a convex lower bound on f . Then

u−min
x∈X

f(x) ≤
(
u0 −min

x∈X
f(x)

)(
size(P)

size(K)

) 1
n+1

≤ κ · size(P)
1

n+1 ,

where K is defined in (4).

66

4.3. EPIGRAPH CUTTING PLANE METHODS

Proof. Let Ku = K ∩ {(t, x) | t ≤ u}. Then

size(P)
(a)

≥ size(Ku)
(b)
=

(
u−minx∈X f(x∗)

u0 −minx∈X f(x)

)n+1

· size(K).

Inequality (a) comes from the fact that

Pk = epi(l(·) + δX)∩ {(t, x) | t ≤ u} ⊇ epi(f(·) + δX)∩ {(t, x) | t ≤ u} ⊇ K ∩ {(t, x) | t ≤ u} = Ku,

where the last equality follows from the assumption that u ≤ u0. Next apply the homogeneity of

size(·), cf. Definition 4.2.1. Equality (b) comes from the fact that Kk is just K0 scaled about the

base, and the homogeneity of size(·) in Definition 4.2.1 (b). Taking powers of 1/(n+ 1) on both

sides, yields the desired result. �

P

(f(x∗), x∗)

X

K is a conic inner ap-
proximation of f

u0 ×X

Ku is always contained in
P , and is K scaled about
the base.

u

u0

Figure 4.3.1. Sketch of proof of Lemma 4.3.1.

First note that P0 is an epigraphical polytope, with global lower bound x 7→ l0 and upper bound

on the optimum u0—a property preserved at each iteration. By virtue of the fact that the cuts are

deep, the volume reduction guarantees of Grünbaum’s theorem, equation (1.2.6) and the theorem of

67

4.3. EPIGRAPH CUTTING PLANE METHODS

Tarasov and Khachiyan (1.2.10) [Tar88] guarantees

size(Pk) ≤ αksize(P0),

for each method’s respective α and size(·). Hence by an application of Lemma 4.3.1 we establish

the linear convergence of the epigraph cutting plane method.

Theorem 4.3.2. (Convergence of the center of gravity epigraph cutting plane method

and epigraph method of maximum ellipsoids) Let k ≥ 1 and x1, . . . , xk be the iterates of

Algorithm 4. Then

min{f(x1), . . . , f(xk)}−min
x∈X

f(x) ≤ α k
n+1 ·

(
u0 −min

x∈X
f(x)

)(
size(P0)

size(K)

) 1
n+1

≤ α k
n+1 ·κ · size(P0)

1
n+1

Where α = 1− exp(−1) for the center of gravity method and α = 0.843 for the method of inscribed

ellipsoids.

For the center of gravity method, we can bound volumes(
vol(P0)

vol(K)

)1/(n+1)

≤ (n+ 1)
1

n+1 (u0 − l0)

u0 −minx∈X f(x)
≤

√
2(u0 − l0)

u0 −minx∈X f(x)
,

with this constant approaching
√

2 as our lower bound on the optimal objective value improves. It

is not clear, however, how to do this for general size(·).

Note too that though these bounds are slightly worse than those of the cutting plane methods,

they do not account for the fact that we are using two cutting planes for the volume reduction, not

one, and that these two planes cuts are typically deep. Since deep cuts cut off more of the polytope

than is strictly needed, the volume reduction is significantly greater in practice.

68

CHAPTER 5

Constructing inexact oracles

In this section we describe several useful examples of inexact controllable oracles, c-oraclef ,

(Definition 1.2.7) that arise in practice. Recall a inexact controllable oracle requires three ingredients:

given a tuple (x, ε), the oracle returns the quantities (l, u, g) where

u is an upper bound on f(x), and(5.0.1)

l, g is such that l + gT (x− ·) is a global lower minorant of f(5.0.2)

where l − u ≤ ε.(5.0.3)

For both structures (1.2.1) and (1.2.2), these quantities come from duality. We dualize the objective,

f , where

f(x) is either max
y

h(x, y) (Section 5.1) or min
y

h(x, y) (Section 5.2).

The accuracy of the oracle is controlled by refining the primal-dual solutions, and as we discover

our tolerance ε specifies exactly the accuracy needed in terms of the duality gap.

5.1. Supremal Projection

In this section we focus on f discussed in the introduction (1.2.2), where

f(x) := max
y

h(x, y).

Access to an optimal solution y∗ ∈ argmax
y

h(x, y) can be used to find a subgradient of f as follows:

For any g ∈ ∂h(·, y∗)(x), we have

(5.1.1) f(x̄) = h(x̄, y∗)
(a)

≥ h(x, y∗) + gT (x̄− x) = f(x) + gT (x̄− x) for any x̄,

69

5.1. SUPREMAL PROJECTION

where inequality (a) follows from the subgradient inequality (1.1.1). Thus g ∈ ∂h(·, y∗)(x) implies that g ∈
∂f(x).

5.1.1. Finding the lower bound. Given any point ȳ, a global affine minorant can be easily

constructed via equation (5.1.1). By substituting y∗ for ȳ in (1.1.1), we obtain

(5.1.2) f(x̄) = h(x̄, ȳ) ≥ h(x, ȳ) + gT (x̄− x) for any x̄.

Thus, we may take for any ȳ a lower bound (5.0.2):

l = h(x, ȳ) u ∈ ∂h(·, ȳ)(x).

5.1.2. Finding the upper bound. An upper bound for f(x), however, is trickier to obtain,

and requires assuming some extra structure in h(x, ·) and an appeal to duality. Let us, for notational

clarity, deemphasize the dependence of h on x by letting hx(y) := −h(x, y). Furthermore, assume

for example that hx can be written as the sum

(5.1.3) hx(y) = h̄(Uy) + 1
2‖y‖2.

If we assume that strong Fenchel duality holds, i.e. U · ri(dom(h̄)) is not empty (see Theorem 2.3.1),

we have, for any choice of v̄.

f(x) = sup
y
h(x, y) = − inf

y
hx(y) = − inf

y
{h̄(Uy) + 1

2‖y‖2}(5.1.4)

(a)
= inf

v
{h̄∗(v) + 1

2‖UT v‖2} ≤ h̄∗(v̄) + 1
2‖UT v̄‖2.(5.1.5)

The equality in (a) comes from strong Fenchel duality 2.3.1. Thus, for a choice of v̄ we obtain

for (5.0.1)

u = h̄∗(v̄) + 1
2‖UT v̄‖2.

70

5.1. SUPREMAL PROJECTION

5.1.3. Controlling the tolerance. In summary, we need to obtain a tuple (ȳ, v̄) that is

feasible for the primal-dual pair:

(5.1.6)

minimize
y

h̄x(Uy) + 1
2‖y‖2 (primal)

minimize
v

h̄∗x(v) + 1
2‖UT v‖2 (dual)

such that their values are within ε, our tolerance (5.0.3), of each other. These problems may be

solved independently or via a primal-dual solver. We discuss this further in Section 5.3.

Example 5.1.1. (Lagrangian Duals) Given the convex program

(5.1.7) minimize
y

f0(y) s.t. fi(y) ≤ 0,

the dual problem is a minimization problem over the positive orthant,

minimize
x≥0

f(x) = max
y
h(x, y) = −f0(y)− x1f1(y)− · · · − xnfn(y),

a problem of the form (1.2.2).

Example 5.1.2 (Dataset constraints, Section 3.1.3). A tremendous amount of research over the

past decade has been poured into efficient solvers for linear classifiers of the form

minimize
x

∑
wiloss(aTi x, bi) + 1

2‖x‖2.

The product of this concerted effort are highly efficient solvers capable of processing gigabytes of

data in minutes on consumer grade hardware. These solvers include Vowpal Wabbit [ACDL14],

Liblinear [FCH+08], and SVMLite [Joa99]. Our goal in this example is to show how we can

leverage such technology to solve problems which involve dataset constraints, as discussed in

Section 3.1.3. We focus in this example on linear classification, but the same ideas apply with

minimal modification to regression.

We consider a particular realization using dataset constraints, where the loss function in the

constraint matches that of the objective. Given datasets {(A1, B1), . . . , (Ak, Bk)}, we wish to solve

71

5.1. SUPREMAL PROJECTION

the convex program

(5.1.8) minimize
y

w0TΦ(B0A0y) + 1
2‖y‖2 s.t. wiTΦ(BiAiy) ≤ 1 i = 1 . . . n,

as per Section 3.1.1.2, and Φ is defined in equation (3.1.20). We may solve this problem via a dual

approach (see Section 2.4). The Lagrangian of problem (5.1.8) is

L(x, y) = 1Tx+ gx(y)

where gx takes the form of a weighted support vector machine, with weights now variables of x,

which we may interpret as Lagrange multipliers of the constraints in (5.1.8):

gx(y) = wTxΦ(BAy) + 1
2‖y‖2 where wix =


w0 if i = 0

xiw
i if i 6= 0

,
.

where B = [B0, . . . , Bm] and A = [A0, . . . , Am]. Assuming strong duality holds, supy≥0 infx L(x, y) =

infx supy≥0 L(x, y). Observe that this problem is now of the form (5.1.3), with the correspondence

h̄(z) = wTxΦ(z) and U = BA. Since h̄∗(z) = wTxΦ∗(diag(wx)−1z), we follow the recipes of

equations (5.1.2) and (5.1.5) to obtain the upper and lower bounds

(5.1.9)
u := wTxΦ∗(diag(wx)−1v) + 1

2‖BAT v‖2,

l := wTxΦ(BAy) + 1
2‖y‖2, g = ATBdiag(wx)∂Φ(BAy) + y,

where ∂Φ is shorthand for ∂Φ(x) = [g1, . . . , gm] where gi ∈ ∂Φi(x).

Example 5.1.3. (Dataset Constraints, Support Vector Machine) Let us specialize equations (5.1.9)

to the hinge loss. Then,

Φi(x) = max{0, 1− x}, Φ∗i (x) = δ(xi | [0, 1]), and ∂Φi =


0 if 1− x ≤ 0

−1 otherwise.

Therefore each evaluation of c-oraclef requires the solution of a weighted SVM, with a dual solver,

such that the duality gap dips below a certain tolerance ε.

72

5.2. PARAMETRIZED OPTIMIZATION

5.2. Parametrized optimization

Consider now the class of structures discussed in (1.2.1), where f is defined implicitly in the

optimization problem

f(x) := min
y

h(x, y),

where h is jointly convex in (x, y). If we had access to the optimal solution, a subgradient

g ∈ ∂f(x) can be obtained as follows: assuming all the level sets of h are compact (possibly

empty), then by [RW98, Theorem 10.13] we can differentiate under the minimization, and thus

g ∈ ∂h(·, y∗)(x) implies g ∈ ∂f(x).

5.2.1. Finding the upper bound. The parametrized optimization problem is in some sense

the dual of the problem (1.2.2). Computing an upper bound on f(x) is easy: any arbitrary ȳ

furnishes us with an immediate upper bound, i.e.,

(5.2.1) f(x) = inf
y
h(x, y) ≤ h(x, ȳ).

5.2.2. Finding the lower bound. It is, however, the lower bound that requires an appeal to

duality. As in equation (5.1.3), we treat x as a constant, and define hx(y) = h(x, y). Now assume

that hx has the following composite structure:

(5.2.2) hx(y) = h̄x(Uy) + 1
2‖y‖2.

Then, assuming int(U · dom(h̄x)) is nonempty, Fenchel duality gives the following lower bound on f

at x:

f(x) = inf
y
h(x, y) = hx(y) = inf

y
{h̄x(Uy) + 1

2‖y‖2}

= − inf
v
{h̄∗x(v) + 1

2‖UT v‖2} ≥ −h̄∗x(v̄)− 1
2‖UT v̄‖2 := u

for any choice of v̄. As a final step, we linearize h̄∗x(v̄) − 1
2‖UT v̄‖2 at x to obtain a global affine

minorant l + gT (x− ·), where

(5.2.3) l := −h∗x(v̄)− 1
2‖UT v̄‖2, and g ∈ −∂x[h∗x(v̄)](x).

73

5.2. PARAMETRIZED OPTIMIZATION

We are once again in a situation where we solve a primal-dual pair of optimization problems, identical

to problem (5.1.6), with the difference between the upper and lower bound defining the duality gap.

Example 5.2.1 (Bias in a Support Vector Machine). There are two subtle variations of support

vector machines. The first is a straightforward generalization of problem (3.1.14), often referred to

as the soft margin support vector machine, and has the form

(5.2.4) minimize
y=[y1,ȳ]∈Rn

1Tmax{0,1−B(Aȳ − 1y1)}+ 1
2‖ȳ‖2,

where A,B is a dataset defined in Section 3.1.1.2. The second SVM variation has the form

(5.2.5) minimize
y=[y1,ȳ]∈Rn

1Tmax{0,1−B(Aȳ − 1y1)}+ 1
2‖y‖2.

The absence of the term y1 in the regularizer of (5.2.4) is critical for ensuring that we can obtain

the maximum-margin hyperplane solution in the separable case (see Figure 3.1.1), and also makes

the solution invariant to arbitrary displacements in the columns of A. These two properties do not

hold when a quadratic penalty is put on the bias term, y1.

Even though problems (5.2.4) and (5.2.5) differ only by a single variable in the regularization

term, this change throws a wrench into large-scale dual solvers (such as Liblinear [FCH+08]) that

rely on separability in the dual problem to ensure convergence—removing this term from the primal

problem adds a single linear constraint to the dual, causing approaches such as coordinate descent to

fail. The sequential minimal optimization [Pla98] algorithm circumvents this limitation by updating

two coordinates at a time. This workaround is, however, considerably more time consuming, and

has no convergence guarantees.

Our workaround is simple, and is based on formulating (5.2.4) as a parametric optimization

problem. With this trick, we solve problem (5.2.4) by solving a sequence of problems of the

form (5.2.5). With a slight change of notation, define

f(x) = min
y
h(x, y) where h(x, y) = 1Tmax{0,1−B(Ay − 1x)}+ 1

2‖y‖2,

and then observe that (5.2.4) is equivalent to minimizing f(x). The inner problem of minimizing

h(x, y) over y is separable, and hence is amenable to any solver that applies to problem (5.2.5).

74

5.3. NUMERICAL APPROACHES TO OBTAINING PRIMAL-DUAL PAIRS

Note that h(x, y) conforms to the structure in equation (5.2.5), with the correspondence h̄x(y) =

1T max{0, (I − xB)1− y} and U = A. We can now apply equation (5.2.1) and equation (5.2.3) to

obtain the upper and lower bounds as follows: for any pair (y, v), define

u = 1T max{0, (I − xB)1− y}+ 1
2‖y‖2

l = −[(I − xB)1]T v − 1
2‖AT v‖2,

g = 1TBv.

for 0 ≤ v ≤ 1. This restriction on v ensures that h∗(v) is finite.

5.3. Numerical approaches to obtaining primal-dual pairs

The approaches described in Section 5.1 and 5.2 and are both predicated on having an algorithm

that generates a sequence of primal-dual solutions (xk, vk) to the pair of primal-dual problems (5.1.6)

that converge to their respective solutions. We discuss two generic approaches to constructing such

iterates.

5.3.1. Pure Dual Solver. We may first apply a first-order method to the dual problem,

minimize
v

h̄∗x(v) + 1
2‖UT v‖2,

and recover a primal solution y = −AT v. This generates a sequence (vk, yk) for which the duality

gap, the difference between the objective values in the respective problems, approach 0. Thus, the

algorithm gives us the upper and lower bounds

uk = h̄∗x(yk) + 1
2‖AT yk‖2 and lk = −h̄x(−UUT yk)− 1

2‖UT yk‖2,

for which uk − lk → 0.

5.3.2. Saddle Point Solver. We can, alternately, attack the saddle point problem directly

with a primal-dual first-order method. Observe that the primal problem in (5.1.6) can be written as

inf
y
{h̄x(Uy) + 1

2‖y‖2} = inf
y

sup
v
{yTUv − h̄∗x(v) + 1

2‖y‖2},

75

5.3. NUMERICAL APPROACHES TO OBTAINING PRIMAL-DUAL PAIRS

and the dual can be written as

inf
v
{h̄∗x(v) + 1

2‖UT v‖2} = − sup
v

inf
y
{yTUv − h̄∗x(v) + 1

2‖y‖2}.

Because we have assumed strong duality, there exists any primal-dual solution (v̄, ȳ) of the saddle

point system

(v̄, ȳ) ∈ argminmax
v,y

{yTUv − h̄∗x(v) + 1
2‖y‖2}.

Therefore any algorithm that generates a sequence (vk, yk) that converges to any optimal solution

of the primal dual problems (5.1.6) respectively provides the requisite sequences of upper and lower

bounds. If we use an optimal method, then they converge at a rate of O(1/k) [CLO14].

76

CHAPTER 6

The inexact epigraph cutting plane algorithm

In this chapter we present a modification to the epigraph cutting plane method described in

Algorithm 4.2, that uses inexact controllable oracles (Definition 1.2.7), described in Section 5. Our

generalization, Algorithm 6.1, proceeds in a straightforward way, with the principle modification

the use of an inexact controllable oracle in lieu of their exact counterparts.

We discuss two variations of this method—the center of gravity inexact epigraph cutting plane

method, and the inexact epigraph method of inscribed ellipsoids. The prototype for both methods

is shown in Algorithm 6.1, where the choice of center, size, υ and γ are determined by the variant

of the cutting plane that is used, and the constant κ is defined in equation (4.3.2).

Algorithm 6.1: Epigraphical Cutting Plane With Error

P0 = [l0, u0]×X where l0, u0 are defined in (4.3.1), κ in (4.3.2), γ > 0.

for k ∈ {0, 1, . . . } do

1 (tk, xk)← center(Pk)

2 εk ← γ(min{u0, . . . , uk−1} − tk)
3 (uk, lk, gk)← c-oraclef (xk, εk)

4 Pk+1 ← Pk ∩ {(t, x) | t ≤ uk} ∩ {(t, x) | lk + gTk (x− xk) ≤ t}
5 if max{ υεk , κ · size(Pk)

1/(n+1) } ≥ εtol then return Pk

end

Let us draw a few parallels between Algorithm 6.1 and its closest cousin, the inexact level-set

bundle method described in Section 1.2.2.2. First, every polytope Pk admits a decomposition as an

intersection of two sets, one formed by the intersection of all the lower bounds, the other a halfspace

77

formed by the intersection of the upper bounds. Thus,

Pk = epi(l∗k + δX) ∩ {(t, x) | t ≤ u∗k},

where g0 = 0, x0 is defined as any point in X , and

l∗k(x) = max
0≤i<k

{lk + gTi (x− xi)}, (lower bound on f)

u∗k = min{u0, u1, . . . , uk−1}, (upper bound on optimal objective).

The above definitions are almost identical to the lower and upper bounds defined in (1.2.7).

More importantly, our choice of εk resembles that chosen in the inexact level-bundle method.

At each iteration, the inexact level-bundle method sets εk to be a fraction of the difference (u∗k −
minx l

∗
i (x)), which we refer to as height(Pk):

height(Pk) := max{t | (t, x) ∈ Pk} −min{t | (t, x) ∈ Pk} = u∗k −min
x∈X

l∗i (x).

This quantity reflects the geometrical view we take in this chapter.

Our choice of γ in Line 2 of Algorithm 6.1, in contrast, is a fraction of the difference u∗k − tk,
which is the distance from center(Pk) to the upper bound. Our error rule thus mirrors that of

the level-bundle method, despite us arriving at this conclusion through a different route. Like the

level-bundle method, our choice of γ controls the trade off between the number of calls to the oracle,

against the amount of work demanded of the oracle. The best choice of γ takes into account the

trade-off between the cost of an inexact oracle call as a function of εk and the number of iterations

required.

The convergence results of Algorithm 6.1 come in two flavors. The first convergence result,

which we call outer convergence, shows that we achieve a geometric decrease in d-measure in Pk,

and hence achieve linear convergence. This result is the inexact counterpart of Theorem 4.3.2. The

second convergence result, which we call total effort, takes into account the accuracies we demand

of c-oraclef . In the analysis of outer convergence, we have assumed implicitly that every call to

evaluate a subgradient of f requires a constant amount of work. In this inexact variation of the

epigraph cutting plane method, we wish refine the complexity analysis and take into account the

78

6.1. THE INEXACT EPIGRAPH CENTER OF GRAVITY METHOD

total amount of effort needed for convergence. The analysis of total effort assumes that a call to

c-oraclef (xk, εk) takes 1/εk amount of effort, and thus, the total effort of the algorithm is the sum

of the sequence 1/εk’s over all the iterations required to drive the optimality below the tolerance

εtol. Our analysis bounds this sum from above.

6.1. The inexact epigraph center of gravity method

The center of gravity inexact epigraph cutting plane algorithm uses the same choice of operators

center and size(·) as the center of gravity method, cf. (4.2.1), and the constant

υ =
(1− exp(−1))(n+ 1)

γ
,

where γ is any positive number less than 1.

6.1.1. Stopping condition. Our first result justifies the choice of υ ·ek as a stopping condition

in line 5 of Algorithm 6.1. It is clear that the height of the polytope serves as a bound on the

optimality of the best solution because

min{f(x1), . . . , f(xk)} −min
x∈X

f(x) ≤ u∗k −min
x
l∗k(x) = height(Pk).

Thus, height(Pk) can serve as a measure of optimality. The height of the polytope can be computed

directly via the solution of a small linear program, but we avoid this computation by observing that

the product υεk is an upper bound for the height of the polytope.

Lemma 6.1.1. (Relating height(Pk) and εk) For Algorithm 6.1,

εk ≥
γ · height(Pk)

(1− exp(1))(n+ 1)
for all k ≥ 1.

Proof. We first construct a conic inner approximation Kk, and a cylindrical outer approximation

Ck of Pk. Let Ak = lvll∗k(u∗k) ∩ X and x̂∗ ∈ argminx∈X l
∗
k(x), then

Kk := conv{u∗k ×Ak, (l∗k(x∗), x̂∗)} ⊆ Pk ⊆ [l∗k(x
∗), u∗k]×Ak =: Ck.

79

6.1. THE INEXACT EPIGRAPH CENTER OF GRAVITY METHOD

Recall that the center of gravity of Pk is (tk, xk). Taking volumes of these sets, we get

vol(Pk) ≥ vol(Kk) =
height(Pk)

n+ 1
· vol(Ak),

and vol(Pk ∩ {(t, x) | t ≥ tk}) ≤ vol(Ck ∩ {(t, x) | t ≥ tk}) = (u∗k − tk) · vol(Ak)

By a mild abuse of notation, vol(Ak) is overloaded to refer to the volume of the level set in its

natural n dimensional ambient space. See Figure 6.1.1 for an illustration of these approximations.

The final inequalities come from the volume of a cone, and a cylinder, respectively. Now,

εk(n+ 1)

γ · height(Pk)

(a)
=

(u∗k − tk) · vol(Ak)

height(Pk) · vol(Ak)/(n+ 1)

(b)

≥ vol(Pk ∩ {(t, x) | t ≥ tk}))
vol(Pk)

(c)

≥ 1− exp(−1),

where (a) comes from the definition of εk, and (b) from our inner and outer approximating bounds,

in particular the outer bound with h = tk. Inequality (c) follows from Grünbaum’s theorem (1.2.6).

We obtain the final result by rearranging terms. �

(l∗k(x̂
∗), x̂∗)

Ck

KkPk

u∗k
Ak

(tk, xk)
t∗k

The center of gravity
splits Pk into two parts.
We refer to this piece as
the upper piece.

We upper bound the up-
per piece with a cylinder.

We lower bound the vol-
ume of Pk with the cone
K. Both volumes can
be written in terms of
size(Ak) and height(·)

Figure 6.1.1. Illustration of outer cylindrical approximation Ck and inner conic
approximation Kk of Pk

6.1.2. Outer convergence. Next, we move on to the outer convergence of our algorithm.

First we describe an important property of the localization polytopes Pk that our method will

exploit. Since the level sets of a convex function are nested, and {x | (t, x) ∈ Pk} is the level set

80

6.1. THE INEXACT EPIGRAPH CENTER OF GRAVITY METHOD

of l∗ lower bound at t, t1 ≤ t2 implies that {x | (t1, x) ∈ Pk} ⊆ {x | (t2, x) ∈ Pk} and thus every

vertical half line emanating from inside the polytope will only exit the polytope at the upper bound.

