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ABSTRACT
Structured optimization uses a prescribed set of atoms to
assemble a solution that fits a model to data. Polarity, which
extends the familiar notion of orthogonality from linear sets
to general convex sets, plays a special role in a simple and
geometric form of convex duality. This duality correspon-
dence yields a general notion of alignment that leads to an
intuitive and complete description of how atoms participate
in the final decomposition of the solution. The resulting
geometric perspective leads to variations of existing algo-
rithms effective for large-scale problems. We illustrate these
ideas with many examples, including applications in matrix
completion and morphological component analysis for the
separation of mixtures of signals.
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1
Introduction

Convex optimization provides a valuable computational framework that
renders many problems tractable because of the range of powerful al-
gorithms that can be brought to the task. The key is that a certain
mathematical structure—i.e., convexity of the functions and sets defining
the problem—lays open an enormous range of theoretical and algorith-
mic tools that lend themselves astonishingly well to computation. There
are limits, however, to the scalability of general-purpose algorithms for
convex optimization. As has been recognized in the optimization and
related communities for at least the past decade, significant efficiencies
can be gained by acknowledging the latent structure in the solution
itself, coupled with the overarching structure provided by convexity.

Structured optimization proceeds along these lines by using a pre-
scribed set of atoms from which to assemble an optimal solution. In
effect, the atoms selected to participate in forming a solution decompose
the model into simpler parts, which offers opportunities for algorithmic
efficiency in solving the optimization problem. From a modeling point of
view, the particular atoms that constitute the computed solution often
represent key explanatory components of a model. An atomic decompo-
sition thus provides a description of the most informative features of
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282 Introduction

a solution—in other words, a kind of generalized principal component
analysis.

Our purpose with this monograph is to describe the rich convex
geometry that underlies atomic decomposition. The path we follow
builds on the duality inherent in convex cones: every convex cone is
paired uniquely with another cone that is polar to it. The extreme
rays of each cone in this pair are in some sense aligned. Brought into
the context of atomic decomposition, this notion of alignment through
the polar operation provides a theoretical framework that can be har-
nessed to identify the atoms that participate in a decomposition. This
approach facilitates certain algorithmic design patterns that promote
computational efficiency, as we demonstrate with concrete examples.
Similar computational economies accrue within reduced-space active-set
methods for optimization problems with inequality constraints, such as
implemented by the MINOS software package [1].

Early work in structured optimization focused on problem formu-
lations meant to produce sparse solution vectors, i.e., a solution with
relatively few non-zero elements. Compressed sensing [2]–[4] and model
selection [5], [6], with their many applications in signal processing and
statistics, helped to establish sparse optimization as an important class
of problems with a range of specialized algorithms. Generalizations
that accommodated different notions of sparsity soon followed, includ-
ing matrix problems with low-rank solutions (sparsity in the vector of
singular values), fused index pairs (sparsity in terms of the norms of
subgroups of variables), and sparsity in specialized dictionaries, such as
mass spectrographs of simple molecules used to represent structures of
more complicated molecules [7, Section 6.3.1].

Nonsmooth regularization functions that promote sparsity, such
as the 1-norm for sparse vectors, or the nuclear norm for low-rank
matrices, are key features of these formulations. Gauge functions, which
significantly generalize the notion of a norm, were recognized as flexible
regularization functions that promote a broad range of sparse structures.
By defining a set of atoms from which to build a solution, an almost
arbitrary set of solution structures can be considered. The gauge function
to this set can be incorporated into a convex optimization problem in
order to obtain a solution with the desired structure. The convex analysis
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of gauges and support functions, which are their dual counterparts,
is rich in geometry and rife with opportunity for efficient algorithm
implementations for high-dimensional problems. Our purpose with this
monograph is to expose the basic elements of this theory and its many
connections to sparse and structured optimization. To make it accessible
to researchers who are not specialists in convex analysis, we chose a
largely self-contained treatment and make a few modest assumptions
that greatly simplify the derivations.

1.1 Applications and Prior Work

One of the main implications of our approach is its usefulness in adapt-
ing dual optimization methods for discovering atomic decompositions.
With the tools of polar alignment, a dual optimization method can
be interpreted as solving for an aligning dual vector z that exposes
the support of a primal solution x. If the number of exposed atoms
is small, a solution x of the primal problem can be obtained from a
reduced problem defined over the exposed support, but without the
nonsmooth atomic regularization. The resulting reduced problem is
often computationally much cheaper [8] and better conditioned [9]. Al-
ternatively, two-metric methods can be designed to act differently on a
primal iterate’s suspected support [10]. In many applications, such as
feature selection, knowing the optimal support may itself be sufficient.
As we illustrate through various examples, there are several important
cases where the dual aligning vector z can be computed directly.

Machine Learning. The regularized optimization problems described
in Section 5 frequently appear in applications of machine learning
for the purpose of model complexity reduction. The most popular
tools are the vector 1-norm in feature selection [5], its group-norm
variant [11], and the nuclear norm in matrix completion [12]. Many
other sparsity-promoting regularizers, however, appear in practice [13].
Although unconstrained formulations are most popular, particularly
when the proximal operator is computationally convenient [14], the
gauge-constrained formulation is frequently used and solved via the
conditional gradient method [15]–[17]. Popular dual methods, which
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iterate over a dual variable z(k) but maintain the corresponding primal
variable x(k) only implicitly, include bundle methods [18] and dual
averaging [19], [20].

Linear Conic Optimization. Conic programs are a cornerstone of con-
vex optimization. The nonnegative cone, the second-order cone and
the semidefinite cone respectively, give rise to linear, second-order, and
semidefinite programs. These problem classes capture an enormous
range of important models, and can be solved efficiently by a variety
of algorithms, including interior methods [21]–[23]. Conic programs
and their associated solvers are key ingredients for general purpose
optimization software packages such as YALMIP [24] and CVX [25].
The alignment conditions for these specific cones have been exploited
in dual methods, such as in the spectral bundle method for large-scale
semidefinite programming [26]. Example 3.6 demonstrates this alignment
principle in the context of conic optimization.

Gauge Optimization. The class of gauge optimization problems, as
defined by Freund’s 1987 seminal work [27], can be simply stated: find
the element of a convex set that is minimal with respect to a gauge
function. These conceptually simple problems appear in a remarkable
array of applications, and include parts of sparse optimization and
all of conic optimization [28, Example 1.3]. This class of optimization
problems admits a duality relationship different from classical Lagrange
duality, and is founded on the polar inequality. In this context, the polar
inequality provides an analogue to weak duality, well-known in Lagrange
duality, which guarantees that any feasible primal value provides an
upper bound for any feasible dual value. In the gauge optimization
context, a primal-dual pair (x, z) is optimal if and only if the polar
inequality holds as an equation, which under Definition 2.4 implies
that x and z are aligned. The connection between polar alignment and
optimality is discussed further in Subsection 5.2.

Two-Stage Methods. In sparse optimization, two-stage methods first
identify the primal variable support, and then solve the problem over a
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reduced support [29], [30]. If the support is sparse enough, the second
problem may be computationally much cheaper because it can allow
for faster Newton-like methods. The atomic alignment principles we
describe in Section 4 give a general recipe for extracting primal variable
support from a computed dual variable, which at optimality is aligned
with the primal variable; see Section 5. This property forms the basis
for our approach to morphological component analysis, described in
Subsection 7.4.

Method Interpretability. The connection between sparsity and align-
ment points to a likely “aligning behavior” in many of the most effective
methods for sparse optimization [31]. Indeed, we show in Section 6
that this is true for a range of methods, including proximal gradient,
conditional gradient, and cutting-plane methods. Surprisingly, we also
find hints of aligning behavior in seemingly unrelated methods, such as
augmented Lagrangian and bundle methods. The alignment point of
view thus offers greater interpretability of commonly used methods in
many modern optimization applications.

1.2 Basic Definitions and Notation

We work with n-vectors in Rn and p-by-n matrices in Rp×n. The re-
striction to real-valued vectors and matrices considerably simplifies our
development, though many of the ideas set forth in this monograph
extend to more general functional spaces, as described by Zălinescu [32]
and Bauschke and Combettes [33].

Vectors are always denoted by lower-case letters; matrices by capital
letters. A vector norm ‖x‖ always refers to the 2-norm, unless otherwise
specified. Matrix norms always refer to the Schatten norm, e.g., if
(s1, s2, . . .) are the singular values of X, then

‖X‖1 =
∑
i

si, ‖X‖2 =
(∑

i

s2
i

)1/2
, and ‖X‖∞ = max

i
si.

Let ei denote the ith canonical unit vector, i.e., the vector of all zeros
except a single 1 in the ith position. The dot product of two n-vectors
x and z is 〈x, z〉 = ∑

j xjzj . The dot product of two p-by-n matrices
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X and Z is the trace inner product 〈X,Z〉 = tr(XTZ) = ∑
ij XijZij .

The adjoint F ∗ of any linear map F is the unique linear map that
satisfies the relationship 〈Fx, z〉 = 〈x, F ∗z〉 for all x and z. Thus, for
the linear map F : Rn → Rm, the product of the adjoint and an m-
vector y is F ∗y = ∑m

i=1 yi(Fei). For the linear map F : Rp×n → Rm, the
forward and adjoint maps take the form

FX =


〈F1, X〉

...
〈Fm, X〉

 and F∗y =
m∑
i=1

yiFi, (1.1)

where each F1, . . . , Fm is a p-by-n matrix. The notation X � 0 indicates
that X is symmetric positive definite.

Throughout the monograph, we use the symbol C to denote a convex
set in Rn. The convex hull of any set D in Rn contains all weighted
averages of the elements of the set, denoted

convD =
{

m∑
i=1

αixi

∣∣∣∣∣ xi ∈ D, αi ≥ 0,
m∑
i=1

αi = 1
}
,

for some positive integer m. Define the conic extension of D by

coneD = {αd | d ∈ D, α ≥ 0} .

The closure, boundary and relative interior, respectively, of D denoted
clD, bndD and riD. The indicator to D is the function

δD(x) =

0 if x ∈ D;
+∞ otherwise.

The normal cone to the set C at x ∈ C is defined as

NC(x) = {d | 〈d, u− x〉 ≤ 0 for all u ∈ C} .

The Euclidean projection onto the set C is denoted

projC(x) = arg min
u∈C

‖x− u‖2,

which defines the distance of a point to the set C, denoted by

distC(x) = ‖x− projC(x)‖2.
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Let f : Rn → R ∪ {+∞} be any function. The domain is denoted
dom f = {x | f(x) < +∞}, and the convex conjugate is denoted

f∗(z) = sup
x∈Rn

{〈x, z〉 − f(x)} .