We will refer to this as Pk tapering downwards. With this definition set, we are now ready to show

the guaranteed volume decrease at each iteration.

Lemma 6.1.2. (Convergence of volumes of localization polytopes) For all k,

vol(Pk+1)

vol(Pk)
≤ 1− 1− γ

exp(1)
.

Proof. Case 1: (Deep Cut : lk ≥ tk or lk ≤ tk and uk ≤ tk) The intersection of the cutting

planes do not contain (tk, xk), therefore by Grünbaum’s theorem (1.2.6),

vol(Pk+1)

vol(Pk)
≤ 1− 1

exp(1)
.

Case 2: (Shallow Cut : lk < tk and uk > tk). The shallow cut is illustrated in Figure 6.1.2. By

the definition of ε, the following inequalities hold:

uk − tk ≤ uk − lk ≤ γ(u∗k − tk) ⇒ tk + γ(u∗k − tk) ≥ uk.

Define P̄k to be the region above the centroid, compressed on the first coordinate, i.e.,

P̄k = Σ
(
Pk ∩ {(t, x) | t ≥ tk} − (u∗k, 0, . . . , 0)

)
+ (u∗k, 0, . . . , 0)

Σ = diag(1− γ, 1, . . . , 1).

The bottom-most point of P̄k is (tk + γ(u∗k − tk), xk), which lies above uk. Furthermore, because the

set tapers downwards, Pk ∩ {(t, x) | t ≥ uk} ⊇ P̄k. Therefore, taking volumes on both sides yields

(6.1.1) vol(Pk ∩ {(t, x) | t ≥ uk}) ≥ (1− γ) · vol(Pk ∩ {(t, x) | t ≥ tk}).

We therefore obtain the following relationships:

vol(Pk+1)
(a)

≤ vol(Pk)− vol(Pk ∩ {(t, x) | t ≥ uk})
(b)

≤ vol(Pk)− (1− γ) · vol(Pk ∩ {(t, x) | t ≥ tk})

81

6.1. THE INEXACT EPIGRAPH CENTER OF GRAVITY METHOD

(c)

≤ vol(Pk)− (1− γ)e−1 · vol(Pk) = (1− (1− γ) exp(−1)) · vol(Pk),

where (a) comes from the fact that Pk+1 is Pk intersected with two cutting planes. The right-hand

side of (a) is the volume of Pk intersected with just the upper bound. Inequality (b) comes from

(6.1.1), and inequality (c) comes from Grünbaum’s theorem (1.2.6). Combining the two results

completes the proof. �

u∗k

tk

lk

uk

Pk+1

Pk
The volume of Pk in region
below uk is at most
(1− (1− γ) exp(−1))vol(Pk)
and Pk+1 is a subset of this
region.

εk

ε is chosen to be γ(u∗k − tk)

Figure 6.1.2. Illustration of a shallow cut.

Applying the volume decrease inductively, we get

vol(Pk) ≤
(

1− 1− γ
exp(1)

)k
vol(P0),

Since Lemma 4.3.1 relates the volumes of Pk to a bound on the objective value, we can invoke it to

obtain a outer convergence rate for Algorithm 6.1.

Theorem 6.1.3. (Convergence rate, inexact epigraph center of gravity method) For all

k,

min{f(x1), . . . , f(xk)} − f(x∗) ≤
(

1− 1− γ
exp(1)

) k
n+1 (

κ · size(P0)
1

n+1

)
,

82

6.2. THE INEXACT EPIGRAPH METHOD OF INSCRIBED ELLIPSOIDS

where κ is defined in (4.3.2). Therefore, the center of gravity inexact epigraph cutting plane method

terminates in no more than⌈
(n+ 1) log((κ · size(P0)

1
n+1)/εtol)

− log(1− (1− γ)/ exp(1))

⌉
∈ O

(
n log

1

εtol

)
iterations to achieve an optimality of εtol in the objective value.

Note that Theorem 4.3.2 is a special case of Theorem 6.1.3, for the center of gravity method,

when γ = 0.

6.1.3. Total effort. We now focus our attention on the total effort involved in driving a

solution to εtol. This is done by noting that the termination condition implies that the work in each

iteration will not exceed (υεk)
−1, and optimizing over γ.

Theorem 6.1.4. (Total effort, inexact epigraph center of gravity method) Assume the

algorithm is run till termination. Then the total amount of work involved is

∑ 1

εk
≤ n+ 1

γεtol

⌈
(n+ 1) log

(
K

εtol

)⌉
∈ O

(
1

εtol
log

1

εtol

)
.

Proof. By the termination condition, and our bound on the total number of iterations in Theorem

6.2.5, the total amount of work is no more than

∑ 1

εk
≤ (1− exp(−1))(n+ 1)

γεtol

⌈
(n+ 1) log(K/εtol)

− log(1− (1− γ)/ exp(1))

⌉
.

Optimizing for γ, we get γ ≈ 0.473. Computing the numerical values and rounding, we obtain the

final lower bound. �

6.2. The inexact epigraph method of inscribed ellipsoids

We now proceed to prove analogous results for the center equal to the maximum inscribed

ellipse. The the inexact epigraph method of inscribed ellipsoids uses the same choices of center

and size(·) as the method of inscribed ellipsoids, see equation (4.2.2), with constants υ = (n+ 1)/γ

where γ is any positive real number less than 0.081.

83

6.2. THE INEXACT EPIGRAPH METHOD OF INSCRIBED ELLIPSOIDS

6.2.1. Stopping criteria. Our first result is an analog of Lemma 6.1.1, which justifies the

stopping condition in Line 5 of Algorithm 6.1.

height(P)

(0, 0)

height(P ∩R+ ×Rn)

Figure 6.2.1. Case where lower bound is tight in 2d. The n−dimensional simplex
achieves this bound in general.

Lemma 6.2.1. (Regularity of center(·) in any dimension) Let P ⊆ Rn+1 be a compact

polytope, and assume that the center of the maximum volume ellipsoid of P is a. Then

1

n+ 1
≤ height(P ∩ {(t, x) | t ≥ a1})

height(P)
≤ n

n+ 1
.

Proof. Let E be the maximum inscribed ellipsoid of P . Assume, without loss of generality that E
is centered at 0. By Remark 2 of Tarasov et al. [Tar88], we know that

E ⊆ P ⊆ nE .

Define the Proj to be the projection of the set P onto the first coordinate, Proj(P) = {t | (t, x̄) ∈ P}.
Since E , P and nE are all convex, their corresponding projections are intervals. Since E and nE
are both ellipses centered at 0, we can assume then without loss of generality (since the ratios are

preserved), that

Proj(E) := [−1, 1], Proj(P) := [−x1, x2], Proj(nE) := [−n, n].

84

6.2. THE INEXACT EPIGRAPH METHOD OF INSCRIBED ELLIPSOIDS

Using the fact that Proj(E) ⊆ Proj(P) ⊆ Proj(nE) we have [−1, 1] ⊆ [−x1, x2] ⊆ [−n, n]. Then for

H = {(t, x) | t ≥ a1}),

height(P ∩H)

height(P)
=

x1

x2 + x1
≤ sup

 x1

x2 + x1

∣∣∣∣∣∣ 1 ≤ x1 ≤ n
1 ≤ x2 ≤ n

 =
n

n+ 1
.

The final equality can be found by solving a simple 2-dimensional optimization problem over a box,

for which we can exhaustively search all critical points. Replacing the sup with an inf, we obtain

the other bound. �

Lemma 6.2.2. (Relating height(Pk) and εk) For all k,

εk ≥
γ height(Pk)

n+ 1
.

Proof. Since u∗k − tk = height(Pk ∩ {(t, x) | t ≥ tk}), we have from Lemma 6.2.1 and the definition

of εk

εk = γ (u∗k − tk) ≥
γ height(Pk)

n+ 1
.

This completes the proof. �

6.2.2. Outer convergence. Next we show outer convergence. Here we require a slightly more

general variation of result, Theorem γ (sic) of Tarasov et al. [Tar88].

Lemma 6.2.3. Let E be an ellipse inscribed in P with relative error γ, i.e., vol(E) = (1−γ)size(P),

where a is the center of this ellipse. Then

size(P ∩ {x | gT (x− a) ≤ 0)

size(P)
≤ 0.843

(1− γ)2
.

Armed with this lemma, we are ready to prove the outer convergence of our algorithm. This

result is analogous result to Theorem 6.1.2, except the choice of center is here the maximum inscribed

ellipsoid of P .

85

6.2. THE INEXACT EPIGRAPH METHOD OF INSCRIBED ELLIPSOIDS

Lemma 6.2.4. (Convergence of volumes of localization polytopes) The volumes decrease

at the rate
size(Pk+1)

size(Pk)
≤ 0.843

(1− γ)2
.

Proof. We will split the analysis into two cases.

Case 1: (Deep Cut : lk ≥ tk or lk ≤ tk and uk ≤ tk.) The intersection of the cutting planes do

not contain (tk, xk), therefore by Lemma 6.2.3 with γ = 0,

size(Pk+1)

size(Pk)
≤ 0.843.

Case 2: (Shallow Cut : lk < tk and uk > tk.) In this event, our choice of duality gap ensures

that

(6.2.1) uk − tk ≤ uk − lk ≤ γ(u∗k − tk) ⇒ tk + γ(u∗k − tk) ≥ uk.

Consider the ellipse formed by the following compressive transformation

Ē = Λ (E − (u∗k, 0, . . . , 0)) + (u∗k, 0, . . . , 0)

Λ = diag([1− γ, 1, . . . , 1]).

The center of this compressed ellipse is (tk + γ(u∗k − tk), xk) which lies at or above (uk, xk), by

(6.2.1). Therefore the horizontal upper bound cuts off the center of Ē . Also observe that Ē ⊆ P as

P tapers downwards, and the vertical region that lies above E is all contained in P . Furthermore,

vol(Ē) = det(Λ) · vol(E) = (1− γ) · vol(E).

Therefore, Ē is a (1− γ)-approximate ellipsoid, and by Lemma 6.2.3

size(Pk+1)

size(Pk)
≤ 0.843

(1− γ)2
.

Combining these two cases yields the final result. �

86

6.2. THE INEXACT EPIGRAPH METHOD OF INSCRIBED ELLIPSOIDS

Applying this result inductively, we get

size(Pk) ≤
(

0.843

(1− γ)2

)k
size(P0),

and thus, combining the above two results, we get a statement on the outer convergence rate of our

algorithm.

Theorem 6.2.5. (Convergence rate, inexact epigraph method of inscribed ellipsoids)

For all k in Algorithm 6.1,

min{f(x1), . . . , f(xk)} − f(x∗) ≤
(0.843

(1− γ)2

) k
n+1

(
κ · size(P0)

1
n+1

)
and therefore it terminates in no more than⌈

(n+ 1) log((κ · size(P0)
1

n+1)/εtol)

− log(0.843/(1− γ)2)

⌉
∈ O

(
n log

1

εtol

)
iterations to achieve an optimality of εtol in the objective value.

6.2.3. Total effort. Again, we wish to quantify the amount of work involved at each iteration.

This theorem is an analog of Theorem 6.1.4, which is identical to it apart from constants.

Theorem 6.2.6. (Total effort, inexact epigraph method of inscribed ellipsoids) Assume

the algorithm is run till termination. Then the total amount of work involved, for γ = 0.04

∑ 1

εk
≤ 30 · n+ 1

γεtol

⌈
(n+ 1) log

(
κ · size(P0)

1
n+1)

εtol

)⌉
∈ O

(
1

εtol
log

1

εtol

)
.

Proof. From the bound on the total number of iterations, we get

∑ 1

εk
≤ n+ 1

γεtol

⌈
(n+ 1) log((κ · size(P0)

1
n+1)/εtol)

− log(0.843/(1− γ)2)

⌉
∈ O

(
n log

1

εtol

)
.

Optimizing for γ numerically, we find that the optimum occurs at γ = 0.04. Substituting this into

the equation, we get the final result. �

87

CHAPTER 7

The parabolic inexact epigraph cutting plane algorithm

7.1. Introduction

In both Chapters 4 and 6, the information we get from the cutting planes are identical. We prove

a linear, lower bound on the optimum, restricting the optimum (or the optimal value, optimum

tuple) to lie in a certain halfspace. There is no intrinsic reason, however, for us to restrict ourselves

to linear lower bounds—in fact, one should always use the strongest lower bound available as this

yields the greatest decrease in the volume of the localization set.

When f is strongly convex, and the modulus of strong convexity is known to be µ, we can do

better than a linear lower bound. Strong convexty guarantees that every query to c-oraclef gives a

parabolic cutting plane, as shown here:

f(x̄) ≥ f(x) + rT (x̄− x)− µ

2
‖x̄− x‖2, for r ∈ ∂f(x)

≥ l + gT (x̄− x)− µ

2
‖x̄− x‖2 for (u, l, g) = c-oraclef (x, ε).

While linear lower bounds localize the optimal solution to lie in a particular halfspace, parabolic

lower bounds localize the optimal solution to lie in a particular ball. The compactness of the region

of localization opens many new doors in the design of cutting plane algorithms.

To offer a flavor as to the improvements of a parabolic cutting plane entails, we describe

the geometric descent method proposed by Bubeck, Lee, and Singh [BLS15]. Geometric descent

stores only two lower bounds at every iteration: The first lower bound is the localization set Pk,

which contains the optimum and acts as an outer approximation of all the information obtained

by the cutting planes thus far. The next iteration intersects the localization polytope Pk with a

second parabolic cutting plane, and the information in this intersection is summarized in the next

localization set Pk+1 via optimal quadratic averaging [DFR16]. Despite the massive amounts of

88

7.1. INTRODUCTION

information discarded at every iteration, this method still achieves the optimal convergence rate in

the dimension free setting.

Unlike geometric descent, our cutting plane method discards no information at any iteration—we

are less concerned with the computational work needed to make a single step as we are with the

number of calls to our controllable oracle. Thus we follow the template of Algorithm 6.1 but simply

replace our linear lower bounds with parabolic ones. The result is Algorithm 7.1, which differs

from Algorithm 6.1 in lines 3 and 5, which instead use a parabolic oracle and a different stopping

criterion.

Algorithm 7.1: Epigraphical Cutting Plane With Error

P0 = [l0, u0]×X where l0, u0 are defined in (4.3.1)

for k ∈ {0, 1, . . . } do

1 (tk, xk)← center(Pk)

2 εk ← γ(min{u0, . . . , uk−1} − tk)
3 (uk, lk, gk)← c-oraclef (xk, εk)

4 Pk+1 ← Pk ∩ {(t, x) | t ≤ uk} ∩ {(t, x) | lk + gTk (x− xk) + µ
2‖x− xk‖2 ≤ t}

5 if 1000 · n[Lnsize(Pk)
2]1/(2+n) ≥ εtol then return Pk

end

We require two additional assumptions on f . First, it must admit a quadratic upper bound at

the optimum, i.e. for some parameter L > 0

(7.1.1) f(x) ≤ L

2
‖x− x∗‖2 + min

x∈X
f(x) for all x.

Second, for that same L,

(7.1.2) X ⊆ {x | L · 1
2‖x− x∗‖ ≤ u0}.

An upper bound of the form (7.1.1) exists if f , for example, is smooth and has L-Lipschitz gradients,

e.g., if f is a dual of a strongly convex primal problem, and the second assumption states that the

solution to the problem should not lie on the boundary of X .

89

7.1. INTRODUCTION

In this chapter we show these two modifications will enable us to prove a stronger result on the

total work involved. Indeed, in contrast to the O(ε−1
tol log ε−1

tol) amount of work required before (see

Theorem 6.1.4), we now require O(ε−1
tol) work. In the interest of brevity, we prove the results in this

section for the choices corresponding to (4.2.2), the method of inscribed ellipsoids. However, all the

results here generalize to the center of gravity case with minimal modification.

Before we proceed to prove our result, let us consider why a strongly convex function f of the

form (1.2.2) might occur in practice.

Example 7.1.1. (Quadratic penalties) We consider functions f of the form f(x) = maxy h(x, y),

where h is convex in x (cf. Section 5.1). We consider the case where h arises from the Lagrangian

of the constrained optimization problem (5.1.7), so that

h(x, y) = −f0(y)− x1f1(y)− · · · − xnfn(y).

Thus, f(x) = maxy h(x, y) is the dual objective. Consider what happens if we instead solved a

perturbed, strongly convex version of the dual problem

minimize
x≥0

fµ(x) where fµ(x) = f(x) +
µ

2
‖x‖2.

This corresponds to finding saddle points of the perturbed Lagrangian,

hµ(x, y) = −f0(y)− x1f1(y)− · · · − xnfn(y) +
µ

2
‖x‖2.

Assuming strong duality, the corresponding primal problem to the dual is

− inf
x≥0

hµ(x, y) = f0(y) +
1

nµ

(
max{0, f1(y)2}+ · · ·+ max{0, fn(y)2}

)
.

And thus we arrive at a dual interpretation for the regularization that adding a strongly convex

quadratic in the dual corresponds to replacing constraints with quadratic penalties in the primal.

As expected, the stronger the quadratic penality, the lower the coefficient of strong convexity will

be. Note that if we have upper bounds on the Lagrange multipliers (our variables x), 0 ≤ x ≤ α,

then the quadratic penalties turn into Huber penalties. Finally, Assumptions (7.1.1) and (7.1.2)

will hold if f0 is strongly convex, and none of the constraints are redundant.

90

7.2. THE PARABOLIC INEXACT EPIGRAPH METHOD OF INSCRIBED ELLIPSOIDS

v

u0

u∗k

X

By Assumption (7.1.2),
the level set of v at u0

will always be contained
within X

Kk Pk The improved bound
comes from using the
conic approximation
induced by the level sets
of v.

Figure 7.1.1. Illustration of inner approximating cones, and the rescaling by Σk

necessary to transform it into the unit cone.

7.2. The parabolic inexact epigraph method of inscribed ellipsoids

7.2.1. Outer convergence. The assumption that f is upper bounded by a quadratic at the

optimum (7.1.1) leads to a quadratic improvement in optimality as a function of the size of the

polytope Pk at any iteration.

Lemma 7.2.1. (Relation between optimality and size(Pk)) For all k,

u∗k −min
x∈X

f(x) ≤ O(1) · n[Lnsize(Pk)
2]1/(2+n).

where O(1) is a universal constant.

Proof. From Assumption 7.1.1 we have the following global quadratic upper bound on f ,

v := L
2 ‖ · −x∗‖2 + min

x∈X
f(x),

91

7.2. THE PARABOLIC INEXACT EPIGRAPH METHOD OF INSCRIBED ELLIPSOIDS

i.e., v ≥ f . Define the two sets Kk, Pk for which Kk ⊆ Pk ⊆ Pk,

Kk = conv{u∗k × lvlv(u
∗
k), (min

x∈X
f(x), x∗)}. Pk = epi(v) ∩ {(t, x) | t ≤ u∗k},

Also, let K be a unit circular cone K = conv
{
{(1, x) | 1

2‖x‖2 ≤ 1}, 0
}
. First note that Kk and K,

our standard cone, are related by an affine transformation. This transform which first involves the

translation of the tip of the cones to (0, 0), followed by a scaling:

K = Σ−1
k (Kk − (min

x∈X
f(x), x∗))(7.2.1)

Σk = diag([uk −min
x∈X

f(x), ([uk −min
x∈X

f(x)]/L)1/2, . . . , ([uk −min
x∈X

f(x)/L])1/2).(7.2.2)

Therefore, we have following chain of inequalities:

size(Pk)
(a)

≥ size(Pk)
(b)

≥ size(Kk)
(c)
= det(Σk)size(K) = size(K)[uk −min

x∈X
f(x)](2+n)/2/Ln/2,

where (a) comes from Assumption (7.1.1) and (7.1.2), which implies Pk ⊆ Pk, (b) follows from the

fact that Pk ⊇ Kk by construction (Kk is a circular cone inscribed in the parabola Pk), (c) comes

from translating and scaling Kk into the standard cone, cf. (7.2.1), the affine invariance of the MIE,

and the affine homogeneity of size. Taking powers of 2/(2 + n) on both sides, we get the final result:

u∗k −min
x∈X

f(x) ≤ Ln/(2+n)size(Pk)
2/(2+n)

size(K)2/(2+n)
≤ O(1) · n[Lnsize(Pk)

2]1/(2+n).

For the final inequality, we use the fact that

size(K)2/(2+n) ≥ ω2/(2+n)
n /4

2n+2
2+n ≥ nO(1)

for all n. �

This theorem can be seen as a quadratic improvement over Lemma 4.3.1 in which we proved

u∗k − minx∈X f(x) / size(Pk)
1/(n+1). This theorem improves that bound to u∗k − minx∈X f(x) /

size(Pk)
2/(2+n). This fact allows us to relax the termination condition by a squared factor. Note

too, that this improvement does not depend on the parabolic cutting planes.

Though the above lemma does not change the algorithm’s complexity class, its utility will be

seen when used in concert with the next result. The next theorem establishes a lower bound on εk

92

7.2. THE PARABOLIC INEXACT EPIGRAPH METHOD OF INSCRIBED ELLIPSOIDS

as a function of size(Pk). The parabolic lower bounds, intuitively, prevent Pk from becoming too

flat.

Lemma 7.2.2. (Relating εk and size(Pk)) For all k

εk ≥ O(1) · γ[µnsize(Pk)
2]1/(2+n),

where O(1) is a universal constant.

Proof. Let l∗k be the strongest lower bound at iteration k, i.e.,

l∗k = max
i<k
{li + gTi (· − xi) + µ

2‖ · −xi‖2}.

Since each function within the max is strongly convex with modulus µ, so must l∗k (strong convexity

is preserved by the max). Let x̂∗ be the minimizer of l∗k. Since 0 ∈ ∂l∗k(x̂∗) (see Figure 7.2.1),

l∗k(x) ≥ l∗k(x̂∗) + 0T (x− x̂∗) + µ
2‖x− x̂∗‖2 ≥ l∗k(x̂∗) + µ

2‖x− x̂∗‖2.

This implies epi(l∗k) ⊆ epi(l∗k(x̂
∗) + µ

2‖ · −x̂∗‖2) and therefore that

Pk = epi(l∗k) ∩ {(t, x) | t ≤ u∗k}(7.2.3)

⊆ epi(l∗k(x̂
∗) + µ

2‖ · −x̂∗‖2) ∩ {(t, x) | t ≤ u∗k} =: Pk.(7.2.4)

See Figure 7.2.1 for an illustration. Let ωn be the volume of a unit n-ball, so that

size(Pk)
(a)

≤ vol(Pk)

(b)

≤ vol(Pk)
(c)
=

2ωn

n[µ/2]n/2
· height(Pk)(2+n)/2

(d)
=

2ωn

n[µ/2]n/2
· height(Pk)

(2+n)/2
(e)

≤ 2ωn

n[µ/2]n/2
· [γ−1(n+ 1)εk]

(2+n)/2.

Inequality (a) comes from the fact that size(Pk) = vol(Ek), and Ek, being an inscribed ellipse, is a

subset of Pk. Inequality (b) comes from (7.2.3). In equality (c) we use the volume of a parabola

93

7.2. THE PARABOLIC INEXACT EPIGRAPH METHOD OF INSCRIBED ELLIPSOIDS

u∗k

PkPk

l∗k

l∗k(x̂
∗)

height(Pk)

Figure 7.2.1. Geometric illustration of the parabolic outer approximation of Pk,
i.e., Pk ⊆ Pk.

(see Figure 7.2.1), and equality (d) comes from the fact by construction height(Pk) = height(Pk).