2
Atomic Decomposition

The atomic decomposition of a vector x ∈ Rn with respect to an atomic
set A ⊂ Rn is given by the weighted superposition

x =
∑
a∈A

caa, ca ≥ 0 ∀a ∈ A. (2.1)

Each coefficient ca in the atomic decomposition measures the contri-
bution of the corresponding atom a toward the representation of x.
Intuitively, an atomic decomposition reveals structural information im-
plicit in a vector, with large coefficients in the decomposition indicating
the more significant structures. Within the context of an optimization
problem, the atomic decomposition reveals structural elements most
significant in the minimization process. In the simplest case, the atoms
A may be formed from the collection of signed canonical unit vectors
{±e1, . . . ,±en}, which leads to the atomic decomposition

x =
n∑
j=1

cjaj , cj := |xj |, aj := (sgn xj) · ej .

Trivially, the most significant atoms thus correspond to the variables xj
in the vector x = (x1, . . . , xn) with the largest magnitude. The definition
given by (2.1) allows for decompositions with respect to arbitrary atomic
sets, including atomic sets that are uncountably infinite.

288



2.1. Gauge Functions Reveal the Atomic Support 289

This generic model for atomic decompositions was promoted by
Chen et al. [2], [3] in the context of sparse signal decomposition, and
more recently, by Chandrasekaran et al. [34], who were concerned with
obtaining sparse solutions to linear inverse problems.

We are particularly interested in the question of determining which
of the atoms in A are essential to the atomic decomposition of x, and
conversely, which atoms can be safely ignored.

2.1 Gauge Functions Reveal the Atomic Support

The gauge function to the atomic set A, defined by

γA(x) = inf
ca

{∑
a∈A

ca

∣∣∣∣∣ x =
∑
a∈A

caa, ca ≥ 0 ∀a ∈ A
}
, (2.2)

helps to define the answer to the question above. This function returns
the minimal sum of weights over all valid atomic decompositions of
x with respect to the set A. The value γA(x) = ∞ indicates that
there doesn’t exist a valid atomic decomposition for x. (For example,
an atomic set composed of nonnegative vectors cannot decompose a
vector x that contains negative entries.)

In the framework outlined by Chandrasekaran et al. [34], the gauge
function γA defines the objective of a convex optimization problem suit-
able for recovering a signal from a small number of partial observations.
In that context, the number of atoms needed to decompose the signal
determines the number of observations needed to reconstruct the signal.

The significant atoms—those that support the vector x—are those
that contribute positively in forming the minimal sum. We are thus led
to the following definition.

Definition 2.1 (Atomic Support). A subset of atoms SA(x) ⊂ A is a
support set for x with respect to A if every atom a ∈ SA(x) has a strictly
positive coefficient ca in the atomic decomposition (2.1). That is,

γA(x) =
∑

a∈SA(x)
ca, x =

∑
a∈SA(x)

caa, and ca > 0 ∀a ∈ SA(x). (2.3)

The set suppA(x) is defined as the set of all support sets. Thus, any
set in suppA(x) is a valid support set.
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2.2 Polar Inequality

How do we identify the support of a vector x with respect to an
arbitrary atomic set A? The direct approach requires us to solve the
minimum-weight problem defined by the gauge (2.2), and determine
a valid decomposition from the positive elements of the computed
solution. Thus, to identify all possible atomic support sets, we need to
compute all possible solutions to (2.2). As we will demonstrate, however,
a complete description of all possible solution sets can be obtained using
the concept of polar alignment, which we define in this subsection. Our
approach is based on a certain duality correspondence particular to
gauge functions and to convex cones that are implicit in their definition.
We describe in Section 3 this correspondence and its relationship to
atomic decompositions. Here we give only the basic elements needed to
define the notion of alignment.

Throughout the monograph, let

Â := cl conv(A ∪ {0})

denote the closed convex hull of the atomic setA adjoined with the origin.
The Minkowski functional to the atomic set provides an equivalent
expression for the definition (2.2) of the gauge:

γA(x) = inf {λ ≥ 0 | x ∈ λÂ} ; (2.4)

cf. Proposition 4.1. This characterization reveals two important proper-
ties. First, the gauge function is blind to non-convexity of an atomic
set. (A finite set of atoms, for instance, is always non-convex.) Second,
it generalizes the standard notion of a norm because it encompasses
all convex functions that are nonnegative, vanish at the origin, and are
positively homogeneous, i.e.,

γA(αx) = αγA(x) ∀α ≥ 0. (2.5)

The support function

σA(z) = sup {〈a, z〉 | a ∈ A ∪ {0}} (2.6)

to the set A shares these same properties, and is related to the gauge
function through the polar inequality, described by the next result.
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Proposition 2.2 (Polar Inequality). For all pairs of vectors (x, z) ∈
dom γA × dom σA,

〈x, z〉 ≤ γA(x) · σA(z). (2.7)

Proof. The proof for the polar inequality in Rockafellar [35, Section 15]
relies on the polarity of cones. Here we provide an elementary proof
that only depends on the provided definitions of gauge and support
functions. First, consider the case γA(x) > 0. Let x̂ = x/γA(x). Thus,
x̂ ∈ Â, and

〈x, z〉 = γA(x) · 〈x̂, z〉 ≤ γA(x) · σA(z),
where the inequality follows from the maximality property of the support
function; see Figure 2.1. Next, consider the case γA(x) = 0, and proceed
by contradiction. Suppose 〈x, z〉 > 0. Because γA(x) = 0 implies λx ∈ Â
for all λ > 0, it follows from the positive homogeneity of σA that
σA(z) =∞. This contradicts the assumption that z ∈ dom σA. Thus,

〈x, z〉 ≤ 0 = γA(x) · σA(z).

Example 2.3 (Norms). When A = {x | ‖x‖ ≤ 1} is the unit level set to
any norm, ‖ · ‖: Rn → R+, then

γA(x) = ‖x‖ and σA(z) = ‖z‖d,

where ‖ · ‖d is the dual norm. The polar inequality then reduces to the
standard inequality between inner products and dual pairs of norms:

〈x, z〉 ≤ ‖x‖ · ‖z‖d.

Figure 2.1: An illustration of the proof of the polar inequality given by
Proposition 2.2. The inner-product of the scaled vector x̂ = x/γA(x) with z al-
ways lies in the left halfspace defined by σA(z), i.e., 〈x̂, z〉 ≤ σA(z).
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2.3 Alignment and Support Identification

The polar inequality motivates the following generalized definition of
aligned pairs of vectors.
Definition 2.4 (Alignment). A pair (x, z) ∈ Rn × Rn is aligned with
respect to the atomic set A, i.e., x and z are A-aligned, if the polar
inequality (2.7) holds as an equation.

This general notion of alignment follows from the special case where
A = {x | ‖x‖2 ≤ 1} is the unit 2-norm ball. In this case, it follows from
Example 2.3 that the polar inequality reduces the Cauchy-Schwartz
inequality

〈x, z〉 ≤ ‖x‖2 · ‖z‖2.
This inequality holds as an equation if and only if x and z are aligned
in the usual sense: there exists a nonnegative scalar α such that x = αz.
The more general notion of alignment captures other important special
cases, including the Hölder inequality, which is a special case of (2.7)
in which A is the unit p-norm ball, with p ∈ [1,∞].

A rich convex geometry underlies this general notion of alignment,
and plays a role in identifying the atoms important for the decom-
position (2.2). Suppose that a vector z is A-aligned with x. As we
demonstrate in Proposition 4.5, all atoms a ∈ A in the atomic support
of x must also be A-aligned with z, i.e.,

SA(x) ⊆ EA(z) := {a ∈ A ∪ {0} | 〈a, z〉 = σA(z)} . (2.8)
To see that EA(z) indeed contains all the atoms that are A-aligned
with z, note that any atom a ∈ EA(z) necessarily has unit gauge value,
i.e., γA(a) = 1, which follows from (2.4) and Proposition 2.2. Thus the
condition 〈a, z〉 = σA(z) implies that a is A-aligned with z. Figure 2.2
presents a visualization of this concept. The atoms in EA(z) are said to
be exposed by the vector z. As we show in Subsection 3.2, this set of
atoms is contained in the face of Â exposed by the vector z.

2.4 Examples

There are many varieties of atomic sets and recognizable convex regular-
izers used to obtain sparse decompositions. Chandrasekaran et al. [34]
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Figure 2.2: The set of atoms in the set A generally (but not necessarily) defines
the boundary of the convex hull Â. The set of exposed atoms EA(z) are contained
within the supporting hyperplane {a | 〈a, z〉 = σA(z)} normal to z. The atom a1 is
exposed by z1 and all other directions that lie in the shaded cone; the atom a2 is
exposed by the unique direction along z2; and the set of atoms {a3i}3

i=1 are exposed
by the unique direction along z3.

and Jaggi [17] both give extensive lists of atoms and the norms that
they induce, as well as their applications in practice. Here we provide
several simple examples that illustrate the variety of ways in which
vectors can be aligned.

Example 2.5 (One Norm). Let

A = {±e1, . . . ,±en}

be the signed standard basis vectors. The gauge to this atomic set
induces the 1-norm, which is the canonical example of a sparsifying
convex penalty. The corresponding support function is the dual∞-norm:

γA(x) = ‖x‖1 and σA(z) = ‖z‖∞.

The polar inequality (2.7) reduces to Hölder’s inequality for these
norms—i.e., 〈x, z〉 ≤ ‖x‖1 · ‖z‖∞. As is well known, this holds with
equality—and thus x and z are A-aligned—if and only if

xi 6= 0 =⇒ sgn(xi)zi = max
j
|zj | ∀i = 1 : n.
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Alignment of the pair (x, z) with respect to the atomic set A is hence
equivalent to the statement that SA(x) ⊆ EA(z), where the atomic
support for x and the atoms exposed by z, respectively, are given the
the sets

SA(x) = {sgn(xi) · ei | xi 6= 0} ,
EA(z) = {sgn(zi) · ei | |zi| = max

j
|zj |} .

The inclusion SA(x) ⊆ EA(z) also characterizes an optimality condi-
tion. For example, consider the LASSO [6] problem

minimize
x

1
2‖Ax− b‖

2
2 subject to ‖x‖1 ≤ τ,

where τ is a positive parameter. It’s straightforward to verify that
x is optimal for this problem if and only if SA(x) ⊆ EA(z) where
z := AT(b − Ax) is the negative gradient of the objective. Section 5
describes in detail the connection between optimality and alignment.

Example 2.6 (Nuclear Norm). The nuclear norm, or Schatten 1-norm,
of a matrix is the spectral analog to the vector 1-norm. The nuclear
norm and its dual spectral norm can be obtained via the atomic set

A = {uvT | ‖u‖2 = ‖v‖2 = 1}

of normalized n-by-m rank-1 matrices. Let X and Z both be m-by-n
matrices with singular values c1 ≥ · · · ≥ cm∧n ≥ 0 and s1 ≥ · · · ≥
sm∧n ≥ 0, where m ∧ n := min{m, n}. The corresponding gauge for X
is the nuclear norm

γA(X) = ‖X‖1 :=
m∧n∑
i=1

ci,

and the support function for Z is the Schatten 2-norm

σA(Z) = ‖Z‖∞ := max
i=1:m∧n

si.

The atomic description of these functions is consistent with the notion
that the nuclear norm is a convex function that promotes low rank (e.g.,
sparsity with respect to rank-1 matrices) [12]. The alignment condition
〈X,Z〉 = ‖X‖1 · ‖Z‖∞ holds when X and Z have a simultaneously
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ordered singular value decomposition (SVD). Suppose, then, that X
has rank r and that the largest singular value of Z has multiplicity d.
If the SVDs of X and Z are

X =
r∑
i=1

ciuiv
T
i and Z =

m∧n∑
i=1

siuiv
T
i ,

then the atomic support of X is

SA(X) = {u1v
T
1 , . . . , urv

T
r } ,

and the set of atoms exposed by Z is

EA(Z) = {u1v
T
1 , . . . , udv

T
d } .

The inclusion (2.8), which identifies the support as a subset of the
exposed atoms, implies d ≥ r. Thus, the singular vectors of Z corre-
sponding to the d singular values s1, . . . , sd contain the singular vectors
of X. Note that this can also be proven as a consequence of von
Neumann’s trace inequality [36], [37]. Friedlander and Macêdo [38] use
this property for the construction of space-efficient dual methods for
low-rank semidefinite optimization.

Example 2.7 (Linear Subspaces). Suppose that the set of atoms A
contains all the elements of a linear subspace L. In this case, the gauge
γL(x) is finite only if x is in L, and similarly, the support function σL(z)
is finite only if z is in its orthogonal complement L⊥. In particular,
because L and L⊥ are cones,

γL(x) = δL(x) and σL(z) = δL⊥(z).

The respective domains of the gauge and support functions are thus L
and L⊥. It follows that, under the atomic set L, the vectors x and z are
L-aligned if and only if x ∈ L and z ∈ L⊥. Thus, the aligned vectors
are orthogonal.



3
Alignment with Respect to General Convex Sets

The alignment principles we develop depend on basic notions of convex
sets and their supporting hyperplanes. Gauge and support functions
are central because they furnish a complete and convenient calculus
for manipulating and interpreting atomic sets. The following blanket
assumption, which holds throughout the monograph, ensures a desirable
symmetry between a set and its polar, as explained in Subsection 3.1.
This assumption considerably simplifies our analysis and fortunately
holds for many of the most important and relevant examples.
Assumption 3.1 (Origin Containment). The set C ⊂ Rn is closed convex
and contains the origin.

3.1 Polarity

Our notion of alignment is based on the polarity of convex sets. Polarity
is most intuitive in the context of convex cones, which are convex sets
closed under positive scaling: the set K is a convex cone if αK ⊂ K for
all positive α and K +K ⊂ K. Its polar

K◦ = {z | 〈x, z〉 ≤ 0 ∀x ∈ K} (3.1)
is also a convex cone, and its vectors make an oblique angle (i.e.,
a nonpositive inner product) with every vector in K. The definition of
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the polar operation for general convex set C is similar, except that the
0 bound is replaced with a 1:

C◦ = {z | 〈x, z〉 ≤ 1 for all x ∈ C} . (3.2)

One way to connect the two polarity definitions (3.1) and (3.2) is
by “lifting” the set C and its polar C◦ and embedding them into slices
of the 1 and −1 level sets of the opposing cones in Rn+1:

KC := cone(C × {1}) and K◦C := cone(C◦ × {−1}).

Then for any nonzero (n + 1)-vectors x̄ ∈ KC and z̄ ∈ K◦C, there exist
positive scalars αx and αz, and vectors x ∈ C and z ∈ C◦, such that

〈x̄, z̄〉 =
〈
αx

(
x

1

)
, αz

(
z

−1

)〉
= (αx αz) · (〈x, z〉 − 1)
≤ 0,

(3.3)

where the last inequality follows from the polar definition in (3.2). The
last inequality in (3.3) confirms that the cones KC and K◦C are polar to
each other under definition (3.1).

The blanket Assumption 3.1, which asserts C is closed and contains
the origin, yields a special symmetry because then the polar C◦ also
contains the origin and C◦◦ = C [35, Theorem 14.5]. This is one of the
reasons why we define Â = conv(A ∪ {0}) to include the origin.

The pair of polar sets C and C◦ can be said to generate the correspond-
ing gauge and support functions γC and σC, as we show below. Because
the gauge and support functions are positively homogeneous (2.5), the
epigraphs for these functions are convex cones. Moreover, it is straight-
forward to verify from the Minkowski characterization of the gauge (2.4)
and the definition of the polar that the unit level sets for γC and σC are
the sets that define them:

C = {x | γC(x) ≤ 1} and C◦ = {z | σC(z) ≤ 1} . (3.4)

It thus follows that

epi γC = cone(C × {1}) and epiσC = cone(C◦ × {1}). (3.5)

Figure 3.1 shows a visualization of the epigraph of the gauge to C.
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Figure 3.1: The epigraph of the gauge γC is the cone in Rn × R generated by the
set C ⊂ Rn; see (3.5).

The recession cone (also known as the asymptotic cone) of a set C
contains the set of directions in which the set is unbounded:

rec C := {d | x+ λd ∈ C for every λ ≥ 0 and x ∈ C} . (3.6)

See Figure 3.2 for an illustration. Vectors in the recession cone can also
be thought of as “horizon points” of C [35, p. 60]. With respect to the
gauge and support functions to the set C, vectors u ∈ rec C have the
property that γC(u) = 0 and σC(u) = +∞; see Proposition 3.2. We must
therefore be prepared to consider cases where these functions can take
on infinite values. Far from being a nuisance, this property is useful in
modelling important cases in optimization.

The following proposition collects standard results regarding gauge
and support functions and establishes the polarity correspondence be-
tween these two functions. The proofs of these claims can be found
in standard texts, notably Rockafellar [35] and Hiriart-Urruty and
Lemaréchal [39]. Those proofs typically rely on properties of conju-
gate functions. Because our overall theoretical development doesn’t
require conjugacy, we provide self-contained proofs that depend only
on properties of closed convex sets.
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Figure 3.2: The contours of the gauge function of C (left) and of C◦ (right). All
vectors x in the recession cone of C have gauge value γC(x) = 0. A vector x1 can
only be C-aligned with another vector z1 if they are orthogonal to each and each
is an extreme ray, respectively, of rec C and dom γC◦ = (rec C)◦. Each of the pairs
(x1, z1) and (x2, z2) are C-aligned.

Proposition 3.2 (Properties of Gauges and Support Functions). Let
C ⊂ Rn be a closed convex set that contains the origin, and D ⊂ Rn be
an arbitrary set. The following statements hold.

(a) (Closure and convex hull) γD = γcl convD and σD = σcl convD.

(b) (Polarity and conjugacy) γC◦ = σC = δ∗C .

(c) (Linear transformation) For a linear map M with adjoint M∗,

γM−1C(x) = γC(Mx) and σMC(z) = σC(M∗z),

where we interpret the image of C under a linear map M and its
inverse as the sets

MC = {Mx | x ∈ C} ,
M−1C = {x |Mx ∈ C} .

(d) (Scaling) αγC = γ 1
α
C and ασC = σαC for all α > 0.

(e) (Bijection) C = {x ∈ Rn | 〈x, z〉 ≤ σC(z) for all z ∈ Rn} .

(f) (Domains) dom γC = cone C and dom σC = (rec C)◦.
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(g) (Subdifferential) ∂σC(z) = conv {x ∈ C | 〈x, z〉 = σC(z)}.

(h) (Recession cones) γC(x) = 0 if and only if x ∈ rec C.

(i) (Duality correspondence) For all x ∈ C,

x ∈ ∂σC(z) if and only if z ∈ NC(x).

Proof.

(a) The stated property for the gauge function follows immediately
from the Minkowski-functional description (2.4). Now consider
the support function. Because D ⊆ cl convD, it follows that
σD(z) ≤ σcl convD(z) for all z. Hence it’s sufficient to prove that
σcl convD(z) ≤ σD(z) for all z. Fix any d ∈ cl convD and choose
an arbitrary sequence {dk}∞n=1 ⊂ convD such that dk → d. Each
element of the sequence {dk} is a convex combination of points
in D, and so it follows that 〈dk, z〉 ≤ σD(z) for all k and z. Since
dk → d and 〈dk, z〉 ≤ σD(z) for all n, it follows that 〈d, z〉 ≤ σD(z).
But d is arbitrary, and so we can conclude that σcl convD(z) ≤
σD(z).

(b) First, we show γC◦ = σC. The gauge to C◦ (cf. (2.4)) can be
expressed as

γC◦(x) = inf {λ > 0 | λ−1x ∈ C◦} .

Thus, from the definition of the polar set (3.2),

γC◦(x) = inf {λ > 0 | 〈λ−1x, y〉 ≤ 1, ∀y ∈ C}

=
[
sup {µ > 0 | 〈µx, y〉 ≤ 1, ∀y ∈ C}

]−1

=
[
sup {µ > 0 | 〈x, y〉 ≤ µ−1, ∀y ∈ C}

]−1

= sup
y∈C
〈x, y〉

= σC(x).
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Next, we show σC = δ∗C . By the definition of conjugate function,

δ∗C(x) = sup
z∈Rn

{〈x, z〉 − δC(z)}

= sup
z∈C
〈x, z〉

= σC(x).

(c) From the Minkowski functional expression for the gauge function,

γC(Mx) = inf {λ |Mx ∈ λC}
= inf {λ | x ∈ λM−1C}
= γM−1C(x).

Also, from the definition of the adjoint of a linear map,

σMC(z) = sup {〈Mx, z〉 | x ∈ C}
= sup {〈x,M∗z〉 | x ∈ C}
= σC(M∗z).

(d) By defining M = α, the proof follows directly from
Proposition 3.2(c).