The final inequality (e) comes from Lemma 6.2.1.

Taking powers of 2/(2 + n) on both sides, we obtain

εk ≥
γn2/(2+n)

2
· [size(Pk)

2µn]1/(2+n)

(n+ 1)[ωn]2/(2+n)
≥ O(1) · γ[µnsize(Pk)

2]1/(2+n).

The final inequality comes from Lemma A.1.3. �

Finally, we bound the total amount of effort involved in the algorithm. This is done in an

unconventional way: instead of bounding the total amount of work at each iteration, as is the

conventional approach, we must work backwards from the terminus to bound the total effort involved.

Lemma 7.2.3. (Maximization of a convex function over a cone) Let f be a convex function,

and A be an invertible matrix. Furthermore assume that f is bounded on the cone {x | Ax ≥ b}.
Then supx {f(x) | Ax ≥ b} = f(A−1b).

Proof. We transform the problem to

sup
x
{f(x) | Ax ≥ b} (a)

= sup
x
{f(A−1(y + b)) | y ≥ 0} = sup

y
{g(y) | y ≥ 0},

94

7.2. THE PARABOLIC INEXACT EPIGRAPH METHOD OF INSCRIBED ELLIPSOIDS

where g(y) = f(A−1(y + b)). Equality (a) comes from a change of variables, y = Ax− b.

By assumption, the function g is bounded, and therefore is decreasing on every half line [Roc70],

and achieves the maximum at g(0). Therefore, g must attain a global minimum at g(0) = f(A−1b).

�

We assume that the amount of work is inversely proportional to εtol.

Theorem 7.2.4. (Total effort, parabolic inexact epigraph method of inscribed ellipsoids)

Assume the algorithm is run till termination. Then for εtol > 0

∑ 1

εk
≤ L

µ
· O(1)

γ(1− [0.843/(1− γ)2]2/(2+n))
· n
εtol

,

where O(1) represents a universal constant.

Proof. Let ηk := size(Pk)
2/(2+n). Then we have the following three guarantees:

εk ≥ C1ηk (Lower bound on εk, Lemma 7.2.2)

ηk ≥ C2εtol (Termination criteria, Algorithm 7.1)

ηk ≥ (0.843/(1− γ))−2/(2+n) · ηk+1 (Convergence guarantee, Lemma 6.2.4)

where

C1 = O(1) · µn/(2+n), C2 = O(1) · L−n/(2+n).

Therefore, the total cost of the iteration is

∑ 1

εk
≤ sup{α0, α1, . . . },

where αj is the total amount of work performed if the algorithm ran for j steps. We can upper

bound the total amount of work performed by performing an optimization over the three constraints

described above. Let β = [0.843/(1− γ)2]−2/(2+n). Then

αj ≤ sup {∑j
k=0ε

−1
k | η0 ≥ βη1, · · · , ηj−1 ≥ βηj and ηk ≥ C2εtol, εk ≥ C1ηk, ∀k}

= sup {∑j
k=0 ε

−1
k | η0 ≥ βη1, · · · , ηj−1 ≥ βηj and ηk ≥ C2εtol, εk = C1ηk, ∀k}

95

7.2. THE PARABOLIC INEXACT EPIGRAPH METHOD OF INSCRIBED ELLIPSOIDS

= sup {∑j
k=0 [C1ηk]

−1 | η0 ≥ βη1, · · · , ηj−1 ≥ βηj , ηj ≥ C2εtol}

(a)
=

∑j
k=0β

−k

C1C2εtol
≤
∑∞

k=0β
−k

C1C2εtol
=

1

(1− β−1)C1C2εtol
.

Inequality (a) comes from Lemma 7.2.3. Our objective function is convex, and bounded from above

on the feasible set (the function is decreasing, and the feasible set does not contain 0). Let us write

the constraints in the following vectorized form:
1 −β

. . .
. . .

1 −β
1




η0

...

ηj−1

ηj


≥


0
...

0

C2ε


,

and observe that Lemma (7.2.3) states that the optimum is achieved at equality. Therefore by an

elementary process of back-substitution, it is clear the optimum is achieved at sizek = βj−kC2εtol.

Substituting this back into the objective and reversing the order of summation yields the equality.

Finally,
1

C1C2
=
O(1) · nLn/(2+n)

O(1) · γµn/(2+n)
≤ O(1) · nL

γµ
,

because L/µ ≥ 1 which implies (L/µ)p ≤ L/µ for p ≤ 1. �

Note that we can optimize the upper bound with respect to γ to get the best choice of γ. We

investigate this numerically—generally, the larger the dimension, the smaller the γ we should use,

but this approaches 0.04137 approximately.

Surprisingly, there are no constants in the above proof which involve size(P0). This counterintu-

itive fact means the volume of the initial localization polytope plays no role in the optimization.

How can this be possible? Perhaps this can be understood with the following intuition. Since the

iterates at the beginning get exponentially cheaper as the polytope P0 increases, in a sense, early

iterations contribute very little to the work involved. In practice, of course, this is not the case.

There is some, finite fixed cost in solving any optimization problem. However we believe that this

property still translates to much better performance in practice.

96

Part 4

Proximal methods

CHAPTER 8

Proximal gradient

While cutting plane algorithms work by elimination, proximal gradient methods work by

exploration. The strategy is greedy—given a current iterate xk, proximal gradient methods use

local information to find the most promising next point, and moves there, securing a small, local

amount of decrease at each step. The extent to which local information is “good” determines how

fast we converge, and hence the convergence of proximal gradient methods does not depend on the

dimension of the problem, but how well behaved the function is itself. Recall that proximal gradient

methods operate on problems with composite structure (1.3.1),

minimize
x

f(x) + g(x)

where the functions f : R → R and g : Rn → R ∪ {∞} are convex. We assume that f has a

Lipschitz-continuous gradient, and that g is lower semicontinuous [Roc70, Definition 1.5]. Recall

the scaled proximal iteration, defined in equation (1.3.2), is

xk+1 = proxHkg (xk −H−1
k ∇f(xk)),

for some sequence of curvature approximations Hk. The most popular variation of this algorithm

is the choice of Hk = αkI. The popularity of this method can be attributed to a synergy of the

broad base of applications for problems with composite structure, and abundance of cheap proximal

operators which make the computation of the proximal operator efficient.

8.1. Problems with composite form

We consider two classes of applications of composite structure, primal and dual methods. In

a typical primal applications, f is a smooth loss function that penalizes incorrect predictions of a

model, and g is a regularizer that encourages desirable structure in the solution. One can pick any

98

8.1. PROBLEMS WITH COMPOSITE FORM

smooth loss from Section 3.1.1 and combine it with any regularizer from Section 3.1.2. A canonical

example of this is the sparse least squares problem

minimize
x

1
2‖Ax− b‖2︸ ︷︷ ︸

f(x)

+ λ‖x‖1︸ ︷︷ ︸
g(x)

,

which has applications in compressed sensing, see Section 3.1.3, and feature selection, see Sec-

tion 3.1.2.2. The accelerated variation of proximal gradient is the celebrated iterative shrinkage

algorithm by Becker and Teboulle [BT09].

When the loss function is non-smooth, but the regularizer has a smooth conjugate, we can

reverse the roles of regularizer and loss via Fenchel duality to have it conform to problem (1.3.1).

Observe that in both regression and classification, the loss function is a separable function of Ax,

where A is defined in (3.1.2), and hence we can write it as

minimize
x

f1(Ax) + f2(x) with dual minimize
v

f∗1 (v) + f∗2 (AT v).

The support vector machine problem in Example 5.2.5, for example, requires the minimization

minimize
x

1T max{0, 1−BAx}+ 1
2‖x‖2 (P-SVM).

We have the correspondence f1(y) = 1T max{0, 1−By} with conjugate f∗1 (v) = δ(B−1x|[0, 1]m)−
1TB−1v and f2(x) = f∗2 (x) = 1

2‖x‖2. This gives us the dual which corresponds to a box constrained

quadratic program,

minimize
x

1
2‖AT v‖2 − 1TB−1v︸ ︷︷ ︸

f(x)

+ δ(B−1v|[0, 1]m)︸ ︷︷ ︸
g(x)

(D-SVM),

which can be solved by proximal gradient. Given an optimal solution y∗, the primal can be recovered

by x∗ = −AT y∗. The case of robust loss too admits a similar construction, with the primal-dual

pairings f1(y) = ‖y − b‖1, f2(v) = δ(v|[−1, 1]m)− bT v and f∗1 = f∗2 = 1
2‖ · ‖2, resulting too in a dual

equal to a box constrained quadratic program, that can be recovered with an identical formula.

99

8.2. COMPUTING THE PROXIMAL OPERATOR

(proxg(1),proxg∗(1))

(
1 0
1 1

) (
1 0
1 1

)

(·)−1

gph(∂f)

gph(∂f∗)

gph(proxf)

gph(proxf∗)

x+ g = 1

x

g x

g

Figure 8.2.1. Visualizing the proxg where g = | · |

8.2. Computing the proximal operator

For many g’s of interest, the proximal operator proxg in equation (2.2.2) can be computed

efficiently. This generalizes, via a rescaling of the coordinates, to the scaled proximal operator with

diagonal scaling matrix, but we omit this more general version for clarity. We consider two classes

of g’s which admit easy proximal computations.

8.2.0.1. Separable functions. When g is separable, the problem decomposes into n one-dimensional

optimization problems, which can often be computed in closed form by elementary methods, and

100

8.2. COMPUTING THE PROXIMAL OPERATOR

in the worst case can be evaluated numerically using a root finding algorithm such as Netwon’s

method.

In a single dimension, the proximal operator has a clear visual interpretation. Define the graph

of the set valued subgradient map to be [RW98, Chapter 5]

gph(∂f) := {(g, x) | g ∈ ∂f(x)} .

Then the graphs of proxg have the following relation

gph(x− proxf) = gph(proxf∗) =

 1 0

1 1

gph(∂f).

In other words, the point in which the line {(g, x) | x+ g = z} intersects the graph of ∂g is exactly

(proxf (z),proxf∗(z))—this is the Minty parametrization of the subgradient map. We illustrate

this in Figure 8.2.1 to derive the proximal operator for g(x) = |x| and g∗(x) = δ(x|[−1, 1]) visually.

8.2.0.2. Homogeneous functions. The set of proper closed convex homogeneous functions,

g(λx) = λg(x), are also the set of functions for which conjugate admits a support function

representation [Roc70, Corollary 13.2.1],

g(x) = sup
v∈S
{vTx} = δ(·|S)∗(x)

for some convex set S. Thus we can reduce the computation of the proximal operator to the projection

via Moreau’s identity, equation (2.3.2), to recover the proximal operator of g as x− proxδ(·|S)(x).

The 2-norm, for example, is the support function of the ball B2 = {x | ‖x‖ ≤ 1} and hence

prox‖·‖1(x) = x− proxδ(·,B2)(x) = x−


x if ‖x‖ ≤ 1

x/‖x‖ otherwise.

and the proximal operator of the infinity norm by the projection onto the 1-norm ball, computable

in linear time by [DSSSC08].

These tricks do not generalize readily to the scaled proximal operator where H is dense. In the

next section we propose a different strategy for computing the scaled proximal operator.

101

CHAPTER 9

Efficient evaluation of the scaled proximal operator

In this section we will show an important family of functions g and H, for which the scaled

proximal operator (1.3.6) can be computed efficiently via an interior method. This approach builds

on the work of [ABP13], who define the class of quadratic-support functions and outline a particular

interior algorithm for their optimization. Our approach is specialized to the case where the quadratic-

support function appears inside of a proximal computation. Together with the correct dualization

approach (§9.3), this yields a particularly efficient interior implementation when the data that define

g and H have special structure (§9.4).

9.1. Quadratic-support functions

Aravkin et al. [ABP13] introduced the notion of a quadratic-support (QS) function, a general-

ization of sublinear support functions [RW98, Ch. 8E]—here we introduce a slightly more general

definition than the version implemented by Aravkin et al. We retain the “QS” designation because

the quadratic term, which is an essential feature of their definition, can also be expressed by the

version we use here.

Let Bp = {z | ‖z‖p ≤ 1} and K = K1 × · · · × Kk, where each cone Ki is either a nonnegative

orthant Rm
+ or a second-order cone introduced in (2.1.2). (The size m of the cones may of course be

different for each index i.) Recall that Ay �K b means that Ay − b ∈ K, (2.1.1), and in this section,

unless otherwise specified, x is an n-vector. To help disambiguate dimensions, the p-by-p identity

matrix is denoted by Ip, and the p-vector of all ones by 1p.

We consider the class of functions g : Rn → R ∪ {+∞} that have the conjugate representation

(9.1.1) g(x) = sup
y
{yT (Bx+ d) | y ∈ Y}, where Y = {y ∈ R` | Ay �K b}.

102

9.1. QUADRATIC-SUPPORT FUNCTIONS

(The term “conjugate” alludes to the implicit duality, since g may be considered as the conjugate of

the indicator function to the set Y.) We assume throughout that the feasible set Y is nonempty. If

Y contains the origin, the QS function g is nonnegative for all x, and we can then consider it to be

a penalty function. This is automatically true, for example, if b ≤ 0.

The formulation (9.1.1) is close to the standard definition of a sublinear support function [Roc70,

§13], which is recovered by setting d = 0 and B = I, and letting Y be any convex set. Unlike a

standard support function, g is not positively homogeneous if d 6= 0. This is a feature that allows

us to capture important classes of penalty functions that are not positively homogeneous, such

as piecewise quadratic functions, the “deadzone” penalty, or indicators on certain constraint sets.

These are examples that are not representable by the standard definition of a support function.

Our definition springs from the quadratic-support function definition introduced by [ABP13], who

additionally allow for an explicit quadratic term in the objective and for Y to be any nonempty

convex set. The concrete implementation considered by [ABP13], however, is restricted to the case

where Y is polyhedral. In contrast, we also allow K to contain second-order cones. Therefore, any

quadratic objective terms in the [ABP13] definition can be “lifted”and turned into a linear term

with a second-order-cone constraint (see Example 9.1.2). Our definition is thus no less general.

This expressive class of functions includes many penalty functions commonly used in machine

learning; [ABP13] give many other examples. In addition, they show how to interpret QS functions

as the negative log of an associated probability density, which makes these functions relevant to

maximum a posteriori estimation. In the remainder of this section we provide some examples that

illustrate various regularizing functions and constraints that can be expressed as QS functions.

Example 9.1.1 (1-norm regularizer). The 1-norm has the QS representation

‖x‖1 = sup
y
{ yTx | y ∈ B∞ },

where

(9.1.2) A =

 In

−In

 , b = −

1n

1n

, d = 0, B = In, K = R2n
+ .

103

9.1. QUADRATIC-SUPPORT FUNCTIONS

Example 9.1.2 (2-norm). This simple example illustrates how the QS representation (9.1.1) can

represent the 2-norm, which is not possible using the QS formulation described by [ABP13] where

the constraints are polyhedral. With our definition, the 2-norm has the QS representation

‖x‖2 = sup
y
{yTx | y ∈ B2} = sup

y
{yTx | (1, y) �K 0},

where

(9.1.3) A =

 0

In

 , b =

1

0

 , d = 0, B = In, K = Qn+1.

Example 9.1.3 (Polyhedral norms). Any polyhedral seminorm is a support function, e.g., ‖Bx‖1
for some matrix B. In particular, if the set {y|Ay ≥ b} contains the origin and is centro-symmetric,

then

‖x‖ := sup
y
{yTBx | Ay ≥ b}

defines a norm if B is nonsingular, and a seminorm otherwise. This is a QS function with d := 0 (as

will be the case for any positively homogeneous QS function) and Y := {y | Ay ≥ b}.

Example 9.1.4 (Quadratic function). This example justifies the term “quadratic” in our modified

definition, even though there are no explicit quadratic terms. It also illustrates the roles of the

terms B and d. The quadratic function can be written as

1
2‖x‖22 = sup

y, t
{yTx− 1

2 t | ‖y‖22 ≤ t} = sup
y, t


y
t

T In
0

x−

0

1
2


∣∣∣∣∣∣∣ ‖y‖22 ≤ t

 .

Use the derivation in C.1 to obtain the QS representation with parameters

A =


0 1

2

0 1
2

In 0

 , b =


1
2

−1
2

0

 , d =

0

1
2

 , B =

In
0

 , K = Qn+2.

Example 9.1.5 (1-norm indicator). This example is closely related to the 1-norm regularizer in

Example 9.1.1, except that the QS function is used to express the constraint ‖x‖1 ≤ 1 via an

indicator function g = δ(· | B1). Write the indicator to the 1-norm ball as the conjugate of the

104

9.1. QUADRATIC-SUPPORT FUNCTIONS

infinity norm, which gives

(9.1.4)

δ(x | B1) = sup
y
{yTx− ‖y‖∞} = sup

y, τ
{yTx− τ | y ∈ τB∞} = sup

y, τ
{yTx− τ | −τ1n ≤ y ≤ τ1n}.

This is a QS function with parameters

A =

−In 1n

In 1n

 , b = 0, d =

 0

−1

 , B =

In
0

 , K = R2n.

Example 9.1.6 (Indicators on polyhedral cones). Consider the following polyhedral cone and its

polar:

U = {x | Bx ≤ 0} and U◦ = {BT y | y ≥ 0}.

Use the support-function representation of a cone in terms of its polar to obtain

(9.1.5) δ(x | U) = δ∗(· | U◦)(x) = sup
y
{yTBx | y ≥ 0},

which is an example of an elementary QS function. A concrete example is the positive orthant,

obtained by choosing B = In. An important example, used in isotonic regression [BC90], is the

monotonic cone

U := {x | xi ≥ xj , ∀(i, j) ∈ E},

Here, E is the set of edges in a graph G = (V,E) that describes the relationships between variables

in V. If we set B to be the incidence matrix for the graph, (9.1.5) then corresponds to the indicator

on the monotonic cone U .

Example 9.1.7 (Distance to a cone). The distance to a cone U that is a combination of polyhedral

and second-order cones can be represented as a QS function:

inf
x∈U
‖x− y‖2 = inf

x
{‖x− y‖2 + δ(x | U)}

=
[
δ(· | B2) + δ(· | U◦)

]∗
(y) = sup

{
yTx | y ∈ B2 ∩ U◦

}
.

105

9.2. BUILDING QUADRATIC-SUPPORT FUNCTIONS

The second equality follows from the relationship between infimal convolution and conjugates [Roc70,

§16.4]. When U is the positive orthant, for example, g(x) = ‖max{0, x}‖2, where the max operator

is taken elementwise.

9.2. Building quadratic-support functions

Quadratic-support functions are closed under addition, composition with an affine map, and

infimal convolution with a quadratic function. In the following, let gi be QS functions with

parameters Ai, bi, di, Bi, and Ki (with i = 0, 1, 2). The rules for addition and composition are

described in [ABP13], which are here summarized and amplified.

Addition rule: The function h(x) := g1(x) + g2(x) is QS with parameters

A =

A1

A2

 , b =

b1
b2

 , d =

d1

d2

 , B =

B1

B2

 , K = K1 ×K2.

Concatenation rule: The function h(x) := g0(x1) + · · · + g0(xk), where each partition

xi ∈ Rn, is QS with parameters

(9.2.1) (A, B) = Ik ⊗ (A0, B0), (b, d) = 1k ⊗ (b0, d0), K = K0 ×
(k)· · · × K0.

where the symbol ⊗ denotes the Kronecker product. The rule for concatenation follows

from the rule for addition of QS functions.

Affine composition rule: The function h(x) := g0(Px− p) is QS with parameters

A = A0, b = b0, d = d0 −B0p, B = B0P.

Moreau-Yosida regularization: The Moreau-Yosida envelope of g0 is the value of the

proximal operator, i.e., envHg0(z) := infx{1
2‖z − x‖2H + g0(x)}. It follows from [BH13,

Proposition 4.10] that

envHg0(z) = sup
y

{
yT (B0x+ d0)− 1

2
yTB0H

−1BT
0 y | A0y �K0 b0

}
,

106

9.2. BUILDING QUADRATIC-SUPPORT FUNCTIONS

which is a QS function with parameters

A =


0 1

2

0 1
2

R 0

A0 0


, b =



1
2

−1
2

0

b0


, d =

 d0

−1
2

 , B =

B0

0

 , K = Qn+2 ×K0,

with Cholesky factorization RTR = B0H
−1BT

0 . The derivation is given in Appendix C.1,

where we take Q = B0H
−1BT

0 .

Example 9.2.1 (Sums of norms). In applications of group sparsity, equation (3.1.16), various

norms are applied to all partitions of x = (x1, . . . , xp), which possibly overlap. Consider the case of

adding two norms g(x) = ‖x1‖O + ‖x2‖M. (The extension to adding three or more norms follows

trivially.) First, we introduce matrices Pi that restrict x to partition i, i.e., xi = Pix, for i = 1, 2.

Then

g(x) = ‖P1x‖O + ‖P2x‖M.

Then we apply the affine-composition and addition rules to determine the corresponding quantities

that define the QS representation of g:

A =

AO
AM

 , b =

bO
bM

 , d = 0, B =

BOP1

BMP2

 , K = KO ×KM,

where Ai, bi, Bi, and Ki (with i = O,M) are the quantities that define the QS representation

of the individual norms. (Necessarily, d = 0 because the result is a norm and therefore positive

homogeneous.) In the special case where ‖ · ‖O and ‖·‖M are both the 2-norm, then Ai, bi, Bi, and

Ki are given by (9.1.3) in Example 9.1.2.

Example 9.2.2 (Graph-based 1-norm and total variation). A variation of Example 9.2.1 can be

used to define the total variation regularizers discussed in see Section 9.7.2.4. Let

g(x) = ‖Nx‖G with ‖z‖G =

p∑
i=1

‖zi‖2,

107

9.3. THE PROXIMAL OPERATOR AS A CONIC QP

where zi is a partition of z and N is an m-by-n matrix. For anisotropic TV and the graph-based

1-norm regularizer, N is the adjacency matrix of a graph, and each partition zi has a single unique

element, so g(x) = ‖Nx‖1. For isotropic TV, each partition captures neighboring pairs of variables,

and N is a finite-difference matrix. The QS addition and affine-composition rules can be combined to

derive the parameters of g. When p = m (i.e., each zi is a scalar), we are summing n absolute-value

functions, and we use (9.1.2) and (9.2.1) to obtain

(9.2.2) A = Im ⊗

 1

−1

 , b = 1m ⊗

−1

−1

 , d = 0, B = N, K = R2m
+ .

Now consider the variation where p = m/2, (i.e., each partition has size 2), which corresponds to

summing m/2 two-dimensional 2-norms. Use (9.1.3) to obtain

A = Im/2 ⊗

 0

I2

 , b = 1m/2 ⊗

1

0

 , d = 0, B = N, K = Q2 × (m/2)· · · × Q2.

9.3. The proximal operator as a conic QP

We describe in this section how the scaled proximal map (1.3.6) can be obtained as the solution

of a quadratic optimization problem (QP) over conic constraints,

minimize
y

1
2y

TQy − cT y such that Ay �K b,(9.3.1)

for some positive semidefinite `-by-` matrix Q and a convex cone K = K1 × · · · × Kk. The

transformation to a conic QP is not immediate because the definition of the QS function implies that

the proximal map involves nested optimization. Duality, however, furnishes a means for simplifying

this problem.

Proposition 9.3.1. Let g be a QS function. The following problems are dual pairs:

minimize
x

1
2‖z − x‖2H + g(x),(9.3.2a)

minimize
Ay�Kb

1
2y

TBH−1BT y − (d+Bz)T y.(9.3.2b)

108

9.4. PRIMAL-DUAL METHODS FOR CONIC QP

If strong duality holds, the corresponding primal-dual solutions are related by

(9.3.3) Hx+BT y = Hz.

Proof. Let

h1(x) := 1
2‖x− z‖2H and h2(x) := sup

y∈Y
{yT (x+ d)}.