(e) Let D = {x ∈ Rn | 〈x, z〉 ≤ σC(z) for all z ∈ Rn}. By the defini-
tion of support function, it can be easily shown that C ⊆ D. So we
only need to prove that D ⊆ C. Assume there is some x ∈ D such
that x /∈ C. Then by the separating hyperplane theorem, there
exists s ∈ Rn such that

〈s, x〉 > sup {〈s, y〉 | y ∈ C} = σC(s).

This leads to a contradiction. We therefore conclude that C = D.

(f) It follows from the definition of the domain that dom γC = cone C.
Thus we only need to show that dom σC = (rec C)◦. First we show
that dom σC ⊆ (rec C)◦. For any x ∈ dom σC, the support σC(x) is
finite. Thus for any d ∈ rec C,

〈c+ λd, x〉 <∞, ∀c ∈ C, λ ≥ 0;
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see (3.6). It follows that 〈d, x〉 ≤ 0, and thus x ∈ (rec C)◦. For
the other direction, instead we will show that (dom σC)◦ ⊆ rec C.
Assume x ∈ (dom σC)◦, then for any c ∈ C, λ ≥ 0, y ∈ dom σC,

〈c+ λx, y〉 = 〈c, y〉+ λ〈x, y〉 ≤ 〈c, y〉 ≤ σC(y).

Because C is a closed convex set, we can conclude that c+λx ∈ C,
for all c ∈ C and λ ≥ 0 by Proposition 3.2(e). Therefore, x ∈ rec C
by (3.6).

(g) Let D = conv {x ∈ C | 〈x, z〉 = σC(z)}. First, we show that D ⊆
∂σC(z). Assume x ∈ D. Then for any w ∈ Rn,

σC(w) ≥ 〈x,w〉 = σC(z) + 〈x,w − z〉.

Thus, x ∈ ∂σC(z). Next, we prove that ∂σC(z) ⊆ D. Assume
x ∈ ∂σC(z), then

σC(w) ≥ σC(z) + 〈x,w − z〉 ∀w ∈ Rn. (3.7)

By the subadditivity of support functions,

σC(z) + σC(w − z) ≥ σC(w) ∀w ∈ Rn. (3.8)

It then follows from (3.7) and (3.8) that σC(v) ≥ 〈x, v〉 for all v.
By Proposition 3.2(e), we thus conclude that x ∈ C. Now let w = 0
in (3.7), it follows that 〈x, z〉 ≥ σC(z). Therefore, it follows that
〈x, z〉 = σC(z) and thus x ∈ D.

(h) First, assume γC(x) = 0. Then for any x̂ ∈ C and λ ≥ 0,

γC(x̂+ λx) ≤ γC(x̂) + λγC(x) = γC(x̂).

It follows that x̂+ λx ∈ C and therefore x ∈ rec C. Next, assume
x ∈ rec C. Then by the definition of recession cone, we have λx ∈ C
for all λ ≥ 0, which implies γC(x) = 0.

(i) Let x ∈ C and z ∈ Rn, then by Proposition 3.2(g) we know that
x ∈ ∂σC(z) if and only if

〈x, z〉 ≥ 〈u, z〉 for all u ∈ C.

Therefore, from the definition of normal cone we know that this
holds if and only if z ∈ NC(x).
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3.2 Exposed Faces

A face FC of a convex set C is a subset with the property that for all
elements x1 and x2 both in C, and for all θ ∈ (0, 1),

θx1 + (1− θ)x2 ∈ FC ⇐⇒ x1 ∈ FC and x2 ∈ FC.

Note that the face must itself be convex. A face FC(d) is exposed by a
direction d ∈ Rn if the face is contained in the supporting hyperplane
with normal d:

FC(d) = {c ∈ C | 〈c, d〉 = σC(d)} = ∂σC(d), (3.9)

where the second equality follows from Proposition 3.2(g). The elements
of the exposed face FC(d) are thus precisely those elements of C that
achieve the supremum for σC(d).

In Section 4 we will consider atomic sets that are not convex. In
that case, the exposed face of the convex hull of those atoms coincides
with the convex hull of the exposed atoms. In particular, if A = {ai}i∈I
is any collection of atoms, then

FA(d) = conv EA(d).

The face of a set is exposed by the direction of a vector, regardless
of its magnitude. In particular, it follows from positive homogeneity of
the support function σC to the set C that

FαC(d) = αFC(d) and FC(αd) = FC(d) ∀α > 0. (3.10)

For nonpolyhedral sets, it’s possible that some faces may not be exposed
[35, p. 163].

3.3 Alignment Characterization

The alignment condition specified by Definition 2.4 rests on the tightness
of the polar inequality (2.7). In this subsection we tie the alignment
condition and the polar inequality to a geometric concept based on
exposed faces. This geometric vantage illuminates an intuitive notion
of the dual relationship between a pair of aligned vectors. We proceed
in two steps. The first step characterizes the alignment for vectors
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normalized to unit length, as defined by the gauge to a set and its polar;
see Proposition 3.3. The second step generalizes the result by removing
the normalization assumption; see Corollary 3.4.

Proposition 3.3 (Normalized Alignment). Any pair of vectors (x, z) ∈
C × C◦ is C-aligned if any of the following equivalent conditions holds:

(a) 〈x, z〉 = 1,

(b) x ∈ bnd C and z ∈ FC◦(x),

(c) x ∈ FC(z) and z ∈ bnd C◦.

Proof. Suppose (a) holds. By definition (3.2) of the polar set C◦,

σC◦(x) = sup {〈x, u〉 | u ∈ C◦} ≤ 1 ∀x ∈ C.

Then (a) implies that z achieves the supremum above, and so by (3.9),
this holds if and only if z ∈ FC◦(x) and x ∈ bnd C. Thus (b) holds.
The fact that (b) implies (a) follows by simply reversing this chain of
arguments.

To prove that (a) is equivalent to (c), we only need to use the
assumption that C is closed and contains the origin, and hence that
C = C◦◦ [35, Theorem 14.5]. This allows us to reuse the arguments
above by exchanging the roles of x and z, and C and C◦.

The following corollary characterizes the general alignment condition
without assuming that the vector pair (x, z) is normalized.

Corollary 3.4 (Alignment). Any pair of vectors (x, z) ∈ cone C × cone C◦
is C-aligned if any of the following equivalent conditions holds:

(a) 〈x, z〉 = γC(x) · σC(z),

(b) z ∈ coneFC◦(x) + rec C◦,

(c) x ∈ coneFC(z) + rec C.

Proof. First suppose that γC(x) and σC(z) are positive. Then the equiv-
alence of the statements follows by applying Proposition 3.3 to the
normalized pair of vectors x̂ := x/γC(x) and ẑ := z/σC(z). In that
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case, (a) follows immediately after multiplying 〈x̂, ẑ 〉 = 1 by the quan-
tity γC(x) · σC(z). Parts (b) and (c) follow from the fact that for any
convex set D and any vector d ∈ Rn, FD(d) = FD(αd) for any positive
scalar α; see (3.10).

We now show equivalence of the statements in the case where
γC(x) = 0. By Proposition 3.2(h), this holds if and only if x ∈ rec C,
but not in F

C
(z). Thus (c) holds. But because σC(z) is finite, x and

z together satisfy 〈x, z〉 = 0. Thus, (a) holds. To show that (b) holds,
note that σC◦(x) = γC(x) = 0, and so by (3.9),

coneF
C◦

(x) = {u | 〈x, u〉 = 0} ,

which certainly contains z. Thus, (b) holds. The case with
σC(z) = 0 follows using the same symmetric argument used in the
proof of Proposition 3.3.

Corollary 3.4 dispenses with the normalization requirement and
allows for one of the vectors of the aligned pair to lie in the recession
cone of C or its polar C◦. In that case, the alignment condition in
Corollary 3.4(a) reduces to an orthogonality condition, i.e., 〈x, z〉 = 0.
But if x ∈ rec C, this implies that z ∈ (rec C)◦. In other words, x and z
are extreme rays of their respective recession cones. Figure 3.2 illustrates
the geometry of this situation.

Example 3.5 (Alignment for Cones). Suppose that K is a cone, and
that the pair of vectors (x, z) is K-aligned. Because a cone is its own
recession cone, i.e., recK = K, Corollary 3.4 asserts

〈x, z〉 = 0 ⇐⇒ x ∈ K ⇐⇒ z ∈ K◦.

This assertion effectively generalizes Example 2.7, which made the same
claim for linear subspaces.

Thus, for convex cones we see that alignment is equivalent to or-
thogonality. This principle applies to general convex sets C using the
lifting technique described in Subsection 3.1. Take any pair of vec-
tors (x, z) ∈ C × C◦ satisfying 〈x, z〉 = 1, which implies that they are
C-aligned by Proposition 3.3. Then

x̄ := (x, 1) ∈ KC and z̄ := (z,−1) ∈ K◦C,
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and
〈x̄, z̄〉 = 〈x, z〉 − 1 = 0.

This last equation coincides with tightness of the inequality (3.3), which
characterizes polarity of cones.

The next example shows how the alignment property is connected
to complementarity in conic programming [40, Section 5.3.6]. Section 5
explores a more general connection between alignment and optimality
in convex optimization.

Example 3.6 (Alignment as Optimality in Conic Optimization). Consider
the pair of dual linear conic optimization problems

minimize
x

〈c, x〉
subject to Fx = b, x ∈ K,

maximize
y, z

〈b, y〉
subject to F Ty − z = c, z ∈ K◦,

where F : Rn → Rm is a linear operator, (b, c) ∈ Rm × Rn are arbitrary
vectors, and K◦ is the polar cone of K.

The feasible triple (x, y, z) is optimal if strong duality holds, i.e.,

0 = 〈c, x〉 − 〈b, y〉 = 〈F Ty − z, x〉 − 〈Fx, y〉 = 〈x, z〉.

But because x ∈ K and z ∈ K◦, it follows from Example 3.5 that x and
z are K-aligned.

3.4 Alignment as Conic Orthogonal Decomposition

The Moreau decomposition for convex cones asserts that any vector can
be orthogonally decomposed as the projection onto a cone and its polar
[39, Theorem 3.2.5]. In other words, for any vector x, the conditions

x = x1 + x2, x1 ∈ K, x2 ∈ K◦, 〈x1, x2〉 = 0

hold if and only if

x1 = projK(x) and x2 = projK◦(x).

This conic polar decomposition generalizes the classical notion of decom-
position by orthogonal subspaces, and sheds light on the relationship
between vectors aligned with respect to any convex set C.
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Figure 3.3: Any vector (s, α) ∈ Rn ×R can be decomposed into orthogonal compo-
nents in the cones generated by a convex set C ⊂ Rn and its polar. The components
of the decomposition s = αxx+ αzz are C-aligned.