If strong duality holds, it follows from Fenchel duality, Theorem (2.3.1) that

(9.3.4) inf
x
{h1(x) + h2(Bx)} = − inf

y
{h∗1(−BT y) + h∗2(y)},

where

h∗1(y) = 1
2‖y‖2H−1 + zT y and h∗2(y) = δ(z | Y)− dT y

are the Fenchel conjugates of h1 and h2, and the infima on both sides are attained. (See [Roc70,

§12] for the convex calculus of Fenchel conjugates.) The right-hand side of (9.3.4) is precisely the

dual problem (9.3.2b). It also follows from Fenchel duality that the pair (x, y) is optimal only if

x ∈ argminx{h1(x) + yTBx}.

Differentiate this objective to obtain (9.3.3). �

Strong duality holds when B · ri dom(h1) ∩ ri dom(h2) 6= ∅. This holds, for example, when the

interior of the domain of g is nonempty, since

int dom(g) 6= ∅ ⇐⇒ imB ∩ int dom(h2) 6= ∅ ⇒ B · ri dom(h1) ∩ ri dom(h2) 6= ∅.

In all of the examples aboveX, this condition holds true.

9.4. Primal-dual methods for conic QP

Proposition 9.3.1 provides a means of evaluating the proximal map of QS functions via conic

quadratic optimization. There are many algorithms for solving convex conic QPs, but primal-dual

methods offer a particularly efficient approach that can leverage the special structure that defines

the class of QS functions. A detailed discussion of the implementation of primal-dual methods

109

9.4. PRIMAL-DUAL METHODS FOR CONIC QP

for conic optimization is given by [Van10]. Here we summarize the main aspects that pertain to

implementing these methods efficiently in our context.

The standard development of primal-dual methods for (9.3.1) is based on perturbing the

optimality conditions, which can be stated as follows. The solution y, together with slack and dual

vectors s and v, must satisfy

Qy −AT v = c, v �K 0, Sv = 0,

where the matrix S is block diagonal, and each mi-by-mi block Si is either a diagonal or arrow

matrix depending on the type of cone, i.e.,

Si =


diag(si) if Ki = Rmi

+ ,

arrow(si) if Ki = Qmi ,
arrow(u) :=

u0 ūT

ū u0I

 for u = (u0, ū).

See [Van10] for further details. Now replace the complementarity condition Sv = 0 with its

perturbation Sv = µe, where µ is a positive parameter and e = (e1, . . . , ek), with each partition

defined by

ei =


(1, 1, . . . , 1) if Ki = Rmi

+ ,

(1, 0, . . . , 0) if Ki = Qmi .

A Newton-like method is applied to the perturbed optimality conditions, which we phrase as the

root of the function

(9.4.1) Rµ :


y

v

s

 7→

rd

rp

rµ

 :=


Qy −AT v − c
Ay − s− b
Sv − µe

 .

Each iteration of the method proceeds by systematically choosing the perturbation parameter µ

(ensuring it decreases), and obtaining each search direction as the solution of the Newton system

(9.4.2)


Q −AT 0

A 0 −I
0 S V




∆y

∆v

∆s

 = −


rd

rp

rµ

,

y+

v+

s+

 =


y

v

s

+ α


∆y

∆v

∆s

 .

110

9.5. EVALUATING THE PROXIMAL OPERATOR

The steplength α is chosen to ensure that (v+, s+) remain in the strict interior of the cone.

One approach to solving for the Newton direction is to apply block Gaussian elimination

to (9.4.2), and obtain the search direction via the following systems:

(Q+ATS−1V A)∆x = rd +ATS−1(V rp + rµ),(9.4.3a)

∆v = S−1(V rp + rµ − V A∆x),(9.4.3b)

∆s = V −1 (rµ − S∆v) .(9.4.3c)

In practice, the matrices S and V are rescaled at each iteration in order to yield search directions

with favorable properties. In particular, the Nesterov-Todd rescaling redefines S and V so that

SV −1 = block(u) for some vector u, where

(9.4.4) block(u)i =


diag(ui) if Ki = Rmi

+ ,

(2uiu
T
i − [uTi Jui]J)2 if Ki = Qmi ,

J =

1 0

0 −I(mi−1)

 .

The cost of the overall approach is therefore determined by the cost of solving, at each iteration,

linear systems with the matrix

(9.4.5) L(u) := Q+ATblock(u)−1A,

which now defines the system (9.4.3a).

9.5. Evaluating the proximal operator

We now describe how to use Proposition 9.3.1 to transform a scaled proximal operator (1.3.6)

into a conic QP that can be solved by the interior algorithm described in §9.4. In particular, to

evaluate proxHg (x) we solve the conic QP (9.3.1) with the definitions

(9.5.1) Q := BH−1BT , c := d+Bx;

the other quantities A, b, and the cone K, appear verbatim. Algorithm 9.1 summarizes the procedure.

As we note in §9.4, the main cost of this procedure is incurred in Step 1, which requires repeatedly

solving linear systems that involve the linear operator (9.4.5). Together with (9.5.1), these matrices

111

9.5. EVALUATING THE PROXIMAL OPERATOR

have the form

(9.5.2) L(u) = BH−1BT +ATblock(u)−1A.

Algorithm 9.1: Evaluating proxgH(x)

Input : x, H, and QS function g as defined by parameters A, b, d, B, K

Output : proxgH(x)

Step 1: Apply interior method to QP (9.3.2b) to obtain y∗.

Step 2: Return H−1(c−BT y∗).

Below we offer a tour of several examples, ordered by level of simplicity, to illustrate the details

involved in the application of our technique. The Sherman-Woodbury (SW) identity

(D + UMUT)−1 = D−1 −D−1U(M−1 + UTD−1U)−1UTD−1,

valid when M−1 +UTD−1U is nonsingular, proves useful for taking advantage of certain structured

matrices that arise when solving (9.5.2). Some caution is needed, however, because it is known that

the SW identity can be numerically unstable [Yip86].

For our purposes, it is useful to think of the SW formula as a routine that takes the elements

(D,U,M) that define a linear operator D + UMUT , and returns the elements (D1, U1,M1) that

define the inverse operator D1 + U1M1U
T
1 = (D + UMUT)−1. We assume that D and M are

nonsingular. Algorithm 9.2 summarizes the operations needed to compute the elements of the

inverse operator.

Typically, D is a structured operator that admits a fast algorithm for solving linear systems with

any right-hand side, and U and M are stored explicitly as dense matrices. Step 1 computes a new

operator D1 that simply interchanges the multiplication and inversion operations of D. Step 2

applies the operator D1 to every column of U (typically a tall matrix with few columns). Step 3

requires inverting a small matrix.

112

9.5. EVALUATING THE PROXIMAL OPERATOR

Algorithm 9.2: Inverse via the Sherman-Woodbury identity

function SWinv(D,U,M)

1 D1 ← D−1

2 U1 ← D1U

3 M1 ← (M−1 + UTU1)−1

4 return D1, U1, M1

end

Example 9.5.1 (1-norm regularizer; cf. Example 9.1.1). Example 9.1.1 gives the QS representation

for g(x) = ‖x‖1, and the required expressions for A, B, and K. Because K is the nonnegative

orthant, block(u) = diag(u); cf. (9.4.4). With the definitions of A and B, the linear operator L
in (9.5.2) simplifies to

L(u) = H−1 +ATdiag(u)A = H−1 + Σ,

where Σ is a positive-definite diagonal matrix that depends on u. If it happens that the preconditioner

H has a special structure such that H + Σ−1 is easily invertible, it may be convenient to apply the

SW identity to obtain equivalent formulas for the inverse

L(u)−1 = (H−1 + Σ)−1 = H −H(H + Σ−1)−1H.

Banded, chordal, and diagonal-plus-low-rank matrices are examples of specially structured matrices

that make one of these formulas for L−1 efficient. They yield the efficiency because subtracting the

diagonal matrix Σ preserves the structure of either H or H−1.

In the important special case where H = diag(h) is diagonal, each component i of the proximal

operator for the 1-norm can be obtained directly via the formula

[proxHg (x)]i = sign(xi) ·max{|xi − 1|/hii, 0},

where hii are the diagonal elements of H. This corresponds to the well-known soft-thresholding

operator. No simple formula exists, however, for more general matrices.

113

9.5. EVALUATING THE PROXIMAL OPERATOR

Example 9.5.2 (Graph-based 1-norm). Consider the graph-based 1-norm function from Exam-

ple 9.2.2 induced by a graph G with adjacency matrix N . Substitute the definitions of A and B

from (9.2.2) into the formula for L and simplify to obtain

L(u) = NH−1NT +ATdiag(u)A = NH−1NT + Σ,

where Σ := ATdiag(u)A is a positive-definite diagonal matrix. (As with Example 9.5.1, K is the

positive orthant, and thus block(u) = diag(u).) Linear systems of the form L(u)p = q then can be

solved with the following sequence of operations outlined in Algorithm 9.3, in which we assume that

H = Λ + UMUT , where Λ is diagonal.

Algorithm 9.3: Solving the system L(u)p = q for the graph-based 1-norm.

1 (Λ1, U1,M1)← SWinv(Λ, U,M) [H−1 ≡ Λ1 + U1M1U
T
1]

2 Σ1 ← NΛ1N
T + Σ

3 (Σ2, U2,M2)← SWinv(Σ1, NU1,M1) [L(u)−1 ≡ Σ2 + U2M2U
T
2]

4 p← Σ2q + U2M2U
T
2 q [solve L(u)p = q]

5 return p

Observe from the definition of H and the definition of Σ1 in Step 2 that

L(u) = Σ1 +NU1M1U
T
1 N

T ,

and then Step 3 computes the quantities that define the inverse of L. The bulk of the work in the

above algorithm happens in Step 3, where Σ2 ≡ Σ−1
1 is applied to each column of NU1 (see Step 2

of the SWinv function), and in Step 4, where Σ2 is applied to q. Below we give two special cases

where it is possible to take advantage of the structure of N and H in order to apply Σ2 efficiently

to a vector.

114

9.5. EVALUATING THE PROXIMAL OPERATOR

1-dimensional total variation: Suppose that the graph G is a path. Then the (n− 1)× n
adjacency matrix is given by

N =


−1 1

. . .
. . .

−1 1

 .

The matrix Σ1 := NΛ−1NT + Σ (see Step 2 of the above algorithm) is tridiagonal, and

hence equations of the form Σ1q = p can be solved efficiently using standard techniques,

e.g., [GL89, Algorithm 4.3.6].

Chordal graphs: If the graph G is chordal, than the matrix NTDN is also chordal when D

is diagonal. This implies that it can be factored in time linear with the number of edges

of the graph [ADV10]. We can use this fact to apply Σ2 ≡ Σ−1
1 efficiently, as follows: let

(Σ3, U3,M3) = SWinv(Σ, N,Λ1), which implies

Σ2 := Σ3 + U3M3U
T
3 , where Σ3 := Σ−1, M3 := (NTΣ−1N + Λ1)−1.

Because NTΣ−1N is chordal, so is M3, and any methods efficient for solving with chordal

matrices can be used when applying Σ2.

Example 9.5.3 (1-norm constraint; cf. Example 9.1.5). Example 9.1.5 gives the QS representation

for the indicator function on the 1-norm ball. Because the constraints on y in (9.1.4) involve only

bound constraints, diag(u) = diag(u). With the definitions of A and B from Example 9.1.5, the

linear operator L has the form

L(u) =

 0

In

H−1
(

0 In

)
+

 1Tn 1Tn

−In In

diag(u1)

diag(u2)

1n −In
1n In

 ,

where u = (u1, u2). Thus, L simplifies to

L(u) =

1Tnu (u−)T

u− H−1 + Σ

 where Σ := diag(u+),
u+ := u1 + u2,

u− := −u1 + u2.

115

9.5. EVALUATING THE PROXIMAL OPERATOR

Systems that involve L can be solved by pivoting on the block (H−1 + Σ). The cases where this

approach is efficient are exactly those that are efficient in the case of Example 9.5.1.

Example 9.5.4 (2-norm; cf. Example 9.1.2). Example 9.1.2 gives the QS representation for the

2-norm function. Because K = Qn, then block(u) = (2uuT − [uTJu]J)2, where u = (u0, ū) and J

is specified in (9.4.4). With the expressions for A and B from Example 9.1.2, the linear operator L
reduces to

(9.5.3) L(u) = H−1 + αIn + vvT , with α = (uTJu)2, v =
√

8u0 · ū.

This amounts to a perturbation of H−1 by a multiple of the identity, followed by a rank-1 update.

Therefore, systems that involve L can be solved at the cost of solving systems with H + αIn (for

some scalar α).

Of course, the proximal map of the 2-norm is easily computed by other means; our purpose here

is to use this as a building block for more useful penalties, such as Example 9.2.1, which involves

the sum-of-norms function shown in (3.1.16). Suppose that the p partitions do not overlap, and

have size ni for i = 1, . . . , p. The operator L in (9.5.3) generalizes to

L(u) = H−1 +


α1In1 + v1(v1)T

. . .

αpInp + vp(vp)T


︸ ︷︷ ︸

W

,

ui = (ui0, ū
i)

αi = (uiTJui)2

vi =
√

8ui0 · ūi,

where each vector ui has size ni + 1.

When p is large, we can treat each diagonal block of W as an individual (small) diagonal-plus-

rank-1 matrix. If H−1 is diagonal-plus-low-rank, for example, the diagonal part of H−1 can be

subsumed into W . In that case, each diagonal block in W remains diagonal-plus-rank-1, which can

be inverted in parallel by handling each block individually. Subsequently, the inverse of L can be

obtained by a second correction.

116

9.5. EVALUATING THE PROXIMAL OPERATOR

Another approach, when p is small, is to consider W as a diagonal-plus-rank-p matrix:

W =


α1In1

. . .

αpInp

+


v1

. . .

vp



v1

. . .

vp


T

.

This representation is convenient: systems involving L can be solved efficiently in a manner identical

to that of Example 9.5.1 because W is a diagonal-plus-low-rank matrix.

Example 9.5.5 (separable QS functions). Suppose that g is separable, i.e.,

g(x) = γ(x1) + · · ·+ γ(xn),

where γ : R → R is a QS function with parameters (Aγ , bγ , Bγ , dγ ,R
np
+), and p is an integer

parameter that depends on γ. The parameters A and B for g follow from the concatenation

rule (9.2.1), and A = (In ⊗Aγ) and B = (In ⊗Bγ). Thus, the linear operator L is given by

L(u) = (In ⊗Bγ)H−1(In ⊗Bγ)T + (In ⊗Aγ)Tdiag(u)(In ⊗Aγ).

Apply the SW identity to obtain

L(u)−1 = Λ−1 − Λ−1(In ⊗Bγ)(H + Σ)−1(In ⊗Bγ)TΛ−1,

where Λ = diag(Λ1, . . . ,Λn),

Λi = ATγ diag(ui)Aγ , and Σ = diag(BT
γ Λ−1

1 Bγ , . . . , B
T
γ Λ−1

n Bγ).

Because the function γ takes a scalar input, Bγ is a vector. Hence Σ is a diagonal matrix. Note

too that Λ is a block diagonal matrix with n blocks each of size p. We can then solve the system

L(u)p = q with the following steps:

1 q1 ← (In ⊗Bγ)TΛ−1q

2 q2 ← (H + Σ)−1q1

3 q3 ← Λ−1q2 − Λ−1(In ⊗Bγ)q2

117

9.6. A PROXIMAL QUASI-NEWTON METHOD

The cost of solving systems with the operator L is dominated by solves with the block diagonal

matrix Λ (Steps 1 and 3) and H + Σ (Step 2). The cost of the latter linear solve is explored in

Example 9.5.1.

9.6. A proximal quasi-Newton method

We now turn to the proximal-gradient method discussed in Section 1.3.2.1. Our primary goal

is to demonstrate the feasibility of the interior approach for evaluating proximal operators of QS

functions. A secondary goal is to illustrate how this technique leads to an efficient extension of the

quasi-Newton method for nonsmooth problems of practical interest.

We follow [ST16] and implement a limited-memory BFGS (L-BFGS) variant of the proximal-

gradient method that has no linesearch and that approximately evaluates the proximal operator.

Scheinberg and Tang establish a sublinear rate of convergence for this method when the Hessian

approximations are suitably modified by adding a scaled identity matrix, and when the scaled

proximal maps are evaluated with increasing accuracy. In their proposal, the accuracy of the

proximal evaluation is based on bounding the value of the approximation in the function value of

(2.2.1). We depart from this criterion, however, and instead use the residual (9.4.1) obtained by

the interior solver to determine the required accuracy. In particular, we require that the optimality

criterion of the interior algorithm used to evaluate the operator is a small multiplicative constant κ

of the current optimality of the outer proximal-gradient iterate, i.e.,

‖Rµ(y, v, s)‖ ≤ κ‖xk − proxg(xk −∇f(xk))‖.

This heuristic is reminiscent of the accuracy required of the linear solves used by an inexact Newton

method for root finding [DES82]. Note that the proximal map proxg ≡ proxIg used above is

unscaled, which in many cases can be easily computed when g is separable.

9.6.1. Limited-memory BFGS updates. Each interior iteration for evaluating the proximal

operator depends on solving linear systems with L in (9.5.2). In all of the experiments presented

below, each interior iteration has a cost that is linear in the number of variables n.

118

9.7. NUMERICAL EXPERIMENTS

9.7. Numerical experiments

We have implemented the proximal quasi-Newton method as a Julia package [BEKS14], called

QSip designed for problems of the form (11.2.1a), where f is smooth and g is a QS function. The

code is available at the URL

https://github.com/MPF-Optimization-Laboratory/QSip.jl

A primal-dual interior method, based on ideas from the CVXOPT software package [ADV10], is

used for Algorithm 9.1. We consider below several examples. The first three examples apply the

QSip solver to minimize benchmark least-squares problems with different nonsmooth regularizers

that are QS representable; the last example applies the solver to a sparse logistic-regression problem

on a standard data set.

9.7.1. Timing the proximal operator. The examples that we explored in §9.5 have a

favorable structure that allows each interior iteration for evaluating the proximal map proxHg (x) to

scale linearly with problem size. In this section we verify this behavior empirically for problems

with the structure

(9.7.1) H = I + UUT , g(x) = ‖x‖1, U ∈ Rn×k

for different values of k and n. This choice of diagonal-plus-low-rank matrices is designed to mimic

the structure of matrices that appear in L-BFGS. Here U and x are chosen with random normal

entries. As described in Example 9.1.1, the system L(u) is inverted in linear time using the SW

identity.

We evaluate the proximal map on 100 random instances for each combination of k and n, and

plot in Figure 1 the average time needed to reach an accuracy of 10−7, as measured by the optimality

conditions in the interior algorithm. Because in practice the number of iterations of the interior

method is almost independent of the size of the problem, the time taken to compute the proximal

map is a predictable, linear function of the size of the problem.

119

https://github.com/MPF-Optimization-Laboratory/QSip.jl

9.7. NUMERICAL EXPERIMENTS

250 500 750

n(000s)

25

50

75

T
im

e
(s

ec
s)

k = 1
k = 10
k = 100

Figure 9.7.1. Time taken to compute proxHg (x) versus n, for k = 1, 10, 100; see (9.7.1).

9.7.2. Synthetic least-square problems. The next set of examples all involve the least-

squares objective

(9.7.2) f(x) = 1
2‖Ax− b‖22.

Two different procedures are used to construct matrices A, as described in the following sections.

In all cases, we follow the testing approach described by [Lor13] for constructing a test problem

with a known solution: fix a vector x? and choose b = Ax? −A−T v, where v ∈ ∂g(x?). Note that

∂(f + g)(x?) = AT (Ax? − [Ax? −A−T v]) + ∂g(x?) = ∂g(x?)− v.

Because v ∈ ∂g(x?), the above implies that 0 ∈ ∂(f + g)(x?), and hence x? minimizes the objective

f + g. In the next three sections, we apply QSip in turn to problems with g equal to the 1-norm,

the group LASSO (i.e., sum of 2-norm functions), and total variation.

9.7.2.1. One-norm regularization. In this experiment we choose g = ‖·‖1, which gives the 1-norm

regularized least-squares problem, often used in applications of sparse optimization. Following the

details in Example 9.1.1, the system L(u) is a diagonal-plus-low-rank matrix, which we invert using

the SW identity.

120

9.7. NUMERICAL EXPERIMENTS

The matrix A in (9.7.2) is a 2000-by-2000 lower triangular matrix with all nonzero entries equal

to 1. The bandwidth p of A is adjustable, and determines its coherence

coherence(A) = max
i 6=j

aTi aj
‖ai‖‖aj‖

=

√
p− 1

p
,

where ai is the ith column. As observed by [Lor13], the difficulty of 1-norm regularized least-squares

problems are strongly influenced by the coherence. Our experiments use matrices A with bandwidth

p = 500, 1000, 2000.

Figure 9.7.2 shows the results of applying the QSip solver with a memories k = 1, 10, labeled

“QSIP mem = k”. We also consider comparisons against two competitive proximal-based methods.

The first is a proximal-gradient algorithm that uses the Barzilai-Borwein steplength [BB88, WNF09].

This is our own implementation of the method, and is labeled “Barzilai-Borwein” in the figures.

The second is the proximal quasi-Newton method implemented by [BF12], which is based on a

symmetric-rank-1 Hessian approximation; this code is labeled “PG-SR1”. The QSip solver with

memory of 10 outperforms the other solvers. The quasi-Newton approximation benefits problems

with high coherence (p large) more than problems with low coherence (p small). In all cases, the

experiments reveal that the additional cost involved in evaluating a proximal operator (via an

interior method) is balanced by the overall cost of the algorithm, both in terms of iterations (i.e.,

matrix-vector products with A) and time.

5 10
log10 of condition number

0

100

200

300

400

ef
fic

ie
nc

y
re

la
ti

ve
to

P
G

L-BFGS, mem = 1
L-BFGS, mem = 10
L-BFGS, mem = 100

Figure 9.7.3. Performance of the proximal quasi-Newton method relative to proxi-
mal gradient for problems of varying condition number.

121

9.7. NUMERICAL EXPERIMENTS

9.7.2.2. The effect of conditioning. It is well known that the proximal-gradient method converges

slowly for ill conditioned problems. The proximal L-BFGS method may help to improve convergence

in such situations. We investigate the observed convergence rate of the proximal L-BFGS approach on

a family of least-squares problems with 1-norm regularization with varying degrees of ill conditioning.

For these experiments, we take A in (9.7.2) as the 2000-by-2000 matrix

A = αL

T 0

0 0

+ αµI,

where T is a 1000-by-1000 tridiagonal matrix with constant diagonal entries equal to 2, and constant

sub- and super-diagonal entries equal to −1. The parameter αL/αµ controls the conditioning of A,

and hence the conditioning of the Hessian ATA of f .

We run L-BFGS with 4 different memories (“mem”): 0 (i.e., proximal gradient with a Barzilai-

Borwein steplength), 1, 10, and 100. We terminate the algorithm either when the error drops beneath

10−8, or the method reaches 103 iterations. Our method of measuring the observed convergence

(OC) computes the line of best fit to the log of optimality versus k, which results in the quantity

Observed Convergence :=

∑N
k=0 k · log ‖xk − x∗‖∑N
k=0 log ‖xk − x∗‖

,

where N is the total number of iterations.

The plot in Figure 9.7.3 shows the ratio of the OC for L-BFGS relative to the observed

convergence of proximal gradient (PG). This quantity can be interpreted the amount of work that a

single quasi-Newton step performs relative to the number of PG iterations. The plot reveals that

the quasi-Newton method is faster at all condition numbers, but is especially effective for problems

with moderate conditioning. Also, using a higher quasi-Newton memory almost always lowers the

number of iterations. This benefit is most pronounced when the problem conditioning is poor.

Together with §9.7.1, this section gives a broad picture of the trade-off between the proximal

quasi-Newton and proximal gradient methods. The time required for each proximal gradient iteration

is dominated by the cost of the gradient computation because the evaluation of the unscaled proximal

operator is often trivial. On the other hand, the proximal quasi-Newton iteration additionally

122

9.7. NUMERICAL EXPERIMENTS

requires evaluating the scaled proximal operator. Therefore, the proximal quasi-Newton method is

most appropriate when this cost is small relative to the gradient evaluation.

9.7.2.3. Group LASSO. Our second experiment is based on the sum-of-norms regularizer de-

scribed in Examples 9.2.1 and 9.5.4. In this experiment, the n-vector (with n = 2000) is partitioned

into p = 5 disjoint blocks of equal size. The matrix A is fully lower triangular.

Figure 9.7.4a clearly shows that the QSip solver outperforms the PG method with the Barzilai-

Borwein step size. Although we required QSip to exit with a solution estimate accurate within 6

digits (i.e., log ‖x− x∗‖ ≤ 10−6), the interior solver failed to achieve the requested accuracy because

of numerical instability with the SW formula used for solving the Newton system. This raises the

question of how to use efficient alternatives to the SW update that are numerically stable and can

still leverage the structure of the problem.

0 300 600 900 1200 1500 1800

Time (secs)

-4

-3

-2

-1

0

1

lo
g
‖x
−
x
‖

Barzilai-Borwein
QSip, Mem = 1
QSip, Mem = 10

(a) Performance of solvers applied to a group-
Lasso problem.

0 300 600 900 1200 1500 1800

Time (secs)

-6

-4

-2

0

2

lo
g
‖x
−
x
‖

Barzilai-Borwein
QSip, Mem = 1
QSip, Mem = 10

(b) Performance of the QSip solver applied to
a 1-dimensional total-variation problem.

Figure 9.7.4. The horizontal axis measures elapsed time; the vertical axis measures
distance to the solution.

9.7.2.4. 1-dimensional total variation. Our third experiment sets

g(x) =
n−1∑
i=1

|xi+1 − xi|,

123

9.7. NUMERICAL EXPERIMENTS

which is the anisotropic total-variation regularizer described in Examples 9.2.2 and 9.5.2. The

matrix A is fully lower triangular. Figure 9.7.4b compares the convergence behavior of QSip with

the Barzilai-Borwein proximal solver. The Python package prox-tv [BS11, BS14] was used for the

evaluation of the (unscaled) proximal operator, needed by the Barzilai-Borwein solver. The QSip

solver, with memories of 1 and 10, outperformed the Barzilai-Borwein solver.

9.7.3. Sparse logistic regression. This next experiment tests QSip on the sparse logistic-

regression problem

minimize
x

1

N

N∑
i=1

log(1 + exp[aTi x]) + λ‖x‖1,

where N is the number of observations. The Gisette [GGBHD04] and Epsilon [Pas16] datasets,

standard benchmarks from the UCI Machine Learning Repository [Lic13], are used for the feature

vectors ai. Gisette has 5K parameters and 13.5K observations; Epsilon has 2K parameters with

400K observations. These datasets were chosen for their large size and modest number of parameters.

In all of these experiments, λ = 0.01.

Figure 9.7.5 compares QSip to the Barzilai-Borwein solver, and to newGLMNet [KKL+07],

a state-of-the-art solver for sparse logistic regression. (Other possible comparisons include the

implementation of [ST16], which we do not include because of difficulty compiling that code.)

Because we do not know a priori the solution for this problem, the vertical axis measures the

log of the optimality residual ‖xk − proxg(xk −∇f(xk))‖∞ of the current iterate. (The norm of

this residual necessarily vanishes at the solution.) On the Gisette dataset, Barzilai-Borwein and

newGLMNNet are significantly faster than the proximal quasi-Newton implementation. On the

Epsilon dataset, however, the quasi-Newton is faster at all levels of accuracy.

124

9.7. NUMERICAL EXPERIMENTS

0 500 1000 1500

-15

-10

-5

0

lo
g
(‖
x
k
−

p
ro

x
g
(x

k
−
∇
f(
x
k
))
‖ ∞

)

newGLMnet
Barzilai-Borwein
QSip, Memory 1
QSip, Memory 10

1000 2000 3000 4000

-15

-10

-5

0

.

newGLMnet
Barzilai-Borwein
QSip, Memory 1
QSip, Memory 10

0 2500 5000 7500

Time (Secs)

-15

-10

-5

0

lo
g(
‖x

k
−

p
ro

x
g
(x

k
−
∇
f(
x
k
))
‖ ∞

)

newGLMnet
Barzilai-Borwein
QSip, Memory 1
QSip, Memory 10
QSip, Memory 50

1000 2000 3000

Iterations

-15

-10

-5

0
.

newGLMnet
Barzilai-Borwein
QSip, Memory 1
QSip, Memory 10
QSip, Memory 50

Figure 9.7.5. Performance of solvers on a sparse logistic-regression problem. Top
row: Gisette dataset; bottom row: Epsilon dataset. The left and right columns,
respectively, track the optimality of the current solution estimate versus elapsed time
and iteration number.

125

9.7. NUMERICAL EXPERIMENTS

0 300 600 900 1200 1500 1800
-4

-2

0

2

lo
g
‖x
−
x
‖

PG-SR1
Barzilai-Borwein
QSip, mem = 1
QSip, mem = 10

0 300 600 900 1200 1500 1800
-4

-2

0

2

.

PG-SR1
Barzilai-Borwein
QSip, mem = 1
QSip, mem = 10

0 300 600 900 1200 1500 1800
-6

-4

-2

0

2

lo
g
‖x
−
x
‖

PG-SR1
Barzilai-Borwein
QSip, mem = 1
QSip, mem = 10

0 300 600 900 1200 1500 1800

-2

0

2

.
PG-SR1
Barzilai-Borwein
QSip, mem = 1
QSip, mem = 10

0 300 600 900 1200 1500 1800

Time (secs)

-6

-4

-2

0

2

lo
g
‖x
−
x
‖

PG-SR1
Barzilai-Borwein
QSip, mem = 1
QSip, mem = 10

0 300 600 900 1200 1500 1800

Iterations (000)s

-2

0

2

.

PG-SR1
Barzilai-Borwein
QSip, mem = 1
QSip, mem = 10

Figure 9.7.2. Top row: p = 2000 middle row: p = 1000; bottom row: p = 500.

126

CHAPTER 10

Stochastic oracles

We return to the discussion in the introduction, Section 1.3, of functions of the form

(10.0.1) f(x) := Eh(x, ξ) =

∫
h(x, ξ) dξ,

where h(·, ξ) is smooth and convex for all ξ. We define a stochastic first-order oracle as one

which gives, for some tolerance ε, an unbiased estimator of ∇f(x) which increases in accuracy as ε

approaches 0.

Definition 10.0.1 (Stochastic First-Order Oracle). f is equipped with an inexact oracle of type

A,B and C if we can find for any pair (x, ε) we can find a g = ∇f(x) + e(x) where e(x) is a random

variable which depends on x, E[e(x)] = 0, and

A. [Variance] E‖e(x)‖2 ≤ ε;

B. [High Probability] Pr (e(x)i ≥ δ) ≤ exp
(
−δ2/ε

)
for all i, x

C. [Deterministic] ‖e(x)‖2 ≤ ε.

We refer to these as A-sto-oraclef , B-sto-oraclef and C-sto-oraclef respectively.

These oracles are ordered in increasing strength: if we have an oracle of type C-sto-oracle, we

have an oracle of type B-sto-oracle holds by Serfling’s inequality (Theorem B.2.2). Furthermore if

we have an oracle of type B-sto-oracle, then we have an oracle of type A-sto-oracle because the

exponential bound implies a bound on the second moment, i.e.,

E
[
[e(x)]2i

]
=

∫ ∞
0

Pr([e(x)]2i ≥ δ) dδ ≤
∫ ∞

0
exp

(
−δ2/ε

)
dδ <∞.

127

10.2. SAMPLING WITH REPLACEMENT

10.1. Population Assumptions

The degree to which equation (10.0.1) can be estimated depends on the amount of variation

present within h(x, ·). One one extreme, if h(x, ·) = h0(x), a single sample is sufficient to obtain the

true gradient. On the other hand, if h(x, ·) were not integrable in ξ, the variation would simply

be too large for ∇f(x) to be approximable. Real applications of stochastic gradient descent fall

somewhere between these two extremes, and the following hypothesis attempts to quantify the

variation within h(x, ·), in increasing order of strength.

Hypothesis 10.1.1 (Uniform bounds). For all x, ξ one of the following hypothesis hold

A. [Variance] 1
m

∑m
i=0 E‖∇xh(x, ξi)−E[∇xh(x, ξi)]‖2 ≤ BA;

B. [Exponential Tail] supx {maxξ [∇xh(x, ξ)]i −minξ [∇xh(x, ξ)]i} < BB,

C. [Deterministic] ‖∇xh(x, ξ)‖2 ≤ BC .

10.2. Sampling With Replacement

Since the gradient is a linear operator, under very weak conditions we can move the gradient

inside the expectation, ∇xEh(x, ξ) = E∇xh(x, ξ). And hence if we could obtain a uniform sample

from ξi, we can construct an estimate of the gradient sampling m gradients at these instantiations:

g = oraclef (x, ε), g =
m∑
i=0

∇xh(x, ξi), e(x) =
1

m

m∑
i=0

∇xh(x, ξi)−E[∇xh(x, ξi)]

Our error term e(x) for this estimator is sampling error, which clearly has expectation 0.

(A) Variance Stochastic Oracle: The weakest of the three oracles only requires Hypoth-

esis 10.1.1(A), a bound on the variance of the problem. Taking expectations of ‖e(x)‖,

E‖e(x)‖2 =
1

m2

m∑
i=0

E‖∇xh(x, ξi)−E[∇xh(x, ξi)]‖2 ≤
BA
m

Thus, to achieve an error of ε, one needs at least

m =

⌈
BA
ε

⌉
samples.

128

10.3. SAMPLING WITHOUT REPLACEMENT

(B) High Probability Stochastic Oracle: The high probability bounds stem from Hoef-

fling’s inequality, applied with random variable Xi = ∇xf(x, ξi)i

Pr (e(x)i ≥ δ) = Pr (∇xh(x, ξi)i −E[∇xh(x, ξi)i] ≥ δ) ≤ exp
(−2mδ2

B2
B

)
which shows that if a random variable is bounded, its tails are not heavy. Therefore, if

Hypothesis 10.1.1(A) holds, then we need

m =

⌈
B2
B

2ε

⌉
samples

to get a high probability oracle.

(C) Deterministic Stochastic Oracle: We cannot construct a controllable deterministic

oracle. No matter how many samples we take, there is a small but nonzero chance the

error will not drop - for example if the same sample repeated every time.

10.3. Sampling Without Replacement

When ξ takes on a finite number of values with uniform probability, then f is equivalent to the

familiar case of sums of functions

(10.3.1) h(x, ξ) =
1

M

M∑
i=1

hi(x),

When the sum is finite, we can improve over independent sampling - we can take samples without

replacement. This reduces the number of samples we need to control ε, because as we approach M ,

our population size, our error goes to 0.

(A) Variance Stochastic Oracle: If Hypothesis 10.1.1 (A) holds

E‖e(x)‖2 =

(
M −m
M

) 1
m

∑m
i=0 E‖∇hi(x)−E[∇hi(x)]‖2

m
≤
(
M −m
M

)
BA
m

Notice this differs from the previous bound by a factor of 1−m/M . This term, known as

the finite population correction, approaches 0 as m approaches M , shrinking the variance

129

10.3. SAMPLING WITHOUT REPLACEMENT

of the estimator dramatically in that regime. Therefore there are

m =

⌈
BA(BA + 1)

BA + 2Mε

⌉
samples needed to get this oracle.

(B) High Probability Stochastic Oracle: The high probability bounds require a varia-

tion of Hoeffding’s inequality, Serfling’s inequality, Theorem B.2.2, which show

Pr (e(x)i ≥ δ) = Pr (∇xh(x, ξi)i −E[∇xh(x, ξi)i] ≥ δ) ≤ exp
(−2mδ2

B2
B

)
Where the final step requires the assumption (C). Therefore we require

m =

⌈
BB(BB + 1)

BB + 2Mε

⌉
samples.

(C) Deterministic Stochastic Oracle: If we assume (C) then the sampling error can be

bounded by, as shown in [FS12],

(10.3.2)

‖e(x)‖2 =
∥∥∥M −m
Mm

∑
i∈S
∇hi(x)− 1

M

∑
∇hi(x)

∥∥∥2

≤
(
M −m
Mm

∥∥∥∑
i∈S
∇hi(x)

∥∥∥+
1

M

∥∥∥ M∑
i=1

∇hi(xk)
∥∥∥)2

≤ 4
(

1− m

M

)2
BC

Therefore we require

m =

⌈
BC

(
1−

√
ε

4

)⌉
samples

to achieve a deterministic oracle.

130

CHAPTER 11

Stochastic gradient descent

Here we study our proximal gradient iteration when the gradient is replaced by the approximation,

(11.0.1) xk+1 = proxg/αk(xk − α−1
k sk), where sk = A/B/C-sto-oracle(xk, εk),

for some error schedule εk. Our aim in this chapter is to bound the probability that the rate of

convergence of the stochastic method deviates from linear-convergence rate, i.e., we provide tail

bounds on

(11.0.2) Pr(πk − ρkπ0 ≥ ε) where πk = f(xk) + g(xk)−min
x
{f(x) + g(x)}.

It is straightforward to recast these results to obtain bounds on Pr(πk ≥ ε), i.e. confidence levels for

the solution xk, (1.3.9). In Section 11.2 we describe bounds that depend on the errors generically,

and in Section 11.4 apply these results to obtain exponentially decaying tail bounds in the case

where the errors decrease linearly.

We assume for simplicity that αk ≡ 1/L. We make the following blanket assumptions about f .

First, the solution set S∗ of (1.3.2) is nonempty. For all x and y, there exist positive constants L

and τ ≥ 1 such that

‖∇f(y)−∇f(x)‖ ≤ L ‖y − x‖,(11.0.3a)

min
x̄∈S∗

‖x− x̄‖ ≤ τ ‖x− prox1/L(x− 1
L∇f(x))‖ ∀x ∈ dom(g)(11.0.3b)

Assumption (11.0.3a) asserts the Lipschitz continuity of the gradient of f . Assumption (11.0.3b) is

an error bound on the generalized residual. This generalized residual has been explored in local

contexts in Tseng and Yun [TY09] and Luo and Tseng [LT93a]; for simplicity our assumption is

stronger, however, requiring the bound to be global.

131

11.1. PROXIMAL GRADIENT WITH ERROR

τ can be seen as a nonsmooth proxy for the condition number. If g ≡ 0 and f is strongly convex

with parameter µ, then (11.0.3b) holds with τ = L/µ. More generally, if g is an indicator function on

a polyhedral set and f is strongly convex, this bound holds globally, with parameter τ = (L+ 1)/µ

[Pan87, Theorem 3.1]. Recently, a global version of this error bound has been developed for non-

strongly convex functions which degrades with the size of the neighborhood [WL14, Theorem 18].

We can use such a bound if the function g is an indicator over a polyhedral set, and f can be written

in the form

f(x) = r(Ax) + bTx

for any A, b, and r is strongly convex.

11.1. Proximal Gradient with Error

If conditions (11.0.3) hold then we can prove the following linear rate of convergence

Lemma 11.1.1. Let πk := [f +g](xk)−minx[f +g](x). Then after k iterations of algorithm (1.3.6),

πk ≤ ρkπ0 +
1

ϑ

k−1∑
i=0

ρk−1−i‖ei‖2,

where

ρ = 1− 1

1 + 40τ2
∈ (0, 1) and ϑ = L ·

(
1

40τ2
+ 1

)
> 0.

The proof of this result follows the template laid out by Luo and Tseng [LT93b, Theorem 3.1],

modified to keep the error term ek explicit. So [So13] also provides a similar derivation for the case

where g ≡ 0, in which case it seems possible to obtain tighter constants ρ and ϑ. If additionally

‖ek‖ = 0, then the result reduces to the well-known fact that steepest descent decreases the objective

value linearly. The convergence rate, as expected, is a function of the condition number. We note

that the constants are invariant to scalings of f + g.

Lemma 11.1.2 (Three-point property with error). For all y ∈ dom(g),

g(y) ≥ g(xk+1) + (∇f(xk) + ek)
Txk+1 − y +

L

2
‖xk+1 − xk‖2 +

L

2
‖y − xk+1‖2 −

L

2
‖y − xk‖2.

132

11.1. PROXIMAL GRADIENT WITH ERROR

Proof. Let ψk(x) := g(x) + f(xk) + (∇f(xk) + ek)T (x− xk) + L
2 ‖x− xk‖2. Because ψk is strongly

convex,

ψk(y) ≥ ψk(x) + qT y − x+
L

2
‖y − x‖2 for all x, y and all q ∈ ∂ψk(x).

Choose x = xk+1 := argminφk(x). Because 0 ∈ ∂ψk(xk+1), we have

ψk(y) ≥ ψk(xk+1) +
L

2
‖y − xk+1‖2,

which, after simplifying, yields the required result. �

Lemma 11.1.3. Let S∗ be the solution set, and let x̄k be the projection of xk onto S∗. Then

‖xk − x̄k‖ ≤ τ‖xk − xk+1‖+
τ

L
‖ek‖;(11.1.1a)

‖xk − x̄k‖2 ≤ 2τ2‖xk − xk+1‖2 +
5

4
(τ2/L2)‖ek‖2;(11.1.1b)

‖xk+1 − x̄k‖ ≤ (1 + τ)‖xk − xk+1‖+
τ

L
‖ek‖;(11.1.1c)

‖xk+1 − x̄k‖2 ≤
1

2
[2 + 5τ + 3τ2]‖xk − xk+1‖2 + 1

2L2 [3τ2 + τ]‖ek‖2.(11.1.1d)

Proof. For all k,

‖xk − x̄k‖
(i)

≤ τ‖xk − [xk − 1
L∇f(xk)]+‖

≤ τ‖xk − xk+1‖+ τ‖xk+1 − [xk − 1
L∇f(xk)]+‖

= τ‖xk − xk+1‖+ τ‖[xk − 1
L(∇f(x) + ek)]+ − [xk − 1

L∇f(xk)]+‖
(ii)

≤ τ‖xk − xk+1‖+ τ
L‖ek‖,

where (i) follows from Assumption (11.0.3b) and (ii) follows from the nonexpansiveness of the

proximal operator.

Part (11.1.1b). Square both sides of (11.1.1a) and then apply the inequality

(11.1.2) ab ≤ a2

2α
+
αb2

2
, ∀α > 0,

133

11.1. PROXIMAL GRADIENT WITH ERROR

to bound the cross terms:

‖xk − x̄k‖2 ≤ τ2‖xk − xk+1‖2 + (τ/L)2‖ek‖2 + (τ2/L)‖xk − xk+1‖‖ek‖

≤
(
τ2 + τ2α

2L

)
‖xk − xk+1‖2 +

(
τ2

L2 + τ2

2Lα

)
‖ek‖2 (∀α > 0)

≤ 2τ2‖xk − xk+1‖2 + 5
4(τ2/L2)‖ek‖2.

Part (11.1.1c). Use the triangle inequality and (11.1.1a): ‖xk+1−x̄k‖ ≤ ‖xk+1−xk‖+‖xk−x̄k‖ ≤
(1 + τ)‖xk − xk+1‖+ (τ/L)‖ek‖.

Part (11.1.1d). Square both sides above, and use the same technique used in Part (11.1.1b) to

bound the cross-terms: ‖xk+1 − x̄k‖2 ≤ 1
2(2 + 5τ + 3τ2)‖xk − xk+1‖2 + 1

2L2 (3τ2 + τ)‖ek‖2. �

Lemma 11.1.4 (Sufficient decrease). For all k,

πk+1 ≤
(

1− 1

1 + 40τ2

)
πk +

1

L
· 40τ2

1 + 40τ2
‖ek‖2.

Proof. First, specialize Lemma 11.1.2 with y = xk:

(11.1.3) g(xk+1) ≤ g(xk)− (∇f(xk) + ek)
T (xk+1 − xk)− L‖xk+1 − xk‖2.

Then,

h(xk+1)
(i)

≤ f(xk) +∇f(xk)
T (xk+1 − xk) +

L

2
‖xk+1 − xk‖2 + g(xk+1)

(ii)

≤ f(xk) +∇f(xk)
T (xk+1 − xk) +

L

2
‖xk+1 − xk‖2 + g(xk)

− (∇f(xk) + ek)
T (xk+1 − xk)− L‖xk+1 − xk‖2

= h(xk)− eTk (xk+1 − xk)−
L

2
‖xk − xk+1‖2

≤ h(xk) +
1

2α
‖ek‖2 +

(α
2
− L

2

)
‖xk − xk+1‖2,

where (i) uses Assumption (11.0.3a) and (ii) uses the (11.1.3). Choose α = L/2 and rearrange

terms to obtain the required result. �

134

11.1. PROXIMAL GRADIENT WITH ERROR

We now proceed with the proof of Lemma 11.1.1. Proof. Let x̄k be the projection of xk onto

the solution set S∗. By the mean value theorem,

(11.1.4) f(xk+1)− f(x̄k) = ∇f(ξ)T (xk+1 − x̄k).

From Lemma 11.1.2, we have

g(xk+1)− g(x̄k) ≤ −(∇f(xk) + ek)
T (xk+1 − x̄k)−

L

2
‖xk+1 − xk‖2 −

L

2
‖x̄k − xk+1‖2 +

L

2
‖x̄k − xk‖2

≤ −(∇f(xk) + ek)
T (xk+1 − x̄k) +

L

2
‖x̄k − xk‖2.(11.1.5)

Also note that

(∇f(ξ)−∇f(xk))
T (xk+1 − x̄k) ≤ ‖∇f(ξ)−∇f(xk)‖‖xk+1 − x̄k‖

(i)

≤ L‖ξ − xk‖‖xk+1 − x̄k‖

≤ L[‖xk+1 − xk‖+ ‖xk − x̄k‖] · ‖xk+1 − x̄k‖

≤ [L(1 + τ)‖xk − xk+1‖+ τ‖ek‖] · [(1 + τ)‖xk − xk+1‖+ τ
L‖ek‖]

= L(1 + τ)2‖xk − xk+1‖2 + 2[τ(1 + τ)]‖xk − xk+1‖‖ek‖+ τ2/L‖ek‖2

≤ [L(1 + τ)2 + 1
ατ(1 + τ)]‖xk − xk+1‖2 + [τ2/L+ ατ(1 + τ)]‖ek‖2

≤ L(1 + 3τ + 2τ2)‖xk − xk+1‖2 + 1
L(2τ2 + τ)‖ek‖2,

where (i) follows from (11.0.3a). In the steps which follow, we apply the relevant inequalities in

Lemma 11.1.3, group terms, bound every cross term using (11.1.2), and repeat the process until we

reach the final result:

h(xk+1)− h(x̄k)
(i)

≤ (∇f(ξ)−∇f(xk))
T (xk+1 − x̄k)− eTk (xk+1 − x̄k) +

L

2
‖x̄k − xk‖2

≤ L(1 + 3τ + 2τ2)‖xk − xk+1‖2 + 1
L(2τ2 + τ)‖ek‖2

+
α

2
‖ek‖2 + 1

2α‖xk+1 − x̄k‖2 +
L

2
‖x̄k − xk‖2 ∀α > 0

≤ L(1 + 3τ + 2τ2)‖xk − xk+1‖2 + 1
L(2τ2 + τ)‖ek‖2

+
α

2
‖ek‖2 + 1

4α [2 + 5τ + 3τ2]‖xk − xk+1‖2

135

11.1. PROXIMAL GRADIENT WITH ERROR

+ 1
4L2α

[3τ2 + τ]‖ek‖2 + Lτ2‖xk − xk+1‖2 + 5L
8 (τ2/L2)‖ek‖2

≤
(
L(1 + 3τ + 2τ2) + 1

4α [2 + 5τ + 3τ2] + Lτ2
)
‖xk − xk+1‖2+(

1
L(2τ2 + τ) +

α

2
+ 1

4L2α
[3τ2 + τ] + 5L

8 (τ2/L2)
)
‖ek‖2

(ii)

≤ 10Lτ2‖xk − xk+1‖2 + 1
L10τ2‖ek‖2

(iii)

≤ 40τ2[h(xk)− h(xk+1)] + (4/L2 + 1
L10τ2)‖ek‖2

≤ 40τ2[h(xk)− h(xk+1)] + 1
L40τ2‖ek‖2.