Every element, respectively, in KC and K◦C is a nonnegative multiple
of (x, 1) and (z, 1) for some vectors x ∈ C and z ∈ C◦. Thus, for
any vector (s, α) ∈ Rn × R, Moreau’s decomposition implies unique
nonnegative scalars αx and αz such that

(s, α) = projKC(s, α) + projK◦C(s, α)

= αx(x, 1) + αz(z,−1).

Because the elements of the decomposition are orthogonal,

(αxαz) · (〈x, z〉 − 1) = 0.

Moreover, the vectors x̂ := αxx and ẑ := αzz, respectively, have gauge
and support values

αx = γC(x̂) and αz = σC(ẑ).

Thus, the pair (x̂, ẑ) is C-aligned because 〈x̂, ẑ〉 = αxαz. Figure 3.3
illustrates the geometry of this decomposition.



4
Alignment with Respect to Atomic Sets

Section 3 describes properties of gauges and support functions generated
by general convex sets. In this section, we study the properties of these
functions and their interpretations that are particular to atomic sets
A ⊂ Rn.

4.1 Atomic Decomposition

Section 2 described two different characterizations of the gauge function,
given in terms of a minimal conic decomposition of the atoms (2.2),
and as Minkowski functional, which gives the infimal dilation of the
atomic sets (2.4). The former “sum form” of the gauge function is useful
because it provides an interpretation of all gauge functions as weighted
1-norm specialized to a particular atomic set. This suggests that gauges
are the natural promoters of atomic sparsity. The next elementary result
establishes the equivalence between the two characterizations.

Proposition 4.1 (Gauge Equivalence). For any set A ⊂ Rn,

γA(x) = inf
ca

{∑
a∈A

ca

∣∣∣∣∣ x =
∑
a∈A

caa, ca ≥ 0 ∀a ∈ A
}

= inf {λ ≥ 0 | x ∈ λÂ} .

308
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Proof. Take any x ∈ cone Â, since otherwise the sets above are empty,
and by convention, both expressions have infinite value. Then, by the
definition of Â,

γA(x) = inf
λ
{λ ≥ 0 | x ∈ λÂ}

= inf
λ, c̄a

{
λ ≥ 0

∣∣∣∣ x = λ
∑
a∈A

c̄aa,
∑
a∈A

c̄a = 1, c̄a ≥ 0 ∀a ∈ A
}

= inf
λ, ca

{
λ

∣∣∣∣ x =
∑
a∈A

caa,
∑
a∈A

ca = λ, ca ≥ 0 ∀a ∈ A
}
,

which, after eliminating λ, yields the required equivalence.

Some atomic sets, such as the set of rank-1 outer products used to
define the nuclear-norm ball (cf. Example 2.6), may be uncountably
infinite. Even in that case, however, whenever x admits a valid atomic
decomposition with respect to the atoms in A, the gauge value, and
thus the sum ∑

a∈A ca, necessarily has finite value.

Proposition 4.2 (Finite Support). For any n-vector x that has a valid
atomic decomposition with respect to the set A ⊂ Rn, a finite atomic
support set SA(x) ∈ suppA(x) always exists.

Proof. If γA(x) = 0, the assertion is trivially true, since the empty set
is the only element of suppA(x). Now suppose γA(x) > 0, and define
the normalized vector x̂ = x/γA(x). Then x̂ ∈ Â, and γA(x) = 1. By
Carathéory’s Theorem [35, Theorem 17.1], there exists a finite convex
decomposition of x̂ in terms of at most n+ 1 atoms in A. That is, there
exists a set S ⊂ A with n+ 1 elements such that

x̂ =
∑
a∈S

ĉaa,
∑
a∈S

ĉa = 1, ĉa > 0, ∀a ∈ S.

Taking ca = γA(x) · ĉa for each a ∈ S gives a solution to the equations
in (2.3), showing that S ∈ suppA(x).

The support may not be unique, even if it’s minimal.

Example 4.3 (Non-Uniqueness). Consider the atomic set

A = {(±1,±1, 1)} ⊂ R3.
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The point x = (0, 0, 2) can be expressed in at least three different ways,

x = (1, 1, 1) + (−1,−1, 1)
= (1,−1, 1) + (−1, 1, 1)

= 1
2[(1, 1, 1) + (−1,−1, 1) + (1,−1, 1) + (−1, 1, 1)],

all of which give the same gauge value γA(x) = 2. In this case, the set
elements of suppA(x) are

1
1
1

 ,
−1
−1

1


 ,


 1
−1

1

 ,
−1

1
1


 , and

1
2


1

1
1

 ,
−1
−1

1

 ,
 1
−1

1

 ,
−1

1
1


 .

Any element of suppA(x) is a valid support set of x with respect to
the atomic set A. However, for functions commonly used to promote
sparsity, often the support set is always unique.

Proposition 4.1 establishes that the gauge value γA(x) of a vector
x yields an atomic decomposition whose coefficient sum is minimal.
If another vector v can be atomically decomposed as a subset of the
atoms from x, then the support of v is a subset of the support of x, i.e.,
SA(v) ⊂ SA(x). This is established in the following proposition.

Proposition 4.4 (Same Support Sets). Take any n-vector x and atomic
set A ⊂ Rn such that γA(x) is positive and finite. Then a vector v that
has a valid atomic decomposition in terms of any support SA(x), i.e.,
there exists coefficients ca such that

v =
∑

a∈SA(x)
caa, ca ≥ 0, (4.1)

must have the gauge value

γA(v) =
∑

a∈SA(x)
ca.
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Proof. Suppose, by way of contradiction, that there exists a atomic
decomposition of v with respect to A that isn’t given by (4.1), i.e.,

v =
∑
a∈A

c′aa, c′a ≥ 0,
∑
a∈A

c′a <
∑

a∈SA(x)
ca.

Because SA(x) is the support set of x, there exist positive coefficients
ĉa where

x =
∑

a∈SA(x)̂
caa, γA(x) =

∑
a∈SA(x)̂

ca.

But a valid decomposition of x is

x = βv + x− βv = β
∑
a∈A

c′aa+
∑

a∈SA(x)
(ĉa − βca)a,

where we pick β = [mina∈SA(x) ĉa]/[maxa∈SA(x) ca] to guarantee that all
the coefficients are nonnegative. Then by the definition of a gauge,∑

a∈SA(x)̂
ca ≤ β

∑
a∈A

c′a +
∑

a∈SA(x)
(ĉa − βca),

which holds if and only if ∑
a∈A

c′a ≥
∑

a∈SA(x)
ca.

This implies that the decomposition of v with respect to SA(x) is in fact
the minimal decomposition of v with respect to A, and the sum of the
coefficients indeed giving its gauge value; cf. Definition 2.1.

Proposition 4.5 (Support Identification). For any set A ⊂ Rn, the pair
of n-vectors (x, z) is A-aligned if and only if SA(x) ⊆ EA(z) for all
SA(x) ∈ suppA(x).

Proof. First, we show that if x and z are A-aligned, then SA(x) ⊆ EA(z)
for all SA(x) ∈ suppA(x). Because x and z are A-aligned,

〈x, z〉 = γA(x) · σA(z). (4.2)

Now suppose that γA(x) > 0. Then all support sets SA(x) ∈ suppA(x)
are nonempty. Suppose that a ∈ SA(x) but a 6∈ EA(z). We show that
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this leads to a contradiction. By definition, a 6∈ EA(z) implies that

〈a, z〉 < σA(z). (4.3)

Define v = x− caa, which is the vector that results from deleting the
atom a from the support of x. Then by Proposition 4.4,

γA(v) = γA(x)− ca. (4.4)

Thus,

〈x, z〉 (i)= 〈v, z〉+ ca〈a, z〉
(ii)
< γA(v)σA(z) + caσA(z)
= (γA(v) + ca)σA(z)
(iii)= γA(x) · σA(z),

where (i) follows by construction (x = v + caa); (ii) follows from the
polar inequality (2.7) and (4.3); and (iii) follows from (4.4). But this
contradicts (4.2), and therefore a ∈ SA(x) implies a ∈ EA(z), i.e.,
SA(x) ⊆ EA(z).

Now assume γA(x) = 0. Then x ∈ rec Â and suppA(x) contains only
the empty set. Because the empty set is also a subset of EA(z) for any z,
the statement is trivially true.

Next, we show that if SA(x) ⊆ EA(z) for all SA(x) ∈ suppA(x),
then x and z are A-aligned. By the definition of support set (2.3), we
can assume that

γA(x) =
∑

a∈SA(x)
ca, x =

∑
a∈SA(x)

caa, ca > 0 ∀a ∈ SA(x).

Then by Corollary 3.4, we only need to show that 〈x, z〉 = γA(x) · σA(z).
Indeed,

〈x, z〉 =
∑

a∈SA(x)
ca〈a, z〉

(i)=
(∑
a∈SA(x)

ca

)
σA(z) = γA(x) · σA(z),

where (i) follows from the assumption that SA(x) ⊆ EA(z).
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4.2 Examples

The general alignment result described by Corollary 3.4 includes the
possibility that aligned vectors may contain elements from the recession
cone of the atomic set. Elements in the recession cone may be interpreted
as directions, rather than just points in the set. The presence of a non-
trivial recession cone must be considered in practice, and is exhibited,
for example, by all seminorms: these are nonnegative functions that
behave like norms with the exception that they may vanish at nonzero
points and are not necessarily symmetric. The next example describes
a common atomic set composed by points and directions.

Example 4.6 (Total Variation). The anisotropic total-variation norm of
an n-vector x is defined as

‖x‖TV =
n∑
i=2
|xi−xi−1| = ‖Dx‖1, D =


1 −1 0 . . . 0 0
0 1 −1 . . . 0 0
...

...
... . . . ...

...
0 0 0 . . . 1 −1

 .
The bi-diagonal matrix D has a 1-dimensional nullspace spanned by
the constant vector of all ones e, and so De = 0. Thus the TV norm
is a seminorm and the generating atomic set must include a direction
of recession, given by the range of e. Interestingly, the atomic set that
induces this norm isn’t unique: for any matrix A = [a1, . . . , an−1] where
DA = I, the corresponding TV norm is the gauge with respect to the
atoms

A = {±a1, . . . ,±an−1}+ cone(±e).