In the steps above, (i) follows by adding inequalities (11.1.4) and (11.1.5). Also, we make use of

Lemma 11.1.3 to bound all stray terms in terms of ‖xk − xk+1‖2 and ‖ek‖2, and Equation (11.1.2)

to bound the cross-terms. In (ii) we make use of the assumption that τ ≥ 1 and set α = 1/L.

Finally, in (iii) we make use of Lemma 11.1.4 to transition from a bound on the distance between

successive iterates xk to differences in successive values h(xk). Rearranging terms, we get

(1 + 40τ2)h(xk+1)− (1 + 40τ2)h(x̄k) ≤ 40τ2(h(xk)− h(x̄k)) +
1

L
40τ2‖ek‖2,

which is true if and only if the desired result holds:

πk+1 ≤
(

1− 1

1 + 40τ2

)
πk +

1

L
· 40τ2

1 + 40τ2
‖ek‖2.

�

This bound is of immediate utility when we have deterministic bounds on the errors ‖ek‖2, e.g.

(10.3.2). And we can exploit the linearity of expectation to obtain a bound on expectation,

Eπk ≤ ρkπ0 +
1

ϑ

k−1∑
i=0

ρk−1−i E ‖ei‖2,

which by Markov’s Inequality implies convergence in probability.

Example 11.1.5 (Gradient descent with independent Gaussian noise, part I). Let ek ∼ N(0, σ2I).

Because ‖ek‖2 is a sum of n independent Gaussians, it follows a chi-squared distribution with mean

136

11.2. PROBABILISTIC BOUNDS FOR GRADIENT DESCENT WITH RANDOM ERROR

E‖ek‖2 = nσ2. Therefore,

(11.1.6) Eπk − ρkπ0 ≤
1

ϑ

k−1∑
i=0

ρk−1−iE‖ei‖2 =
nσ2

ϑ

k−1∑
i=0

ρk−1−i.

Take the limit inferior of both sides of (11.1.6), and note that limk→∞
∑k−1

i=0 ρ
k−1−i = 1/(1 − ρ).

Use the values of the constants in Lemma 11.1.1 to obtain the bound

E lim inf
k→∞

πk ≤ lim inf
k→∞

Eπk ≤
20τ2

L
nσ2,

where the first inequality follows from the application of Fatou’s Lemma [RF10, Ch. 4]. Hence, even

though limk→∞ πk may not exist, we can still provide a lower bound on the distance to optimality

that is proportional to the variance of the error term.

11.2. Probabilistic bounds for gradient descent with random error

The first bound (Section 11.2.1) that we develop makes no assumption on the relation of the

gradient errors between iterations, i.e., the error sequence may or may not be history dependent,

and we thus refer to this as a generic error sequence. The second bound (Section 11.2.2) makes

the stronger assumption about the relationship of the errors between iterations. The second

bound (Section 11.2.2) makes the stronger assumption about the relationship of the errors between

iterations.

Let Rk :=
∑k=1

i=1 ρ
i, where ρ < 1 is a constant specified in Lemma 11.1.1, and σ(e1, e2, . . . , ek)

be the σ-algebra generated by the sequence of errors ei.

11.2.1. Generic error sequence. Our first exponential tail bounds are defined in terms of

the moment-generating function

γk(θ) := E exp(θ‖ek‖2)

of the error norms ‖ek‖2. We make the convention that γk(θ) = +∞ for θ /∈ domγk.

Theorem 11.2.1 (Tail bound for generic errors). For algorithm (1.3.6),

(11.2.1a) Pr(πk − ρkπ0 ≥ ε) ≤ inf
θ>0

{
exp(−θϑε/Rk)

Rk

k−1∑
i=0

ρk−1−iγi(θ)

}
.

137

11.2. PROBABILISTIC BOUNDS FOR GRADIENT DESCENT WITH RANDOM ERROR

If γk ≡ γ for all k (i.e., the error norms ‖ek‖2 are identically distributed), then the bound simplifies

to

(11.2.1b) Pr(πk − ρkπ0 ≥ ε) ≤ inf
θ>0
{exp(−θϑε/Rk)γ(θ)} .

Proof. By the definition of Rk,
(∑k−1

i=0 ρ
k−1−i

)
/Rk = 1. Thus, for θ > 0,

E exp

(
θ
k−1∑
i=0

ρk−1−i‖ei‖2
)

= E exp

(
k−1∑
i=0

ρk−1−i

Rk
θRk‖ei‖2

)
(i)

≤ E

k−1∑
i=0

ρk−1−i

Rk
exp(θRk‖ei‖2)

(ii)
=

1

Rk

k−1∑
i=0

ρk−1−iγi(θRk),

where (i) follows from the convexity of exp(·), and (ii) follows from the linearity of the expectation

operator and the definition of γi. Together with Markov’s inequality, the above implies that for all

θ > 0,

Pr

(
k−1∑
i=0

ρk−1−i‖ei‖2 ≥ ε
)

= Pr

(
exp

[
θ
k−1∑
i=0

ρk−1−i‖ei‖2
]
≥ exp(θε)

)

≤ exp(−θε)E exp

(
θ
k−1∑
i=0

ρk−1−i‖ei‖2
)

≤ exp(−θε)
Rk

k−1∑
i=0

ρk−1−iγi(θRk).(11.2.2)

This inequality, together with Lemma 11.1.1, implies that for all θ > 0,

Pr
(
πk − ρkπ0 ≥ ε

)
≤ Pr

(
1

ϑ

k−1∑
i=0

ρk−1−i‖ei‖2 ≥ ϑε
)
≤ exp(−θϑε)

Rk

k−1∑
i=0

ρk−1−iγi(θRk),

where we use the elementary fact that Pr(X ≥ ε) ≤ Pr(Y ≥ ε) if X ≤ Y almost surely. Redefine

θ as θRk, and take the infimum of the right-hand side over θ > 0, which gives the required

inequality (11.2.1a). The simplified bound (11.2.1b) follows directly from the definition of Rk. �

When the errors are identically distributed, there is an intriguing connection between the tail

bounds described in Theorem 11.2.1 and the convex conjugate of the cumulant-generating function

of that distribution, i.e., (log ◦ γ)∗.

138

11.2. PROBABILISTIC BOUNDS FOR GRADIENT DESCENT WITH RANDOM ERROR

Theorem 11.2.2 (Tail bound for identically-distributed errors). Suppose that the error norms

‖ek‖2 are identically distributed. Then for algorithm (1.3.6),

log Pr(πk − ρkπ0 ≥ ε) ≤ − [log γ(·)]∗ (ϑε/Rk).

Proof. Take the log of both sides of (11.2.1b) to get

log Pr(πk − ρkπ0 ≥ ε) ≤ log inf
θ>0
{exp(−θϑε/Rk) γ(θ)} = − sup

θ>0
{(ϑε/Rk)θ − log γ(θ)} ,

which we recognize as the negative of the conjugate of log ◦ γ evaluated at ϑε/Rk. �

Note that these bounds are invariant with regard to scaling, in the sense that if the objective

function f is scaled by some α > 0, then the bounds hold for αε.

The following example illustrates an application of this tail bound to the case in which the

errors follow a simple distribution with a known moment-generating function.

Example 11.2.3 (Gradient descent with independent Gaussian noise, part II). As in Example 11.1.5,

let ek ∼ N(0, σ2I). Then ek is a scaled chi-squared distribution with moment-generating function

γk(θ) = (1− 2σ2θ)−n/2, θ ∈
[
0,

1

2σ2

)
.

Note that

[log γ(·)]∗(µ) =
µ− nσ2

2σ2
+
n

2
log(nσ2/µ)forµ > nσ2.

We can then apply Corollary 11.2.2 to this case to deduce the bound

Pr(πk − ρkπ0 ≥ ε) ≤
(

exp(1)

n
· ϑε

σ2Rk

)n/2
exp

(
− ϑε

2σ2Rk

)
for ε >

nσ2Rk
ϑ

.

The bound can be further simplified by introducing an additional perturbation δ > 0 that increases

the base of the exponent:

(11.2.3) Pr(πk − ρkπ0 ≥ ε) = O
[
exp

(
−δ ϑε

2σ2Rk

)]
for all δ ∈ [0, 1),

which highlights the exponential decrease of the bound in terms of ε.

139

11.2. PROBABILISTIC BOUNDS FOR GRADIENT DESCENT WITH RANDOM ERROR

11.2.2. Unconditionally bounded error sequence. In contrast to the previous section, we

now assume that there exists a deterministic bound on the conditional expectation E
[
exp(θ‖ek‖2) | Fk−1

]
.

We say that this bound holds unconditionally because it holds irrespective of the history of the

error sequence.

Lemma 11.2.4. Assume that E
[
exp(θ‖ek‖2) | Fk−1

]
is finite over [0, σ), for some σ > 0. Therefore

there exists, for each k, a deterministic function γ̄k : R+ → R+ ∪ {∞} such that

γ̄k(0) = 1 and E
[
exp(θ‖ek‖2) | Fk−1

]
≤ γ̄k(θ).

(Thus, the bound is tight at θ = 0.)

The existence of such a function in fact implies a bound on the moment-generating function of

‖ek‖2. In particular,

(11.2.4) γk(θ) := E exp(θ‖ek‖2) = E
[
E
[
exp(θ‖ek‖2) | Fk−1

]]
≤ Eγ̄k(θ) = γ̄k(θ).

The converse, however, is not necessarily true. To see this, consider the case in which the errors

e1, . . . , ek−1 are independent Bernoulli-distributed random variables, and ek is a deterministic

function of all the previous errors, e.g., Pr(ei = 0) = Pr(ei = 1) = 1/2 for i = 1, . . . , k − 1, and the

error on the last iteration is completely determined by the previous errors:

ek =


1 if e1 = e2 = · · · = ek−1,

0 otherwise.

Therefore, Pr(ek = 1) = (1/2)k−1 and Pr(ek = 0) = 1 − (1/2)k−1, and the moment-generating

function of ek is γk(θ) = 1− 21−k(1 + exp θ). Then,

E[exp(θe2
k) | e1, . . . , ek−1] =


exp θ if e1 = e2 = · · · = ek−1,

1 otherwise,

whose tightest deterministic upper bound is γ̄k(θ) = exp θ. However, γ̄k(θ) ≥ γk(θ) for all θ ≥ 0.

The following result is analogous to Theorem 11.2.1.

140

11.2. PROBABILISTIC BOUNDS FOR GRADIENT DESCENT WITH RANDOM ERROR

Theorem 11.2.5 (Tail bounds for unconditionally bounded errors). Suppose that Assumption 11.2.4

holds. Then for algorithm (1.3.6),

Pr(πk − ρkπ0 ≥ ε) ≤ inf
θ>0

{
exp(−θϑε)

k−1∏
i=0

γ̄i(θρ
k−i−1)

}
.

Proof. The proof follows the same outline as many martingale-type inequalities [Azu67, CL06].

We obtain the following relationships:

E exp

[
θ

k−1∑
i=0

ρk−1−i‖ei‖2
]

(i)
= E

[
E

[
exp

[
θ

k−1∑
i=0

ρk−1−i‖ei‖2
]∣∣∣∣∣Fk−2

]]

= E

[
E

[
exp

[
θρ0‖ek−1‖2 + θ

k−2∑
i=0

ρk−1−i‖ei‖2
]∣∣∣∣∣Fk−2

]]

(ii)
= E

[
exp

[
θ
k−2∑
i=0

ρk−1−i‖ei‖2
]

E
[
exp

(
θ‖ek−1‖2

)∣∣Fk−2

]]
(iii)

≤ E

[
exp

[
θ

k−2∑
i=0

ρk−i−1‖ei‖2
]]

γ̄k−1(θ)

(iv)

≤
k−1∏
i=0

γ̄i(θρ
k−i−1),

where (i) follows from the law of total expectations, i.e., EY [E[X|Y]] = E[X]; (ii) follows from

the observation that the random variable exp(θ
∑k−2

i=0 ρ
k−1−i‖ei‖2) is a deterministic function of

e0, . . . , ek−2, and hence is measurable with respect to Fk−1 and can be factored out of the expectation;

(iii) uses Assumption 11.2.4; and to obtain (iv) we simply repeat the process recursively.

Thus, we now have a bound on the moment-generating function of the discounted sum of errors

θ
∑k−1

i=0 ρ
k−1−i‖ei‖2, and we can continue by using the same approach used to derive (11.2.2). The

remainder of the proof follows that of Theorem 11.2.1, except that the sums over i = 0, . . . , k are

replaced by products over that same range. �

In an application where both γk and γ̄k are available, it is not true in general that either of the

bounds obtained in Theorems 11.2.1 and 11.2.5 are tighter than the other. When only a bound γ̄k

that satisfies Assumption 11.2.4 is available, however, (which is the case in the sampling application

we shall describe) we could leverage (11.2.4) and apply Theorem 11.2.1 to obtain a valid bound in

141

11.2. PROBABILISTIC BOUNDS FOR GRADIENT DESCENT WITH RANDOM ERROR

terms of γ̄k by simply substituting it for γk. However, as shown below, in this case it is better to

apply Theorem 11.2.5 because it yields a uniformly better bound:

(11.2.5) Pr
(
πk − ρkπk ≥ ε

)
≤ inf

θ>0

{
exp

(
−θϑε+

k−1∑
i=0

log γ̄i
(
θρk−1−i))} ,

while Theorem 11.2.1 (with γk replaced by γ̄k) gives us

(11.2.6) Pr
(
πk − ρkπ0 ≥ ε

)
≤ inf

θ>0

{
exp

(
−θϑε+ log

[
1

Rk

k−1∑
i=0

ρk−1−iγ̄i(θRk)

])}
,

where we rescale θ by Rk. A direct comparison of the two bounds show that they only differ by one

term:

log

[
1

Rk

k−1∑
i=0

ρk−i−1γ̄i(θRk)

]
vs.

k−1∑
i=0

log γ̄i(θρ
k−1−i).

Because Rk =
∑k

i=0 ρ
k−i−1, the term in the log on the left is a convex combination of the functions

γ̄i. Therefore,

log

[
1

Rk

k−1∑
i=0

ρk−i−1γ̄i(θRk)

]
(i)

≥
k−1∑
i=0

ρk−1−i

Rk
log γ̄i(θRk)

(ii)

≥
k−1∑
i=0

log γ̄i(θRk ρ
k−1−i/Rk)

=
k−1∑
i=0

log γ̄i(θρ
k−1−i),

where (i) is an application of Jensen’s inequality and the concavity of log, and (ii) follows from the

convexity of the cumulant generating function. It is then evident that (11.2.5) implies (11.2.6).

As with Corollary 11.2.2, by taking logs of both sides above, a connection can be made between

our bound and the infimal convolution when γ̄ is log-concave:

log Pr(πk − ρkπ0 ≥ ε) ≤
[
k−1⊗
i=0

[log γ̄i(· ρk−i−1)]∗

]
(ϑε/Rk),

where ⊗ denotes the infimal convolution operator.

Example 11.2.6 (Gradient descent with independent Gaussian noise, part III). As in Exam-

ple 11.2.3, let ek ∼ N(0, σ2I). Because the errors ek are independent, E
[

exp(θ‖ek‖2) | Fk−1

]
=

142

11.2. PROBABILISTIC BOUNDS FOR GRADIENT DESCENT WITH RANDOM ERROR

E exp(θ‖ek‖2) = γk(θ), which satisfies Assumption 11.2.4 with γ̄k(θ) := γk(θ). Apply Theorem 11.2.5

to obtain the bound

Pr (πk − ρkπ0 ≥ ε) ≤ inf
θ>0

{
exp(−θϑε) ·

k−1∏
i=0

(1− 2σ2θρk−1−i)−n/2

}
.(11.2.7)

Apply Lemma B.1.2 to obtain

Pr (πk − ρkπ0 ≥ ε) ≤
(

exp(1)

nα
· ϑε
σ2

)nα
2

exp

(
−ϑε
σ2

)
for ε >

nασ2

ϑ
,

where α = 1− (log ρ)−1. We simplify the bound to obtain

(11.2.8) Pr (πk − ρkπ0 ≥ ε) = O
[
exp

(
− δ · ϑε

σ2

)]
for all δ ∈ (0, 1);

cf. (11.2.3).

As an aside, we note that we can easily accommodate correlated noise, i.e., ek ∼ N(0,Σ2)

where Σ is an n× n positive definite matrix. The error ‖ek‖2 then has the distribution of a sum of

chi-squared random variables that are weighted according to the eigenvalues σj of Σ [Imh61]:

‖ek‖2 ∼
n∑
j=1

σ2
jχ

2
1,

and so the above tail bounds hold with σ = σmax.

The bounds obtained in Examples 11.2.3 and 11.2.6 illustrate the relative strengths of Theo-

rems 11.2.1 and 11.2.5. Comparing (11.2.3) and (11.2.8), we see that the asymptotic bounds only

differ by a factor of 1/Rk. Hence, for large ε, the bound in Example 11.2.3 is uniformly weaker than

the bound in Example 11.2.6. Note that this holds despite the simplification (i.e., Lemma B.1.2)

used to simply (11.2.7).

143

11.3. FROM TAIL BOUNDS TO MOMENT-GENERATING BOUNDS

11.3. From tail bounds to moment-generating bounds

Let G be a σ-algebra. Consider the exponential bound on the conditional probability [Kle08,

Definition 8.11] of a sequence of univariate random variables Xi:

(11.3.1) Pr(Xi ≥ ε | G) := E[I[Xi ≥ ε] | G] ≤ exp(−ε2/ν) for some ν > 0.

In this section we show that this bound translates into a deterministic bound on the conditional

moment-generating function

E[exp(θ‖X‖2) | G],

where X = (X1, X2, . . . , Xn) is an n-vector. The subsidiary lemmas follow standard arguments

[BLM13, Chapter 2], except for the requirement to condition on G; hence, we rederive the required

results.

Lemma 11.3.1 (Bounds on moments). If (11.3.1) holds for some ν > 0, then

E[X2v
i | G] ≤ v! νv for all v = 0, 1, 2,

Proof. We follow a similar argument to [BLM13, Theorem 2.1]. Use the substitution ε2v = τ to

obtain

Pr
(
Y 2v ≥ τ | G

)
≤ exp

(
−τ1/v/ν

)
.

Integrate to get

E[Y 2v | G] =

∫ ∞
0

E[I[Y 2v ≥ τ] | G] dτ ≤
∫ ∞

0
exp(−τ1/v/ν) dτ = Γ(1 + v)νv = v!νv,

where the first equality comes from the conditional layer-cake representation of positive random

variables [Swa09]. �

With this result, we can translate the bound (11.3.1) into a bound on the moment-generating

function of Y 2.

144

11.3. FROM TAIL BOUNDS TO MOMENT-GENERATING BOUNDS

Lemma 11.3.2 (Bound on conditional MGF). If (11.3.1) holds for some ν > 0, then

E[exp (θY 2) | G] ≤ 1

1− θν for θ ∈ [0, 1/ν).

Proof. Using the Taylor expansion of E[exp
(
θY 2

)
| G],

E[exp
(
θY 2

)
| G] = E

[∞∑
i=0

θi
Y 2i

i!

∣∣∣∣∣ G
]

(i)
=

∞∑
i=0

θi
E[Y 2i | G]

i!

(ii)

≤
∞∑
i=0

θi
i!νi

i!
=

∞∑
i=0

(θν)i =
1

1− θν .

Equality (i) is obtained via the conditional monotone convergence theorem [Wil91, Theorem 9.7e],

which allows us to exchange limits and conditional expectations; inequality (ii) is obtained using

Lemma 11.3.1. �

We now generalize this last result to the case in which X is a random n-vector.

Theorem 11.3.3 (From tail bounds to moment-generating bounds). Suppose X is a random

n-vector for which the tail bound (11.3.1) holds for each i for some ν > 0. Then

E[exp(θ‖X‖2) | G] ≤ 1

1− θνn for θ ∈ [0, 1/νn).

Proof. From Lemma 11.3.2,

(11.3.2) E
[
exp

(
θn
[
X
]2
i

)
| G
]
≤ 1

1− θnν .

The following inequalities hold:

E
[
exp (θ‖X‖2)

∣∣G] = E

[
exp

(
θ

n∑
i=1

[
X
]
2
i

)∣∣∣∣∣G
]

= E

[
exp

(
θn

n∑
i=1

1

n

[
X
]2
i

)∣∣∣∣∣G
]

(i)

≤ E

[
n∑
i=1

1

n
exp

(
θn
[
X
]2
i

)∣∣∣∣∣G
]

=
n∑
i=1

1

n
E
[
exp

(
θn
[
X
]2
i

)∣∣∣G] (ii)

≤ 1

1− θnν ,

where (i) follows from Jensen’s inequality and (ii) follows from (11.3.2). �

145

11.4. CONVERGENCE RATES FOR LINEARLY DECREASING ERRORS

11.4. Convergence rates for linearly decreasing errors

Section 11.2 describes tail bounds for (11.0.2) in terms of any available bound on the moment-

generating function of the error ek. A goal of this section is to show that an exponential tail bound

on the error translates to an exponential tail bound on (11.0.2). Thus we consider the case where

the tails on each component of ek are exponentially decreasing (cf. Hypothesis 10.1.1.B below). We

also consider two additional conditions on the error sequence, which illustrate the exponential tail

bound’s relative strength in the following hierarchy of assumptions.

11.4.1. Expectation-based and deterministic bounds. Although our main goal is to

derive tail bounds, it is useful to compare these against the expectation-based and deterministic

bounds derived in [FS12, Theorem 3.3]. We give here a reformulation of these results, which rely on

parts A and C of Hypothesis 10.1.1.

Theorem 11.4.1 (Bound in expectation). If we use the schedule

sk = A-sto-oracle(xk, λβ
k)

in the proximal iteration (11.0.1) for some λ > 0 and β ∈ (0, 1), then

Eπk − ρkπ0 = O(k[max{β, ρ}]k),

and if ρ 6= β, then the bound holds with O([max{β, ρ}]k). If we use sk = B-sto-oracle(xk, λβ
k)

instead, then this result holds verbatim, except without the expectation operator.

Proof. For β ≤ ρ, it follows from Lemma 11.1.1 and Hypothesis 10.1.1.A that

(11.4.1) Eπk − ρkπ0 ≤
1

ϑ

k−1∑
i=0

ρk−i−1E‖ei‖2 ≤
λρk−1

ϑ

k−1∑
i=0

(β/ρ)i ≤ λ

ϑ
ρk−1k.

Similarly, for β > ρ,

(11.4.2) Eπk − ρkπ0 ≤
λβk−1

ϑ

k−1∑
i=0

(ρ/β)i ≤ λ

ϑ
βk−1k.

146

11.4. CONVERGENCE RATES FOR LINEARLY DECREASING ERRORS

We summarize these last two bounds in the single expression

Eπk − ρkπ0 ≤
λ

ϑ
max {β, ρ}k−1 k = O(k[max {β, ρ}]k).

If β 6= ρ, then it follows from the second inequality in (11.4.1) and the first inequality in (11.4.2),

and the summation formula for geometric series, that

(11.4.3) Eπk − ρkπ0 ≤
λ

ϑ
max{β, ρ}k−1 1

|β − ρ| = O(max{β, ρ}k).

If we are using a deterministic oracle instead, than the proof above proceeds verbatim, except

that the expectation operator above can be removed. �

11.4.2. Tail bounds. The next result gives exponential tail bounds in terms of the iteration

k, and the deviation ε from the linear rate of deterministic steepest descent.