To see this, write

x =
n−1∑
i=1

ciai + cee = Ac+ cee

for some scalars c1, . . . , cn−1 and ce. (The scalars are not restricted to
be nonnegative because the set of atoms includes vectors with both
positive and negative signs.) Note that the n− 1 vectors ai span null(e),
so the above decomposition always exists, with unique values for ci
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and ce. The solution to (2.3) thus determines the unique decomposition

x =
n−1∑
i=1

(sici)︸ ︷︷ ︸
ca

· (siai)︸ ︷︷ ︸
a

+cee, si = sgn(ci),

where (sici) are the coefficients for the atoms (siai) ∈ A, and ce is the
coefficient for the recession direction e. Then

‖Dx‖1 = ‖DAc‖1 = ‖c‖1 = γA(x).

If x ∈ cone(±e), then x ∈ rec Â and thus γA(x) = 0.
To see that the atomic set isn’t unique, note that DA = I for any

matrix of the form A = B + esT , where

B = [b1, . . . , bn−1] :=



1 1 . . . 1 1
0 1 . . . 1 1
...

... . . . ...
...

0 0 . . . 1 1
0 0 . . . 0 1
0 0 . . . 0 0


and s ∈ Rn−1 is an arbitrary vector. However, the gauge function with
respect to the atomic set formed by the columns of B and e is well
defined. Specifically, note that the range of the matrix [B e] spans all
of Rn. Thus the decomposition

x = Bc+ cee (4.5)

uniquely defines the vector c and the scalar ce, and γA(x) = ‖Dx‖1 =
‖c‖1, as before.

The support function for this set of atoms is

σA(z) = sup {〈x, z〉 | x = Bc+ cee, ‖c‖∞ ≤ 1}
= sup {〈c,BTz〉+ ce〈e, z〉 | ‖c‖∞ ≤ 1} .

Note that if z 6∈ null(e), then σA(z) clearly unbounded because ce
isn’t constrained. This confirms the fact that the domain of σA is
(rec Â)◦ = null(e), as shown by Proposition 3.2(f). Corollary 3.4 asserts
that if z is A-aligned with x, then it exposes all of the atoms that
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contribute non-trivially towards the decomposition (4.5). In particular,
SA(x) ⊂ EA(z), where one such decomposition gives, respectively, the
support of x and the atoms exposed by z:

SA(x) = { sgn((Dx)i)bi | xi 6= 0 } ,

EA(z) =
{

sgn(〈bi, z〉)bi|max
j
〈bj , z〉 = |〈bi, z〉|

}
.

Note that these alignment conditions do not depend on the specific
choice of the representation A, and are defined only with respect to the
columns of B, which are fixed.

Group norms arise in applications where the nonzero entries of
a vector are concentrated in patterns across the vector. Applications
include source localization, functional magnetic resonance imaging, and
others [11], [41], [42]. One interesting feature of group norms is that
they are not polyhedral.

Example 4.7 (Group Norms). Consider the ` subsets gi ⊆ {1 : n} such
∪`i=1gi = {1 : n}. Define the group norm with respect to the groups
G = {g1, . . . , g`} as the solution of the convex optimization problem

‖x‖G = min
yi

{∑̀
i=1
‖yi‖2

∣∣∣∣∣ x =
∑̀
i=1

Pgiyi

}
, (4.6)

where the linear operator PI : R|I| → Rn scatters the elements of a
vector into an n vector at positions indexed by I, i.e., {(PIy)i}i∈I = y,
and (PIy)k = 0 for any k /∈ I. This norm is induced by the atomic set

A = {Pgisi | si ∈ R|gi|, ‖si‖2 = 1, i = 1 : ` },

which yields the decomposition

x =
∑̀
i=1

ci(Pgisi), (4.7)

where ci and (Pgisi) are, respectively, the coefficients and atoms of the
decomposition.

If the sets in G form a partition of {1 : n} then the (non-overlapping)
group norm is simply

‖x‖G =
∑̀
i=1
‖xgi‖2.
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A common example is the matrix (1, 2) norm, which is the sum of the
Euclidean norms of the columns of a matrix [43]. In the non-overlapping
group case, the support set is unique, and for all i = 1 : `, the coefficients
and atoms of the decomposition (4.7) are given by

ci = ‖xgi‖2 and (Pgisi) with si = (ci)−1xgi .

More generally, the support sets gi may overlap, and thus the gauge
value of x must be obtained as the solution of the convex optimization
problem (4.6).

The conditions under which a vector z is A-aligned with x is similar
to the 1-norm case. We first decompose by each group gi:

sup
x∈A
〈x, z〉 (i)= max

i=1 : `
sup{〈si, zgi〉

∣∣ ‖si‖2 ≤ 1, si ∈ R|gi|}

(ii)= max
i=1 : `

‖zgi‖2,

where (i) follows from applying the supremum to each atom in A
and (ii) follows from the definition of the 2-norm. That is to say, x is
A-aligned with z if the decomposition (4.7) has SA(x) ⊂ EA(z), where

SA(x) =
{
Pgiyi/‖yi‖2

∣∣ ‖yi‖2 > 0
}

with y as the solution to (4.6),

and

EA(z) =
{
zgi/‖zgi‖2

∣∣ ‖zgi‖2 = maxj ‖zgi‖2
}
.

Bogdan et al. [44] proposed the ordered weighted 1-norm (OWL) as
a statistical tool for promoting models with low false discovery rates
over certain design matrices. Zeng and Figueiredo [13] derive the atomic
set for this norm, and show that it generalizes the octagonal shrinkage
and clustering algorithm for regression (OSCAR) [45], which has been
shown to have good sparse clustering properties.

Example 4.8 (OWL Norm). Consider a nonnegative vector w ∈ Rn with
elements ordered as w1 ≥ · · · ≥ wn ≥ 0. The OWL norm with respect
to w is defined as

‖x‖w =
n∑
i=1

wi|x[i]|,
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where x[i] is the ith-largest component of x in magnitude. This norm is
induced by the atomic set

A = {Qbi | Q ∈ Pn, i = 1 : n} ,

where Pn is the set of all n× n signed permutation matrices and the
vectors

bi := (τi, . . . , τi︸ ︷︷ ︸
i entries

, 0, . . . , 0) with τi :=
( i∑
j=1

wj

)−1
.

To see this, first derive the support function with respect to A:

σA(z) = max
i=1 :n

max
Q∈Pn

〈z,Qbi〉

= max
i=1 :n

τi

( i∑
j=1
|z[j]|

)
.

Use Proposition 3.2(b) together with (3.4) to obtain an expression for
the gauge function to the atomic set A:

γA(x) = sup
z
{〈x, z〉 | σA(z) ≤ 1}

= sup
z

{
〈x, z〉

∣∣∣∣∣
i∑

j=1
|z[j]| ≤

i∑
j=1

wj for all i = 1 : n
}

=
n∑
i=1

wi|x[i]|.

Now consider the atomic decomposition of x with respect to the atomic
set A. Let x̂ = [ |x[1]|, . . . , |x[n]| ]T denote the absolute ordered version
of x. Then there exists Qx ∈ Pn such that x = Qxx̂. Let

c = B−1x̂ with B = [b1, . . . , bn],

where B−1 exists because B is upper-triangular with strictly positive
entries. It is straightforward to determine the components of the vector c,
which are all nonnegative: for all i = 1 : n,

ci =

(|x[i]| − |x[i+1]|)/τi if i ∈ {1 : n− 1},
|x[n]|/τn if i = n.

(4.8)
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It then follows that

x = QxBc =
n∑
i=1

ci ·Qxbi. (4.9)

Next, we verify that the decomposition (4.9) provides a valid atomic
support set for x with respect to A. Indeed,

γA(x) =
n∑
i=1

wi|x[i]|

= 1
τ1
|x[1]|+

n∑
i=2

( 1
τi
− 1
τi−1

)
|x[i]|

=
n∑
i=1

ci.

Then by Definition 2.1, we confirm that one valid support set for x with
respect to A is given by

SA(x) = {Qxbi | i = 1 : n and ci > 0} ,

where each ci is defined by (4.8). Use Proposition 4.5 to determine the
essential atoms exposed by z:

EA(z) =
{
Qbi

∣∣∣∣ i = arg max
i=1 : n

τigi(ẑ), Q ∈ Pn, gi(QTz) = gi(ẑ)
}
,

where the vector ẑ = (|z[1]|, . . . , |z[n]|) and gi(z) = ∑i
j=1 zj .

The next two examples are for gauges that encourage sparsity (i.e.,
low-rank) for matrices.

Example 4.9 (Semidefinite Matrix Trace Norm). An important gauge
function is generated by the spectrahedron

A = {uuT | u ∈ Rn, ‖u‖2 = 1} ,

which is a subset of the nuclear-norm ball that only includes symmet-
ric rank-1 matrices. As with the nuclear-norm, this gauge encourages
sparsity with respect to the set of rank-1 matrices—i.e., low-rank—and
only admits positive semidefinite matrices.
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We first derive the support function with respect to A:

σA(Z) = sup
X∈Â

〈X,Z〉

= max
{

0, sup
‖u‖2=1

〈u, Zu〉
}

= max{0, λmax(Z)},

which vanishes only if Z is negative semidefinite, and otherwise is
achieved when u is a maximal eigenvector of Z. Let X = UΛUT be
the eigenvalue decomposition of X. Use Proposition 3.2(b) together
with (3.4) to obtain an expression for the gauge to this atomic set:

γA(X) = sup {〈X,Z〉 | λmax(Z) ≤ 1}
= sup {〈UΛUT , Z〉 | λmax(Z) ≤ 1}
= sup {〈diag(Λ), diag(UTZU)〉 | λmax(Z) ≤ 1} ,
= tr(Λ) + δ�0(X),

where the last equality holds because the supremum is achieved by
Z = UUT . The indicator δ�0 on the semidefinite cone arises because
indefinite matrices cannot be atomically decomposed with respect to
the atomic set A. Moreover, it follows that the nontrivial eigenvectors
provide an atomic support set for X, i.e.,

{u1u
T
1 , . . . , uru

T
r } ⊆ SA(X),

where r is the rank of X.
This support isn’t unique, however, and in fact the set of supports

of X is very large. To see this, consider any valid atomic decomposition

X = c1v1v
T
1 + · · ·+ ckvkv

T
k = V CV T ,

where ci and vi, respectively, are the ith diagonal entry of the diagonal
matrix C and ith column of the matrix V . Then

tr(X) = tr(V CV T )
= tr(CV TV )

= 〈diag(C),diag(V TV )〉 =
k∑
i=1

ci,
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where the last equality follows from the fact that each vivTi is in A and
thus has unit norm. Therefore any atomic decomposition of X yields
the same gauge value, which is the trace of X. Specifically, the support
of X with respect to the spectrahedron A can be characterized as

SA(X) = {v1v
T
1 , . . . , vkv

T
k | ‖vi‖2 = 1, range(V ) = range(X)} .