Theorem 11.4.2 (Convergence rates). If we use the schedule

(11.4.4) sk = C-sto-oracle(xk, λβ
k)

in the proximal iteration (11.0.1) for some λ > 0 and β ∈ (0, 1), then for all k for some β ∈ (0, 1)

and λ > 0,

Pr(πk − ρkπ0 ≥ ε) = O
(

exp

[
− ε

max{β, ρ}k · ζ
])

where ζ depends on λ, τ and n.

Proof. The bound on the high probability stochastic oracle is uniform for all x, and hence applies

regardless of error history sequence. Thus by Theorem 11.3.3 the conditioned moment-generating

function of ‖ek‖2 is bounded:

(11.4.5) E[exp(θ‖ek‖2) | Fk−1] ≤ 1

1− θnUk
for θ ∈

[
0,

1

nUk

)
.

Define

α1 = max
k

ρk−i−1nUk and α2 = max {β, ρ} .

147

11.4. CONVERGENCE RATES FOR LINEARLY DECREASING ERRORS

We can now use Theorem 11.2.5, where we identify γ̄ with the bound in (11.4.5) (and define

γ̄(θ) =∞ outside of the required interval), to obtain the tail bound

Pr(πk − ρkπ0 ≥ ε)
(i)

≤ inf
θ∈[0,1/α1)

{
exp(−θϑε)∏k−1

i=0

(
1− θnUkρk−i−1

)}
(ii)

≤ inf
θ∈[0,1/α1)

{
exp(−θϑε)∏k−1

i=0 (1− θnλβiρk−i−1)

}
(iii)
= inf

θ∈[0,1/α1)

{
exp(−θϑε)∏k−1

i=0 (1− θnλαk−1
2 min{β/ρ, ρ/β}i)

}
,(11.4.6)

where (i) follows from the definition of α1, (ii) follows from Definition 10.0.1, part (B) and our

schedule 11.4.4, and (iii) follows from the definition of α2.

Define α3 = 1 + 1/ log(1/min{β/ρ, ρ/β}) = 1 + 1/ |log β − log ρ|, and apply Lemma B.1.4

to (11.4.6) to obtain, for all ε ≥ α3α
k−1
2 nλ/ϑ,

(11.4.7) Pr
(
πk − ρkπ0 ≥ ε

)
≤
(

exp(1)

α3
· ϑε

nλαk−1
2

)α3

exp

(
− ϑε

nλαk−1
2

)
.

Next, note that min{β/ρ, ρ/β} ≤ 1, and so from (11.4.6), for all ε ≥ kαk−1
2 nλ/ϑ,

Pr
(
πk − ρkπ0 ≥ ε

)
≤ inf

θ∈[0,1/α1)

{
exp(−θϑε)

(1− θnλαk−1
2 ϑ)k

}
(i)

≤
(

exp(1)

k
· ϑε

nλαk−1
2

)k
exp

(
− ϑε

nλαk−1
2

)
,(11.4.8)

where (i) follows from Lemma B.1.4. Let ᾱk := min{α3, k}. Inequalities (11.4.7) and (11.4.8) can

be expressed together, for all ε ≥ ᾱkαk−1
2 nλ/ϑ, as

(11.4.9) Pr(πk − ρkπ0 ≥ ε) ≤
(

exp(1)

ᾱk
· ϑε

nλαk−1
2

)ᾱk
exp

(
− ϑε

nλαk−1
2

)
.

Consider the case in which the O depends asymptotically only on ε. Then

Pr(πk − ρkπ0 ≥ ε) ≤ O
[

exp

(
−δ · ϑε

αk−1
2

)]
,

148

11.4. CONVERGENCE RATES FOR LINEARLY DECREASING ERRORS

5 10 15 20
0

0.5

1

1.5

2

Number of passes through data

π
k

Eπk Deterministic

Figure 11.4.1. An illustration of the bounds derived in Theorem 11.4.2; this figure
plots the non-asymptotic bound shown in (11.4.9). The thick black line (bottom left)
shows the bound in expectation (see Part 1 of Theorem 11.4.2). For comparison,
the thick red line (top right) shows the deterministic bound on the distance to the
solution [FS12, Theorem 3.1]. The thin lines in between give the bounds on πk−ρkπ0

that correspond to probabilities 10−i for i = 10, 20, . . . , 100. Assume M = 300,
β = 0.9, and ρ = 0.9.

for some positive δ independent of ϑ and α2. Now consider the case in whichO depends asymptotically

only on k. Take the logarithm of both sides of (11.4.9):

log Pr(πk − ρkπ0 ≥ ε) ≤ ᾱk log

(
ϑε

ᾱknλα
k−1
2

)
+ ᾱk −

ϑε

nλαk−1
2

= O
(
− ε

αk−1
2

)
.

This implies (9.1.3). �

Corollary 11.4.1 (Overwhelming tail bounds). Under schedule (11.4.4), for k fixed, there exists

for all A > 0 a constant CA > 0 such that

Pr (πk − ρkπ0 ≥ ε) ≤ CAε−A.

Take ε fixed. There exists a constant CA > 0 such that for all A > 0,

Pr (πk − ρkπ0 ≥ ε) ≤ CAA−k.
149

11.5. NUMERICAL EXPERIMENTS

0 40 80
0

0.5

1
·104

iteration (k)

π
k

10−10−
·
10

0 40 80

−6

0

6

iteration (k)
P
r(
π
k
−

E
π
k
≥

2
0
0
)

Figure 11.5.1. Left panel: distance to solution for quantiles 1 − 0.5j and 0.5j ,
j = −5 : 5. Right panel: probability of the deviation from expected value against a
log-log y-axis, which exhibits the tail that converges with a doubly-exponential tail.

Proof. Because the required result follows from Theorem 11.4.2, we can pick up from the proof

of that result. In particular, the right-hand side of (11.4.9) can be equivalently expressed in two

ways as

(
exp(1)

ᾱk
· ϑε

nλαk−1
2

)ᾱk
exp

(
− ϑε

nλαk−1
2

)
=


O(1) · εᾱk exp(−ε · O(1))

exp(φ1(k)) exp (− exp (φ2(k))) ,

where

φ1(k) := ᾱk log (ϑεα2/ᾱkλ) + ᾱk − kᾱk logα2 and φ2(k) := log(ϑεα2/λ)− k logα2,

and the notation O(1) stands for positive constants. The result then follows from Lemma B.1.1. �

11.5. Numerical experiments

Figure 11.5.1 shows the results of a Monte Carlo simulation on a logistic regression problem,

minimize
x

m∑
i=1

log(1 + exp[−biaTi x]),

150

11.5. NUMERICAL EXPERIMENTS

ai ∈ Rn is a vector of input features, and bi ∈ {−1, 1} is the corresponding observation. For this

problem, we generate a dataset with M = 100 pairs (ai, bi) of random points. Algorithm (11.0.1)

where the εk ∝ βk with β ≈ .91, is run 10K times on this fixed dataset. The starting point between

runs is the same, and the only difference is the randomness of the sampling. Figure 11.5.1 summarizes

the results of this experiment. As expected, the sample paths are concentrated tightly around

the mean. Furthermore, the probability of deviating from the mean decays doubly-exponentially

(cf.Theorem 11.4.2), as evidenced by the linear tail shown in the right panel.

151

Part 5

Paths forward

CHAPTER 12

Paths forward

As this thesis draws to its conclusion, we pause to reflect on possible directions of future research.

The fields of proximal gradient and its stochastic variants remain a vibrant field of research. This

chapter highlights some recent progress made in tackling problems of the form (1.3.1) and possible

directions of future research.

12.1. Forward backward envelope

Recently a new approach to solving composite problems of the form (1.3.2) has been developed

with very promising numerical results. This relies on a special kind of smoothing for problems with

composite structure where f is twice differentiable, the forward-backwards envelope:

fenvγf,g(x) = f(x)− γ

2
‖∇f(x)‖2 + envγIg (x− γ∇f(x)).

When γ ∈ (0, 1/L) it can be shown that any stationary point of fenv is also a solution of (1.3.2).

And though fenvγf,g is nonconvex, it is very well behaved in many ways, including a computable

gradient

∇fenvγf,g(x) =
1

γ
(I − γ∇2f(x))(x− proxγg(x− γ∇f(x)).

12.2. Proximal Quasi-Newton

Much of our discussion revolves around techniques for solving the Newton systems (9.4.2) that

arise in the implementation of an interior method for solving QPs. The Sherman-Woodbury formula

features prominently because it is a convenient vehicle for taking advantage of the structure of

the Hessian approximations and the structured matrices that typically define QS functions. Other

alternatives, however, may be preferable, depending on the application.

153

12.2. PROXIMAL QUASI-NEWTON

For example, we might choose to reduce the 3-by-3 matrix in (9.4.2) to an equivalent symmetrized

system  −Q AT

A D

 ∆y

∆s

 = −

 rd

rp − V −1rµ


with D := V −1S. As described by [BW08], Krylov-based method, such as MINRES [PS75], may be

applied to a preconditioned system, using the preconditioner

P =

 −L(u)

D


where L(u) is defined in (9.4.5). This “ideal” preconditioner clusters the spectrum into three distinct

values, so that in exact arithmetic, MINRES would converge in three iterations. The application of

the preconditioner requires solving systems with L and D, and so all of the techniques discussed

in §9.5 apply. One benefit, however, which we have not explored here, is that the preconditioning

approach allows us to approximate L−1(u), rather than to compute it exactly, which may yield

computational efficiencies for some problems.

154

Part 6

Appendix

APPENDIX A

Appendix: Cutting plane methods

A.1. Some General Facts

Lemma A.1.1. (Volume of a Parabolid) Let ωn be the volume of the n unit ball. Then

vol({(t, x) | K2 ‖x‖2 ≤ t ≤ h}) =
2ωn

n[K/2]n/2
· h(2+n)/2.

Proof. This proof is an application of the “disk method” in calculus. Since

K

2
‖x‖2 ≤ t ⇐⇒ ‖x‖ ≤

√
2t/K,

each slice of P in the first dimension is a n−ball of radius
√

2t/K, with area ωn(2t/K)n/2. We

integrate this from 0 to h, i.e.,

vol(P) = ωn

∫ h

0
[2t/K]n/2dt =

ωn

[K/2]n/2

∫ h

0
tn/2dt =

2ωn

n[K/2]n/2
· h(n+2)/2.

�

Lemma A.1.2. (Volume approximations for MIE of the unit circular cone) Let K = conv
{
{(1, x) |

1
2‖x‖2 ≤ 1}, 0

}
. Then

ωn+1

4n+1
≤ size(K) ≤ 2n/2+1ωn

n

Proof. (Lower Bound) We can inscribe a n+ 1 dimensional ball of radius 1/(2
√

1.25 + 1) in

the unit cone. Since the MIE is larger than this,

ωn+1

(2
√

1.25 + 1)n+1
≤ size(K).

(Upper Bound) Since size(K) ≤ vol(K), we can use Lemma A.1.1. �

156

A.1. SOME GENERAL FACTS

Lemma A.1.3. Let ωn be the volume of a unit sphere. Then

2

n+ 1
≤ ω2/(2+n)

n ≤ 12

n+ 1

Proof. Multiplying both sides by n+ 1, we get

(n+ 1)ω2/(2+n)
n = (n+ 1)

(
π
n
2

Γ(n2 + 1)

)2/(2+n)

(a)

≤ (n+ 1)

(
π
n
2

√
2πn

n+3
2 e−

n+2
2

)2/(2+n)

= (n+ 1)
π

n
2+n

√
2πn

n+3
n+2 e−1

=
n+ 1

n1+ 1
n+2

π
n

2+n

√
2πe−1

≤
(

1 +
1

n

)
3πe√

2π
≤ 6πe√

2π
≤ 12

(a) comes from Sterling’s lower bound. The lower bound is proved in an analogous way

(n+ 1)ω2/(2+n)
n = (n+ 1)

(
π
n
2

Γ(n2 + 1)

)2/(2+n)

≥ (n+ 1)

(
π
n
2

√
2π · nn+ 1

2 e
1

12n
−n

)2/(2+n)

= (n+ 1)
π

n
2+n

√
2π · n

n+3
2+n e(

2
2+n)(1

12n
−n)
≥ n+ 1

n

10√
2π

�

157

APPENDIX B

Appendix: Tail bounds for proximal gradient descent

B.1. Auxiliary results

Lemma B.1.1. Suppose that

φ1(k) = O(kO(1)) exp(−O(kO(1))),

φ2(k) = exp(O(kO(1))) exp(− exp(O(kO(1)))),

where O(1) stands for positive constants. Then for each A > 0 there exists a positive constant CA

such that

φ1(k) ≤ CAk−A,(B.1.1)

φ2(k) ≤ CAA−k.(B.1.2)

Proof. The statement follows by taking the logarithms on both sides of (B.1.1) and (B.1.2). �

Lemma B.1.2. For y ∈ (0, 1) and x ∈ [0, 1],

(B.1.3) (1− x)1−1/ log y ≤
∞∏
i=0

(1− xyi).

Proof. To prove the lower bound, we use the following fact:

ln(1− x) ≥ − x

1− x for all x ∈ [0, 1).

158

B.1. AUXILIARY RESULTS

Therefore,

∞∏
i=1

(1− xyi) = exp

(∞∑
i=1

log
(
1− xyi

))

≥ exp

(∞∑
i=1

− yi

1/x− yi

)

≥ exp

(
−
∫ ∞

0

yi

1/x− yidi
)

= exp

(
− log(1− x)

log(y)

)
≥ (1− x)−1/ log y.

Thus,
∞∏
i=0

(1− xyi) = (1− x)
∞∏
i=1

(1− xyi) ≥ (1− x)1−1/ log y,

as required. �

Lemma B.1.3. For y ∈ (0, 1) and x ∈ [0, 1],

exp

(
− log(1− x/y)− log(1− xyN+1)

log(y)

)
≤

N∏
i=0

(1− xyi).

Proof. Similar to the proof of the previous inequality

N∏
i=1

(1− xyi) = exp

(
N∑
i=1

log
(
1− xyi

))

≥ exp

(
N∑
i=1

− xyi

1− xyi

)

≥ exp

(
−
∫ N

0

xyi

1− xyidi
)

≥ exp

(
− log(1− x)− log

(
1− xyN

)
log(y)

)
.

Thus,

N∏
i=0

(1− xyi) =

N+1∏
i=1

(1− (x/y)yi)

≥ exp

(
− log(1− x/y)− log(1− xyN+1)

log(y)

)
,

159

B.1. AUXILIARY RESULTS

as required. �

Lemma B.1.4. Let k > 0, µ > 0, and ε > 0. Then for y ∈ (0, 1) and x ∈ (0, 1],

inf
θ>0

{
exp(−θεν)

N−1∏
i=0

(
1− θxyi

)−k} ≤ (exp(1)

α
· εν
x

)α
exp

(
−εν
x

)
,

where α = 1
k

(
1

log(1/y) + 1
)

.

Proof. By inverting both sides of (B.1.3) we obtain the following inequality

(B.1.4)

∞∏
i=0

(1− xyi)−k ≤ exp

(
− log(1− x)

[
1

log(1/y)
+ 1

])
.

Therefore, for ε ≥ αx/v,

inf
θ>0

{
exp(−θεν)

N−1∏
i=0

(1− θxyi)−k
}

≤ inf
θ>0

{
exp(−θεν)

∞∏
i=0

(1− θxyi)−k
}

(i)

≤ inf
θ>0

{
exp

(
−1

k

[
1

log(1/y)
+ 1

]
log (1− θx)− θvε

)}
= inf

θ>0
{exp (−α log (1− θx)− θεν)}

(ii)
= exp

(
−α log

(
1−

(
1

x
− α

vε

)
x

)
−
(

1

x
− α

vε

)
vε

)
=

(
exp(1)

α
· εν
x

)α
exp

(
−εν
x

)
,

where (i) follows from (B.1.4); and (ii) uses the substitution θ = 1/x− α/vε, which can be shown

to be the optimal choice of θ. Because θ > 0, ε > αx/v. �

For the remainder of this section, define the sample average to be

Sm :=
1

m

m∑
i

Xi

for a sequence of random variables {X1, . . . , Xm}.

160

B.2. SAMPLING BOUNDS

B.2. Sampling Bounds

Theorem B.2.1 ([Hoe63, Theorem 2]). Consider independent random variables {X1, . . . , Xm},
Xi : Ω→ R. If the random variables are bounded, i.e.,

d := sup
ω∈Ω

Xi(ω)− inf
ω∈Ω

Xi(ω)

is finite, then

Pr (Sm −ESm ≥ ε) ≤ exp
(
−2mε2/d2

)
Theorem B.2.2 ([Ser74, Corollary 1.1]). Let x1, . . . , xM be a population, {X1, . . . , Xm} be samples

drawn without replacement from the population, and let

d := max
i
xi −min

i
xi.

Then

Pr (Sm −ESm ≥ ε) ≤ exp
(
−ε2/ηm

)
, where ηm =

d2

2m

(
1− m− 1

M

)
.

Because ηm is strictly decreasing in m, the Serfling bound is uniformly better than the Hoeffding

bound. Note that the Serfling bound is not tight: in particular, when M = m (i.e., Sm = ESm),

the bound is not zero (except for degenerate population).

161

APPENDIX C

Apendix: Proximal methods

C.1. QS Representation for a quadratic

Here we derive the QS representation of a support function that includes an explicit quadratic

term:

g(x) = sup
y
{yT (B0x+ d0)− 1

2y
TQy | A0y �K0 b0}.

Let R be such that RTR = Q. We can then write the quadratic function in the objective as a

constraint on its epigraph, i.e.,

g(x) = sup
y, t
{yT (B0x+ d0)− 1

2 t | A0y �K b0, ‖Ry‖2 ≤ t}.

Next we write the constraint ‖Ry‖2 ≤ t as a second-order cone constraint:

‖Ry‖2 ≤ t ⇐⇒ ‖Ry‖2 ≤ (t+ 1)2 − (t− 1)2

4

⇐⇒ ‖Ry‖2 +

(
t− 1

2

)2

≤
(
t+ 1

2

)2

⇐⇒
√
‖Ry‖2 +

(
t− 1

2

)2

≤ t+ 1

2

⇐⇒

∥∥∥∥∥∥
0 1

2

R 0

y
t

+

−1
2

0

∥∥∥∥∥∥ ≤ t+ 1

2

⇐⇒


0 1

2

0 1
2

R 0


y
t

 �Q


1
2

−1
2

0

 .

162

C.1. QS REPRESENTATION FOR A QUADRATIC

Concatenating this with the original constraints gives a QS function with parameters

A =


0 1

2

0 1
2

R 0

A0 0


, b =



1
2

−1
2

0

b0


, d =

 d0

−1
2

 , B =

B0

0

 , K = Qn+2 ×K0.

163

Bibliography

[AA13] E. Andersen and K. Andersen, Mosek modeling manual, http://mosek.com (2013).

[ABBP11] A. Y. Aravkin, B. M. Bell, J. V. Burke, and G. Pillonetto, An l1-Laplace robust Kalman

smoother, IEEE Transactions on Automatic Control 56 (2011), no. 12, 2898–2911.

[ABP13] A. Y. Aravkin, J. V. Burke, and G. Pillonetto, Sparse/robust estimation and Kalman

smoothing with nonsmooth log-concave densities: Modeling, computation, and theory,

J. Mach. Learn. Res. 14 (2013), no. 1, 2689–2728.

[ACDL14] A. Agarwal, O. Chapelle, M. Dud́ık, and J. Langford, A reliable effective terascale

linear learning system., Journal of Machine Learning Research 15 (2014), no. 1,

1111–1133.

[ADV10] M. Andersen, J. Dahl, and L. Vandenberghe, Implementation of nonsymmetric interior-

point methods for linear optimization over sparse matrix cones, Math. Program. Comp.

2 (2010), no. 3-4, 167–201 (English).

[AV95] D. S. Atkinson and P. M. Vaidya, A cutting plane algorithm for convex programming

that uses analytic centers, Mathematical Programming 69 (1995), no. 1-3, 1–43.

[Azu67] K. Azuma, Weighted sums of certain dependent random variables, Tohoku Mathemati-

cal Journal 19 (1967), no. 3, 357–367.

[BB88] J. Barzilai and J. M. Borwein, Two-point step size gradient methods, IMA J. Numer.

Anal. 8 (1988), 141–148.

[BBE+03] J. Bi, K. Bennett, M. Embrechts, C. Breneman, and M. Song, Dimensionality reduction

via sparse support vector machines, Journal of Machine Learning Research 3 (2003),

no. Mar, 1229–1243.

[BC90] M. J. Best and N. Chakravarti, Active set algorithms for isotonic regression; a unifying

framework, Math. Program. 47 (1990), no. 1, 425–439.

164

[BCNO12] R. H. Byrd, G. M. Chin, J. Nocedal, and F. Oztoprak, A family of second-order

methods for convex l1-regularized optimization, Unpublished: Optimization Center:

Northwestern University, Tech Report (2012).

[BCNW12] R. H. Byrd, G. Chin, J. Nocedal, and Y. Wu, Sample size selection in optimization

methods for machine learning, Math. Program. 134 (2012), 127–155.

[BDEL03] S. Ben-David, N. Eiron, and P. M. Long, On the difficulty of approximately maximizing

agreements, Journal of Computer and System Sciences 66 (2003), no. 3, 496–514.

[BEKS14] J. Bezanson, A. Edelman, S. Karpinski, and V. B. Shah, Julia: A fresh approach to

numerical computing, November 2014, 1411.1607.

[Ber09] D. P. Bertsekas, Convex optimization theory, Athena Scientific Belmont, MA, 2009.

[BF12] S. Becker and J. Fadili, A quasi-Newton proximal splitting method, Advances in Neural

Information Processing Systems 25 (F. Pereira, C. J. C. Burges, L. Bottou, and K. Q.

Weinberger, eds.), Curran Associates, Inc., 2012, pp. 2618–2626.

[BGT81] R. G. Bland, D. Goldfarb, and M. J. Todd, The ellipsoid method: A survey, Operations

research 29 (1981), no. 6, 1039–1091.

[BGV92] B. E. Boser, I. M. Guyon, and V. N. Vapnik, A training algorithm for optimal margin

classifiers, Proceedings of the fifth annual workshop on Computational learning theory,

ACM, 1992, pp. 144–152.

[BGVDM94] O. Bahn, J.-L. Goffin, J.-P. Vial, and O. Du Merle, Experimental behavior of an

interior point cutting plane algorithm for convex programming: an application to

geometric programming, Discrete Applied Mathematics 49 (1994), no. 1-3, 3–23.

[BH13] J. V. Burke and T. Hoheisel, Epi-convergent smoothing with applications to convex

composite functions, SIAM J. Optim. 23 (2013), no. 3, 1457–1479.

[Bis06] C. M. Bishop, Pattern recognition, Machine Learning 128 (2006), 1–58.

[BLM13] S. Boucheron, G. Lugosi, and P. Massart, Concentration inequalities: A nonasymptotic

theory of independence, Oxford University Press, 2013.

[BLS15] S. Bubeck, Y. T. Lee, and M. Singh, A geometric alternative to Nesterov’s accelerated

gradient descent, arXiv preprint arXiv:1506.08187 (2015).

165

[BO17] A. Basu and T. Oertel, Centerpoints: A link between optimization and convex geometry,

SIAM Journal on Optimization 27 (2017), no. 2, 866–889.

[Bro86] L. D. Brown, Fundamentals of statistical exponential families with applications in

statistical decision theory, Lecture Notes-monograph series 9 (1986), i–279.

[BS11] A. Barbero and S. Sra, Fast Newton-type methods for total variation regularization.,

Intern. Conf. on Machine Learning (L. Getoor and T. Scheffer, eds.), Omnipress, 2011,

pp. 313–320.

[BS14] A. Barbero and S. Sra, Modular proximal optimization for multidimensional total-

variation regularization, 2014, arXiv 0902.0885.

[BT09] A. Beck and M. Teboulle, A fast iterative shrinkage-thresholding algorithm for linear

inverse problems, SIAM J. Imag. Sci. 2 (2009), no. 1, 183–202.

[Bub15] S. Bubeck, Convex optimization: Algorithms and complexity, Foundations and Trends

in Machine Learning 8 (2015), no. 3-4, 231–357.

[BV04] D. Bertsimas and S. Vempala, Solving convex programs by random walks, Journal of

the ACM 51 (2004), no. 4, 540–556.

[BV07] S. Boyd and L. Vandenberghe, Localization and cutting-plane methods, From Stanford

EE 364b lecture notes (2007).

[BVS08] S. Boyd, L. Vandenberghe, and J. Skaf, Analytic center cutting-plane method, 2008.

[BW08] M. Benzi and A. J. Wathen, Some preconditioning techniques for saddle point problems,

Model order reduction: theory, research aspects and applications, Springer, 2008,

pp. 195–211.

[CB02] G. Casella and R. L. Berger, Statistical inference, vol. 2, Duxbury Pacific Grove, CA,

2002.

[CL93] R. Correa and C. Lemaréchal, Convergence of some algorithms for convex minimization,

Math. Program. 62 (1993), no. 1-3, 261–275.

[CL06] F. Chung and L. Lu, Concentration inequalities and martingale inequalities: a survey,

Internet Mathematics 3 (2006), no. 1, 79–127.

[CLO14] Y. Chen, G. Lan, and Y. Ouyang, Optimal primal-dual methods for a class of saddle

point problems, SIAM Journal on Optimization 24 (2014), no. 4, 1779–1814.

166

[CMMP13] H. H. Chin, A. Madry, G. L. Miller, and R. Peng, Runtime guarantees for regression

problems, Proceedings of the 4th conference on Innovations in Theoretical Computer

Science, ACM, 2013, pp. 269–282.

[CP11] P. L. Combettes and J.-C. Pesquet, Proximal splitting methods in signal processing,

Fixed-point algorithms for inverse problems in science and engineering, Springer, 2011,

pp. 185–212.

[CRT06] E. J. Candès, J. Romberg, and T. Tao, Stable signal recovery from incomplete and

inaccurate measurements, Comm. Pure Appl. Math. 59 (2006), no. 8, 1207–1223.

[CV95] C. Cortes and V. Vapnik, Support-vector networks, Machine learning 20 (1995), no. 3,

273–297.

[DBS10] M. A. Davenport, R. G. Baraniuk, and C. D. Scott, Tuning support vector machines for

minimax and neyman-pearson classification, IEEE Transactions on Pattern Analysis

and Machine Intelligence 32 (2010), no. 10, 1888–1898.

[DES82] R. S. Dembo, S. C. Eisenstat, and T. Steihaug, Inexact Newton methods, SIAM J.

Numer. Anal. 19 (1982), no. 2, 400–408.

[DFR16] D. Drusvyatskiy, M. Fazel, and S. Roy, An optimal first order method based on optimal

quadratic averaging, arXiv preprint arXiv:1604.06543 (2016).

[Don06] D. L. Donoho, Compressed sensing, IEEE Trans. Inform. Theory 52 (2006), no. 4,

1289–1306.

[dOSL14] W. de Oliveira, C. Sagastizábal, and C. Lemaréchal, Convex proximal bundle methods

in depth: a unified analysis for inexact oracles, Mathematical Programming 148

(2014), no. 1-2, 241–277.

[DSSSC08] J. Duchi, S. Shalev-Shwartz, Y. Singer, and T. Chandra, Efficient projections onto

the `1-ball for learning in high dimensions, Proceedings of the 25th International

Conference on Machine Learning, 2008, pp. 272–279.

[ES10] G. Emiel and C. Sagastizábal, Incremental-like bundle methods with application to

energy planning, Computational Optimization and Applications 46 (2010), no. 2,

305–332.

[ET99] I. Ekeland and R. Temam, Convex analysis and variational problems, SIAM, 1999.

167

[Fáb00] C. I. Fábián, Bundle-type methods for inexact data, Central European Journal of

Operations Research 8 (2000), no. 1, 35–55.

[FCH+08] R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and C.-J. Lin, LIBLINEAR: A

library for large linear classification, Journal of Machine Learning Research 9 (2008),

1871–1874.

[Fen49] W. Fenchel, On conjugate convex functions, Canad. J. Math 1 (1949), no. 73-77.

[FG13] M. P. Friedlander and G. Goh, Tail bounds for stochastic approximation, arXiv preprint

arXiv:1304.5586 (2013).

[FG17] , Efficient evaluation of scaled proximal operators, Electronic Transactions on

Numerical Analysis 46 (2017), 1–22.

[FGRW12] V. Feldman, V. Guruswami, P. Raghavendra, and Y. Wu, Agnostic learning of

monomials by halfspaces is hard, SIAM Journal on Computing 41 (2012), no. 6,

1558–1590.

[FHT10] J. Friedman, T. Hastie, and R. Tibshirani, Regularization paths for generalized linear

models via coordinate descent, Journal of statistical software 33 (2010), no. 1, 1.

[FS95] Y. Freund and R. E. Schapire, A desicion-theoretic generalization of on-line learning

and an application to boosting, European conference on computational learning theory,

Springer, 1995, pp. 23–37.

[FS12] M. P. Friedlander and M. Schmidt, Hybrid deterministic-stochastic methods for data

fitting, SIAM Journal on Scientific Computing 34 (2012), no. 3, A1380–A1405.

[GCGF16] G. Goh, A. Cotter, M. Gupta, and M. P. Friedlander, Satisfying real-world goals

with dataset constraints, Advances in Neural Information Processing Systems, 2016,

pp. 2415–2423.

[GGBHD04] I. Guyon, S. Gunn, A. Ben-Hur, and G. Dror, Result analysis of the NIPS 2003 feature

selection challenge, Advances Neural Inform. Processing Systems 17 (2004), 545–552.

[GKT51] D. Gale, H. W. Kuhn, and A. W. Tucker, Linear programming and the theory of

games, Activity analysis of production and allocation 13 (1951), 317–335.

[GL89] G. H. Golub and C. F. V. Loan, Matrix computations, second ed., Johns Hopkins

University Press, Baltimore, 1989.

168

[GLS12] M. Grötschel, L. Lovász, and A. Schrijver, Geometric algorithms and combinatorial

optimization, vol. 2, Springer Science & Business Media, 2012.

[Grü60] B. Grünbaum, Partitions of mass-distributions and of convex bodies by hyperplanes,

Pacific Journal of Mathematics 10 (1960), no. 4, 1257–1261.

[GV99] J.-L. Goffin and J.-P. Vial, A two-cut approach in the analytic center cutting plane

method, Mathematical methods of Operations Research 49 (1999), no. 1, 149–169.

[H+64] P. J. Huber et al., Robust estimation of a location parameter, The Annals of Mathe-

matical Statistics 35 (1964), no. 1, 73–101.

[HL00] D. Hosmer and S. Lemeshow, Applied logistic regression, Wiley-Interscience, 2000.

[Hoe63] W. Hoeffding, Probability inequalities for sums of bounded random variables, J. Ameri-

can Stat. Assoc. 58 (1963), no. 301, 13–30.

[HPS+16] M. Hardt, E. Price, N. Srebro, et al., Equality of opportunity in supervised learning,

Advances in Neural Information Processing Systems, 2016, pp. 3315–3323.

[HTF01] T. Hastie, R. Tibshirani, and J. Friedman, The elements of statistical learning. data

mining, inference, and prediction, Springer, 2001.

[Hub11] P. J. Huber, Robust statistics, Springer, 2011.

[Imh61] J. P. Imhof, Computing the distribution of quadratic forms in normal variables,

Biometrika (1961), 419–426.

[JAB11] R. Jenatton, J.-Y. Audibert, and F. Bach, Structured variable selection with sparsity-

inducing norms, Journal of Machine Learning Research 12 (2011), no. Oct, 2777–2824.

[JMBO10] R. Jenatton, J. Mairal, F. R. Bach, and G. R. Obozinski, Proximal methods for

sparse hierarchical dictionary learning, Proc. 27th Intern. Confer. Machine Learning

(ICML-10), 2010, pp. 487–494.

[Joa99] T. Joachims, Svmlight: Support vector machine, SVM-Light Support Vector Machine

http://svmlight. joachims. org/, University of Dortmund 19 (1999), no. 4.

[KBJ78] R. Koenker and G. Bassett Jr, Regression quantiles, Econometrica: journal of the

Econometric Society (1978), 33–50.

[Kel60] J. E. Kelley, Jr, The cutting-plane method for solving convex programs, Journal of the

society for Industrial and Applied Mathematics 8 (1960), no. 4, 703–712.

169

[Kha79] L. G. Khachiyan, A polynomial algorithm in linear programming, Doklady Akademiia

Nauk SSSR, vol. 244, 1979, pp. 1093–1096.

[KKL+07] S.-J. Kim, K. Koh, M. Lustig, S. Boyd, and D. Gorinevsky, An interior-point method

for large-scale L1-regularized least squares, IEEE J. Sel. Top. Signal Process. 1 (2007),

no. 4, 606–617.

[Kle08] A. Klenke, Probability theory: a comprehensive course, Springer Verlag, London, 2008.

[Koe05] R. Koenker, Quantile regression, no. 38, Cambridge university press, 2005.

[KT51] H. W. Kuhn and A. W. Tucker, Nonlinear programming, Proceedings of the Second

Berkeley Symposium on Mathematical Statistics and Probability (1951), 481492.

[KV14] S. Karimi and S. Vavasis, IMRO: a proximal quasi-Newton method for solving l1-

regularized least squares problem, 2014, arXiv:1401.4220.

[Lev65] A. Y. Levin, On an algorithm for the minimization of convex functions, Soviet Mathe-

matics Doklady, vol. 160, 1965, pp. 1244–1247.

[LHU96] C. Lemaréchal and J. Hiriart-Urruty, Convex analysis and minimization algorithms i,

Grundlehren der mathematischen Wissenschaften 305 (1996).

[Lic13] M. Lichman, UCI machine learning repository, 2013.

[LM01] Y.-J. Lee and O. L. Mangasarian, Ssvm: A smooth support vector machine for

classification, Computational optimization and Applications 20 (2001), no. 1, 5–22.

[LNN95] C. Lemaréchal, A. Nemirovskii, and Y. Nesterov, New variants of bundle methods,

Math. Program. 69 (1995), 111–147.

[Lor13] D. A. Lorenz, Constructing test instances for basis pursuit denoising, IEEE Trans. Sig.

Proc. 61 (2013), no. 5, 1210–1214.

[LSB81] C. Lemarechal, J.-J. Strodiot, and A. Bihain, On a bundle algorithm for nonsmooth

optimization, Nonlinear programming 4 (1981), no. 0.

[LSS14] J. D. Lee, Y. Sun, and M. A. Saunders, Proximal Newton-type methods for minimizing

composite functions, SIAM J. Optim. 24 (2014), no. 3, 1420–1443.

[LT93a] Z. Q. Luo and P. Tseng, Error bounds and convergence analysis of feasible descent

methods: a general approach, Annals of Operations Research 46 (1993).

170

[LT93b] Z. Luo and P. Tseng, Error bounds and convergence analysis of feasible descent methods:

A general approach, Ann. Oper. Res. 46 (1993), no. 1, 157–178.

[LTTT14] R. Lockhart, J. Taylor, R. J. Tibshirani, and R. Tibshirani, A significance test for the

lasso, Annals of statistics 42 (2014), no. 2, 413.

[LV03] L. Lovász and S. Vempala, Hit-and-run is fast and fun, preprint, Microsoft Research

(2003).

[LZOX14] Y. Lou, T. Zeng, S. Osher, and J. Xin, A weighted difference of anisotropic and

isotropic total variation model for image processing, Tech. report, Department of

Mathematics, UCLA, 2014.

[Mag74] T. L. Magnanti, Fenchel and Lagrange duality are equivalent, Mathematical Program-

ming 7 (1974), no. 1, 253–258.

[MAT10] MATLAB, version 7.10.0 (r2010a), The MathWorks Inc., Natick, Massachusetts,

2010.

[McC84] P. McCullagh, Generalized linear models, European Journal of Operational Research

16 (1984), no. 3, 285–292.

[Meh00] S. Mehrotra, Volumetric center method for stochastic convex programs using sampling,

(2000).

[Mie12] K. Miettinen, Nonlinear multiobjective optimization, vol. 12, Springer Science &

Business Media, 2012.

[MM07] G. S. Mann and A. McCallum, Simple, robust, scalable semi-supervised learning via

expectation regularization, Proceedings of the 24th international conference on Machine

learning, ACM, 2007, pp. 593–600.

[NB00] A. Nedic and D. Bertsekas, Convergence rate of incremental subgradient algorithms,

Stochastic Optimization: Algorithms and Applications (2000), 263–304.

[Nem94] A. Nemirovski, Efficient methods in convex programming, Lecture notes (1994).

[New65] D. J. Newman, Location of the maximum on unimodal surfaces, Journal of the ACM

(JACM) 12 (1965), no. 3, 395–398.

[NJLS09] A. Nemirovski, A. Juditsky, G. Lan, and A. Shapiro, Robust stochastic approximation

approach to stochastic programming, SIAM J. Optim. 19 (2009), no. 4, 1574–1609.

171

[NV08] Y. Nesterov and J.-P. Vial, Confidence level solutions for stochastic programming,

Automatica 44 (2008), no. 6, 1559–1568.

[NW99] J. Nocedal and S. J. Wright, Numerical optimization, Springer, New York, 1999.

[Pan87] J.-S. Pang, A posteriori error bounds for the linearly constrained variational inequality

problem, Math. Oper. Res. 12 (1987).

[Pas16] http://largescale.ml.tu-berlin.de/instructions, 2016, Accessed: 2016-11-22.

[Pla98] J. Platt, Sequential minimal optimization: A fast algorithm for training support vector

machines, (1998).

[PS75] C. C. Paige and M. A. Saunders, Solution of sparse indefinite systems of linear

equations, siamnumanal 12 (1975), 617–629.

[R+66] R. T. Rockafellar et al., Extension of fenchelduality theorem for convex functions,

Duke mathematical journal 33 (1966), no. 1, 81–89.

[Rad07] L. A. Rademacher, Approximating the centroid is hard, Proceedings of the twenty-third

annual symposium on Computational geometry, ACM, 2007, pp. 302–305.

[RF10] H. L. Royden and P. M. Fitzpatrick, Real analysis, Prentice Hall, Boston 2010, 4th

edition.

[RM51] H. Robbins and S. Monro, A stochastic approximation method, The Annals of Mathe-

matical Statistics (1951), 400–407.

[Roc64] R. Rockafellar, Duality theorems for convex functions, Bulletin of the American

Mathematical Society 70 (1964), no. 1, 189–192.

[Roc67] R. Rockafellar, Duality and stability in extremum problems involving convex functions,

Pacific Journal of Mathematics 21 (1967), no. 1, 167–187.

[Roc70] R. T. Rockafellar, Convex analysis, Princeton University Press, Princeton, 1970.

[Roc74] R. T. Rockafellar, Conjugate duality and optimization, SIAM, 1974.

[RW98] R. T. Rockafellar and R. J. B. Wets, Variational analysis, vol. 317, Springer, 1998,

Corrected 3rd printing.

[Ser74] R. Serfling, Probability inequalities for the sum in sampling without replacement, Ann.

Statist. 2 (1974), no. 1, 39–48.

172

http://largescale.ml.tu-berlin.de/instructions

[Sho12] N. Z. Shor, Minimization methods for non-differentiable functions, vol. 3, Springer

Science & Business Media, 2012.

[SN05] C. Scott and R. Nowak, A neyman-pearson approach to statistical learning, IEEE

Transactions on Information Theory 51 (2005), no. 11, 3806–3819.

[So13] A. M.-C. So, Non-asymptotic convergence analysis of inexact gradient methods for

machine learning without strong convexity, http://www.se.cuhk.edu.hk/~manchoso/

papers/inexact_GM_conv.pdf, August 2013.

[SP95] P. B. Stark and R. L. Parker, Bounded-variable least-squares: an algorithm and

applications, Computational Statistics 10 (1995), 129–129.

[SRB11] M. Schmidt, N. L. Roux, and F. Bach, Convergence rates of inexact proximal-gradient

methods for convex optimization, arXiv preprint arXiv:1109.2415 (2011).

[ST16] K. Scheinberg and X. Tang, Practical inexact proximal quasi-Newton method with

global complexity analysis, Math. Program. 160 (2016), no. 1, 495–529.

[SvdBFM09] M. Schmidt, E. van den Berg, M. P. Friedlander, and K. Murphy, Optimizing costly

functions with simple constraints: a limited-memory projected quasi-Newton algorithm,

Proc. 12th Inter. Conf. Artificial Intelligence and Stat., April 2009, pp. 448–455.

[Swa09] J. Swanson, Conditional expectation, Unpublished lecture notes, http://www.

swansonsite.com/W/instructional/condexp.pdf, April 2009.

[Tar88] E. Tarasov, Khachiyan, The method of inscribed ellipsoids, Soviet Mathematics Doklady

298 (1988), no. 5, 1081–1085.

[TY09] P. Tseng and S. Yun, A coordinate gradient descent method for nonsmooth separable

minimization, Math. Program. 117 (2009).

[Vai89] P. M. Vaidya, A new algorithm for minimizing convex functions over convex sets, 30th

Annual Symposium on Foundations of Computer Science, IEEE, 1989, pp. 338–343.

[Van10] L. Vandenberghe, The CVXOPT linear and quadratic cone program solvers, 2010.

[VDBF08] E. Van Den Berg and M. P. Friedlander, Probing the Pareto frontier for basis pursuit

solutions, SIAM Journal on Scientific Computing 31 (2008), no. 2, 890–912.

[VK82] V. N. Vapnik and S. Kotz, Estimation of dependences based on empirical data, vol. 40,

Springer-Verlag New York, 1982.

173

http://www.se.cuhk.edu.hk/~manchoso/papers/inexact_GM_conv.pdf
http://www.se.cuhk.edu.hk/~manchoso/papers/inexact_GM_conv.pdf
http://www.swansonsite.com/W/instructional/condexp.pdf
http://www.swansonsite.com/W/instructional/condexp.pdf

[VV98] V. N. Vapnik and V. Vapnik, Statistical learning theory, vol. 1, Wiley New York, 1998.

[Wil91] D. Williams, Probability with martingales, 8th ed., Cambridge University Press, Eng-

land, 1991.

[WL14] P.-W. Wang and C.-J. Lin, Iteration complexity of feasible descent methods for convex

optimization., Journal of Machine Learning Research 15 (2014), no. 1, 1523–1548.

[WNF07] S. J. Wright, R. D. Nowak, and M. A. T. Figueiredo, Sparse reconstruction by separable

approximation, Tech. report, Computer Sciences Department, University of Wisconsin,

Madison, October 2007.

[WNF09] S. J. Wright, R. D. Nowak, and M. A. Figueiredo, Sparse reconstruction by separable

approximation, IEEE Trans. Sig. Proc. 57 (2009), no. 7, 2479–2493.

[Ye96] Y. Ye, Complexity analysis of the analytic center cutting plane method that uses

multiple cuts, Mathematical Programming 78 (1996), no. 1, 85–104.

[YHL12] G.-X. Yuan, C.-H. Ho, and C.-J. Lin, An improved glmnet for l1-regularized logistic

regression, Journal of Machine Learning Research 13 (2012), no. Jun, 1999–2030.

[Yip86] E. Yip, A note on the stability of solving a rank-p modification of a linear system by

the Sherman-Morrison-Woodbury formula, SIAM J. Sci. Stat. Comput. 7 (1986), no. 2,

507–513.

[YL06] M. Yuan and Y. Lin, Model selection and estimation in regression with grouped

variables, J. Royal Stat. Soc. B. 68 (2006).

[ZRY09] P. Zhao, G. Rocha, and B. Yu, The composite absolute penalties family for grouped

and hierarchical variable selection, The Annals of Statistics (2009), 3468–3497.

174

	Abstract
	Acknowledgments
	Part 1. Introduction
	Chapter 1. A tour of the thesis
	1.1. Introduction
	1.1.1. Notation

	1.2. Parametric optimization
	1.2.1. Efficient first-order algorithms
	1.2.2. Models with Inexact Subgradients
	1.2.3. The inexact epigraph cutting plane method

	1.3. Composite problems
	1.3.1. Composite optimization
	1.3.2. Preconditioned quasi newton
	1.3.3. Stochastic gradient with error
	1.3.4. Tail bounds

	1.4. The problem of costly subgradients

	Chapter 2. Convex duality
	2.1. Polar cones
	2.2. Conjugate functions
	2.2.1. infimal convolution

	2.3. Fenchel duality
	2.4. Lagrange duality

	Part 2. The anatomy of a linear model
	Chapter 3. Optimization for machine learning
	3.1. Introduction to supervised learning
	3.1.1. Loss functions
	3.1.2. Regularizers
	3.1.3. Dataset constraints

	Part 3. Cutting plane methods
	Chapter 4. Epigraphical cutting plane methods
	4.1. Introduction
	4.2. Cutting plane methods
	4.3. Epigraph cutting plane methods

	Chapter 5. Constructing inexact oracles
	5.1. Supremal Projection
	5.1.1. Finding the lower bound
	5.1.2. Finding the upper bound
	5.1.3. Controlling the tolerance

	5.2. Parametrized optimization
	5.2.1. Finding the upper bound
	5.2.2. Finding the lower bound

	5.3. Numerical approaches to obtaining primal-dual pairs
	5.3.1. Pure Dual Solver
	5.3.2. Saddle Point Solver

	Chapter 6. The inexact epigraph cutting plane algorithm
	6.1. The inexact epigraph center of gravity method
	6.1.1. Stopping condition
	6.1.2. Outer convergence
	6.1.3. Total effort

	6.2. The inexact epigraph method of inscribed ellipsoids
	6.2.1. Stopping criteria
	6.2.2. Outer convergence
	6.2.3. Total effort

	Chapter 7. The parabolic inexact epigraph cutting plane algorithm
	7.1. Introduction
	7.2. The parabolic inexact epigraph method of inscribed ellipsoids
	7.2.1. Outer convergence

	Part 4. Proximal methods
	Chapter 8. Proximal gradient
	8.1. Problems with composite form
	8.2. Computing the proximal operator

	Chapter 9. Efficient evaluation of the scaled proximal operator
	9.1. Quadratic-support functions
	9.2. Building quadratic-support functions
	9.3. The proximal operator as a conic QP
	9.4. Primal-dual methods for conic QP
	9.5. Evaluating the proximal operator
	9.6. A proximal quasi-Newton method
	9.6.1. Limited-memory BFGS updates

	9.7. Numerical experiments
	9.7.1. Timing the proximal operator
	9.7.2. Synthetic least-square problems
	9.7.3. Sparse logistic regression

	Chapter 10. Stochastic oracles
	10.1. Population Assumptions
	10.2. Sampling With Replacement
	10.3. Sampling Without Replacement

	Chapter 11. Stochastic gradient descent
	11.1. Proximal Gradient with Error
	11.2. Probabilistic bounds for gradient descent with random error
	11.2.1. Generic error sequence
	11.2.2. Unconditionally bounded error sequence

	11.3. From tail bounds to moment-generating bounds
	11.4. Convergence rates for linearly decreasing errors
	11.4.1. Expectation-based and deterministic bounds
	11.4.2. Tail bounds

	11.5. Numerical experiments

	Part 5. Paths forward
	Chapter 12. Paths forward
	12.1. Forward backward envelope
	12.2. Proximal Quasi-Newton

	Part 6. Appendix
	Appendix A. Appendix: Cutting plane methods
	A.1. Some General Facts

	Appendix B. Appendix: Tail bounds for proximal gradient descent
	B.1. Auxiliary results
	B.2. Sampling Bounds

	Appendix C. Apendix: Proximal methods
	C.1. QS Representation for a quadratic

	Bibliography