Because we don’t impose orthonormality among the vectors vi, this set
isn’t unique.

According to Proposition 4.5, the exposed atoms are given by the
eigenvectors corresponding to the maximal eigenvalue of Z, including
all of their convex combinations:

EA(Z) = conv {uuT | uTZu = λmax(Z)} .

This set coincides with the exposed face FA(Z); cf. (3.10).

An important challenge in recommender systems is incorporating
side information, e.g., exogenous information about a user or product
that may enhance recommendation quality. With the growth of social
media platforms, one way to incorporate side information is to promote
similarity of recommendations according to friendship networks. In such
applications, a commonly used regularization term is g(U) = tr(UTLU),
where L ∈ Rn×n is the positive semidefinite graph Laplacian matrix
and U ∈ Rn×r contains node embeddings, which represent the user
archetypes [46]–[48]. The next example provides a gauge function that
contains g as a special case. Let X = UUT .

Example 4.10 (Weighted Trace Norm for Semidefinite Matrices). We
describe a generalization of the trace norm for positive semidefinite
matrices, which was covered by Example 4.9. The weighted trace norm
is given by the function

γ(X) = 〈L,X〉+ δ�0(X),

where L is positive semidefinite. Write the decomposition of L as

L = [V V̄ ]
[
Λ 0
0 0

] [
V T

V̄ T

]
= V ΛV T ,



4.2. Examples 321

where Λ is diagonal with strictly positive elements and V and V̄ , re-
spectively, span the range and nullspace of L.

We claim that γ is the gauge to the atomic set
A = {rrT | r = V p, pTΛp = 1}+ {ssT | s = V̄ q for all q} , (4.10)

which we establish by showing X ∈ A implies γ(X) = 1, and vice versa.
Take any element X ∈ A, and observe

γ(X) = 〈L,X〉 = 〈L, V ppTV T 〉 = pTV TLV p = pTΛp = 1.
Conversely, take any X such that γ(X) = 1. Then, X is positive
semidefinite. The orthogonal decomposition of X onto the range and
nullspace of L is given by

X = V V TXV V T + V̄ V̄ TXV̄ V̄ T .

Then,
1 = γ(X) = 〈L,X〉 = 〈L, V V TXV V T 〉 = 〈Λ, V TXV 〉,

which implies that V TXV ∈ conv {ppT | pTΛp = 1}. Therefore, X is
in the convex hull of A. The second set in the sum (4.10) is in the
nullspace of L and thus can be ignored. This establishes the claim, and
also provides an expression for the support set to X:
SA(X) = {(V pi)(V pi)T | pTiΛpi = 1, range(V [p1 . . . pk]) = range(X)} .
The minimal set of vectors needed to complete the support is equal to
the rank of X.

We now derive the support function with respect to the atomic set A.
Because the nullspace of L characterizes a recession direction for γ, the
domain of σA must be restricted to null(V̄ T ). Thus, for Z ∈ dom σA,

σA(Z) = sup
X
{〈X,Z〉 | X ∈ Â}

= sup
p,q
{〈V ppTV T + V̄ qqTV̄ T, Z〉 | pTΛp ≤ 1,∀q}

= sup
u
{〈V TZV,Λ−1/2uuTΛ−1/2〉 | uTu ≤ 1}

+ sup
q
{〈qqT, V̄ TZV̄ 〉}

= sup
u
{〈Λ−1/2V TZV Λ−1/2, uuT 〉 | uTu ≤ 1}

= max{0, λmax(Λ−1/2V TZV Λ−1/2)},
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where the fourth equality follows from the assumption that Z ∈ dom σA.
It’s evident from this derivation that if V̄ TZV̄ 6= 0, then σA(Z) =∞.

We recognize that the expression inside the supremum is the gener-
alized eigenvalue of the pencil (Z,L), so that for all Z ∈ dom σA

σA(Z) = max {0, λmax(Z,L)} .

Hence, the exposed atoms are given by the maximal generalized eigen-
vectors and their convex combinations:

EA(Z) = conv {uuT | 〈u, Zu〉 = λmax(Z,L) · 〈u, Lu〉} .

The nuclear (Example 2.6), trace (Example 4.9), and weighted (Ex-
ample 4.10) trace norms are examples of gauges generated by continuous
atomic sets. We give another example of a continuous atomic set built
from sinuoidal functions that vary continuously in their frequencies. The
corresponding regularization function features widely in applications of
super-resolution imaging. The derivation in this example largely follows
Chi and Da Costa [49].

Example 4.11 (Continuous Sinusoidal Dictionary). Consider a signal
x ∈ Cn that can be expressed as a superposition of complex sinusoids:

x =
r∑

k=1
cks(τk), (4.11)

where r is the number of spikes, the nonnegative coefficients ck denote
the complex amplitudes, the parameters τk ∈ [0, 1) denote the delays of
the spikes, and the n-vector

s(τ) = (1, exp(i2πτ), . . . , exp(i2π(n− 1)τ))

represents the complex sinusoids. Now consider the atomic set

A = {exp(iφ)s(τ) | τ ∈ [0, 1), φ ∈ [0, 2π)} .

Use (4.11) to reparameterize x as a decomposition of atoms in A:

x =
r∑

k=1
|ck| exp(iφk)s(τk),
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where φk ∈ [0, 2π) satisfies |ck| exp(iφk) = ck for all k. It follows that
the support set of x with respect to A is given by

SA(x) = {exp(iφk)s(τk) | |ck| > 0, k = 1 : r} .

Next we show the corresponding computable gauge and support
functions. The support function with respect to A at z ∈ Cn is given by

σA(z) = sup{Re〈exp(iφ)s(τ), z〉 | τ ∈ [0, 1), φ ∈ [0, 2π)}
= sup{|〈s(τ), z〉| | τ ∈ [0, 1)}.

Given z ∈ Cn, the complex trigonometric polynomial

pz(τ) = 〈s(τ), z〉,

has coefficients z. Evaluating the support function σA(z) is equiva-
lent to finding the maximum modulus of pz on [0, 1). McLean and
Woerdeman [50] describe a stable root-finding algorithm that can be
used to compute the maximizing values.

Use Proposition 3.2(b) and (3.4) to derive the gauge function

γA(x) = sup
z∈Cn
{Re〈x, z〉 | σA(z) ≤ 1}

= sup
z∈Cn
{Re〈x, z〉 | |〈s(τ), z〉| ≤ 1 ∀τ ∈ [0, 1)}

= sup
z∈Cn
{Re〈x, z〉 | s(τ)HzzHs(τ) ≤ 1 ∀τ ∈ [0, 1)}

= sup
{

Re〈x, z〉
∣∣∣∣ z ∈ Cn, H ∈ Cn×n, H � zzH ,

tr(H) = 1,
n−k∑
j=1

Hj,j+k = 0, k = 1 : n− 1
}
.

The last equality follows from the bounded real lemma [51, Lemma 4.23].
From the definition of the support function σA, we also conclude

that the set of atoms exposed by the vector z is given by

EA(z) = {exp(iφ)s(τ) | Re〈exp(iφ)s(τ), z〉 = σA(z)} .



5
Alignment as Optimality

A pair of vectors aligned with respect to an atomic set inform each
other about their respective atomic supports. If the two vectors are
related through a gradient map of a convex function, then the alignment
condition can be interpreted as an optimality condition for a constrained
or regularized optimization problem. The alignment condition can also
be interpreted as providing an optimality certificate for the problem
of finding minimum gauge elements of a convex set. This subsection
describes both perspectives.

5.1 Regularized Smooth Problems

Consider the three related convex optimization problems

minimize
x

f(x) + ργC(x), (5.1a)

minimize
x

f(x) subject to γC(x) ≤ α, (5.1b)

minimize
x

γC(x) subject to f(x) ≤ τ, (5.1c)

where the parameters ρ and α are positive, and τ > inf f . Note that
the constraint γC(x) ≤ α is equivalent to the constraint x ∈ αC, which

324
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follows from Proposition 3.2(d). Assumption 3.1 on C continues to hold
throughout.

Theorem 5.1 (Optimality). Let f : Rn → R be a differentiable convex
function and C ⊂ Rn. Assume that at the respective solutions for all
three problems, the gauge values are positive and finite, and that for
problems (5.1b) and (5.1c), the constraints hold with equality. For (5.1c),
let P = {x | f(x) ≤ τ} and assume that ri(P) ∩ ri(dom γC) 6= ∅. Then
x∗ is optimal if and only if it’s C-aligned with z∗ := −∇f(x∗), and

σC(z∗) = ρ for problem (5.1a);
γC(x∗) = α for problem (5.1b);
f(x∗) = τ for problem (5.1c).

Proof. First consider the unconstrained problem (5.1a). A vector x∗ is
a solution if and only if

0 ∈ ∇f(x∗) + ρ∂γC(x∗).

Equivalently,

ρ−1z∗ ∈ ∂γC(x∗) = ∂σC◦(x∗) ≡ FC◦ (x
∗).

Then by Corollary 3.4 and the requirement that ρ−1z∗ ∈ bnd C◦, this
condition is equivalent to the C-alignment of the pair (x∗, z∗) and
σC(z∗) = ρ.

Next, consider the gauge constrained problem (5.1b). Because the
constraint is equivalent to α−1x ∈ C, a feasible vector x∗ is optimal if
and only if

0 ∈ ∇f(x∗) + ∂δC(α−1x∗) i.e., z∗ ∈ ∂δC(α−1x∗),

where δC is the indicator function for set C. By Rockafellar [35, Theo-
rem 23.5] and Proposition 3.2(b), this is equivalent to x∗ ∈ α∂σC(z∗).
Thus by Corollary 3.4 and the theorem hypothesis, this condition equiv-
alent to the C-alignment of the pair (x∗, z∗) and γC(x∗) = α. Note
that by Proposition 3.2(i), we know that this condition is equivalent to
z∗ ∈ NC(x∗/α), which is the standard optimality condition for (5.1b).

Finally, consider the level-constrained problem (5.1c). Because of the
hypothesis on the nonempty intersection between the relative interiors
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of P and dom γC, we can use Rockafellar [35, Theorem 23.8] to conclude
that

0 ∈ ∂(γC(x∗) + δP(x∗)) = ∂γC(x∗) + ∂δP(x∗),
which holds if and only if x∗ is optimal. The assumption that f(x∗) = τ

together with Hiriart-Urruty and Lemaréchal [39, Theorem D.1.3.5]
guarantees that there exists a positive scalar λ such that

0 ∈ ∂γC(x∗) + λ∇f(x∗) i.e., z∗ ∈ cone ∂γC(x∗).

Then by Corollary 3.4, it’s equivalent to say that the pair (x∗, z∗) is
C-aligned.

5.1.1 Objective Value Bound

With only slightly more effort, Theorem 5.1 implies that the residual
in the satisfaction of the polar inequality can be used to bound the
difference between the objective value f(x) and the optimal value f(x∗)
of any solution x∗.

Let α∗ be an upper bound on the gauge value γC(x∗) of any optimal
solution x∗, and define

gC(x) = α∗σC(zx)− 〈x, zx〉,

as the residual in the polar inequality, where

zx := −∇f(x).

Although a bound α∗ isn’t generally available, a notable exception is for
problems of the form (5.1b), where feasibility implies that γC(x∗) ≤ α,
and in that case we may simply take α∗ = α. To see how gc provides
the bound on the optimal value of f , note that

f(x∗) ≥ f(x) + 〈x∗ − x,∇f(x)〉
≥ f(x) + min

a∈α∗C
〈a− x,∇f(x)〉

= f(x) + 〈x, z〉 − α∗σC(z),

where the first inequality follows from the subgradient inequality. Rear-
ranging terms and using the definition of gc, we obtain the bound

gc(x) ≥ f(x)− f(x∗) ∀x.
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Jaggi [17] and Ndiaye et al. [52] derive a similar bound in the context
of the conditional gradient method applied to (5.1b).

5.2 Gauge Optimization

Consider the problem of finding the minimum-gauge element of a convex
set. This broad class of problems, originally proposed by Freund [27],
generalizes a range of problems, including specialized classes such as
least-norm solutions to linear systems and convex conic programming;
see Aravkin et al. [53] and Friedlander et al. [28]. These conceptually
simple problems have a special duality characterized by the following
pair of dual problems:

minimize
x

γC(x)
subject to x ∈ D,

minimize
z

σC(z)
subject to z ∈ D′,

(5.2)

where D ⊂ Rn\{0} is any closed convex set and

D′ := {z | 〈x, z〉 ≥ 1 ∀x ∈ D}

is its antipolar. The following results describes the alignment correspon-
dence between primal and dual solutions.

Proposition 5.1 (Polar Duality). A pair of primal-dual feasible vectors
(x, z) ∈ D ×D′ is primal-dual optimal for (5.2) if and only if they are
C-aligned and 〈x, z〉 = 1.

Proof. First, assume that the pair (x, z) is primal-dual optimal for (5.2).
Then by strong duality [28, Corollary 5.2],

1 = 〈x, z〉 = γC(x) · σC(z). (5.3)

We prove the other direction by contradiction. Assume (x, z) are
C-aligned and 〈x, z〉 = 1 and suppose there exists x̂ ∈ C such that
γC(x̂) < γC(x). It then follows that

〈x̂, z〉
(i)
≥ 1

(ii)
= γC(x) · σC(z) > γC(x̂) · σC(z),

where the inequality (i) follows from the definition of the antipolar D′,
and the equality (ii) follows from (5.3). This violates the polar gauge
inequality, and thus leads to a contradiction.
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Example 5.2 (Phase Retrieval). The phase retrieval problem aims to
recover a complex signal x\ ∈ Cn from magnitude-only measurements

bi = |〈x\, fi〉|2 for i = 1 : m,

where fi ∈ Cn, i = 1 : m, are the measurement vectors. This problem
has many applications, including X-ray crystallography [54], optical
imaging [55], and more [56]. Here we consider the PhaseLift formulation
proposed by Candès et al. [57]. By lifting the signal x\, the measurements
can be expressed equivalently as

bi = 〈x\(x\)∗, fif∗i 〉 = 〈X\, Fi〉 for i = 1 : m,

where X\ := x\(x\)∗ is the lifted signal and each Fi := fif
∗
i is a lifted

measurement matrix. Candès et al. [57] show that m = O(n logn)
measurements are sufficient to recover X\ with high probability by
solving the convex semidefinite problem

minimize
X∈Cn×n

tr(X) subject to FX = b, X � 0, (5.4)

where the linear operator F : Cn×n → Rm is defined by (1.1). Move the
semidefinite constraint on X into the redefined objective tr(X)+δ�0(X),
which is a gauge function, as shown by Example 4.9. It then follows
from (5.2) that the gauge dual of problem (5.4) is given by

minimize
y∈Rm

max{0, λmax(F ∗y)} subject to 〈b, y〉 ≥ 1. (5.5)

Compared with the primal problem (5.4), which has dimension n2, the
gauge dual problem (5.5) has a much smaller dimension on the order of
n logn, and only a single linear constraint. Thus, it’s more efficient to
instead solve the dual problem to obtain an optimal dual solution y∗,
which then can be used to expose the primal support. In particular, use
Proposition 5.1 and Example 4.9 to deduce that the primal solution
must have the form X = USUT , where the columns of U ∈ Rn×r form
a basis for the r-dimensional maximal eigenspace of Z = F∗y∗, and
the r-by-r positive semidefinite matrix S is the solution of the reduced
primal problem

minimize
S∈Cr×r

tr(S) subject to F(USUT ) = b, S � 0.
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In practice, r is usually very small, and in some cases, r = 1. Thus, the
reduced primal problem will be easy to solve. This approach, including
the noisy phase retrieval problem, is developed by Friedlander and
Macêdo [38].



6
Alignment in Optimization Methods

We show in Section 5 how the alignment between a vector and a
gradient signals the vector’s optimality for gauge-constrained and gauge-
regularized optimization problems. In this section, we interpret many
known methods for solving these problem, including proximal-gradient
and conditional-gradient methods, in terms of alignment. In particular,
we show that for many of these methods, each iterate achieves an
approximate alignment between the iterates x(k) and z(k) := −∇f(x(k)).
Moreover, we also show that the alignment condition can be used to
prove the equivalence between seemingly unrelated primal and dual
methods, such as the augmented Lagrangian and bundle methods.

6.1 Proximal Gradient and Mirror Descent Methods

Proximal-gradient (PG) methods [14], [58] are widely used for problems
such as (5.1a), which involve the sum of a smooth and a nonsmooth
function. Because the regularization parameter ρ in (5.1a) can be ab-
sorbed into the atomic set A, as shown in Proposition 3.2(d), there
is no loss in generality in assuming that ρ = 1. We thus restrict our

330
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Algorithm 6.1: Proximal-gradient method for problem (6.1).
0 Input: x(0) ∈ Rn, f (0) = f(x(0)), λ(0) > 0, β ∈ (0, 1)
1 for k = 0, 1, 2, . . . do
2 z(k) = −∇f(x(k))
3 x(k+1) = proxλ(k)γA

(x(k) + λ(k)z(k))
4 f (k+1) = f(x(k+1))
5 ε(k) = (x(k) − x(k+1))/λ(k)

6 if f (k+1) ≤ f (k) + λ(k)〈z(k), ε(k)〉+ λ(k)/2‖ε(k)‖22 then break
7 λ(k+1) = βλ(k)

8 return x(k+1)

attention to the problem

minimize
x∈Rn

f(x) + γA(x). (6.1)

The iterates of the basic PG method are summarized in Algorithm 6.1,
as drawn from Parikh and Boyd [14, Section 4.2].

For any convex function g, the proximal map, used in Line 3 of the
algorithm, is defined by

proxλg(u) = arg min
x∈Rn

g(x) + 1
2λ‖x− u‖

2
2.

Applied to the function g := γA, it’s straightforward to instead express
this line of the algorithm as

x(k+1) = arg min
x∈Rn

γA(x)− 〈z(k), x〉+ 1
2λ(k) ‖x− x

(k)‖2. (6.2)

Interpretation as Alignment. Theorem 5.1 asserts that any optimal
point x∗ must be A-aligned with the negative gradient z∗ := −∇f(x∗),
which implies

〈x∗, z∗〉 = γA(x∗) · σA(z∗).
Again apply Theorem 5.1, but this time to (6.2). Rearrange terms to
deduce that the updated iterate x(k+1) is aligned with z(k) + ε(k), i.e.,

〈x(k+1), z(k) + ε(k)〉 = γA(x(k+1)) · σA(z(k) + ε(k)), (6.3)
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where the convergence residual ε(k) is computed in Line 5 of Algo-
rithm 6.1. Thus, each iterate x(k+1) is A-aligned with the corrected
gradient z(k) + ε(k).

A similar phenomenon occurs when applying the mirror descent
method [59], [60] to the same problem (6.1). The mirror descent method
includes many popular algorithm variations, including weighted major-
ity [61] and boosting [62]. The method generalizes the proximal-gradient
iteration (6.2) to

x(k+1) = arg min
x∈Rn

γA(x)− 〈z(k), x〉+ 1
λ(k)Dφ(x, x(k)), (6.4)

where the Bregman function φ: Rn → R is continuously-differentiable
and strictly convex, and induces the Bregman divergence

Dφ(x, x(k)) = φ(x)− φ(x(k))− 〈∇φ(x(k)), x− x(k)〉.

The mirror descent iteration (6.4) is equivalent to the classical proximal
gradient iteration (6.2) with the Bregman function φ = 1

2‖·‖
2
2. Similar to

the classical case, the generalized proximal map (6.4) generates iterates
x(k+1) and z(k) + ε(k) that are A-aligned and satisfy (6.3), except that
the residual quantity

ε(k) := 1
λ(k) (∇φ(x(k))−∇φ(x(k+1)))

is defined with respect to the gradient map of Bregman function.

6.2 Conditional Gradient Method

Conditional gradient (CG) methods [15]–[17] naturally exhibit the
atomic alignment property in several ways. Here we describe an im-
portant property related to alignment useful for implementing memory
efficient variations of this class of methods.

In its simplest form, the CG method applies to problems formulated
as (5.1b), which feature a smooth objective function. Because here we
wish to make explicit the atomic set in the constraint, we instead express
that problem in the equivalent form

minimize
x∈Â

f(x). (6.5)
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Algorithm 6.2: Conditional gradient method for (6.5).
0 Input: x(0) ∈ A, ε > 0
1 for k = 0, 1, 2, . . . do
2 z(k) = −∇f(x(k))
3 a(k) ∈ FA(z(k))
4 if 〈a(k) − x(k), z(k)〉 < ε then break [break if optimal]
5 x(k+1) = θ(k)a(k) + (1− θ(k))x(k), θ(k) ∈ (0, 1)
6 return x(k)

We adopt throughout this subsection the simplifying assumption that
the atomic set A is compact, which implies that every direction exposes a
well-defined face of the closed convex hull Â. Algorithm 6.2 summarizes
the iterates of the basic CG method.

The linear minimization oracle (LMO) in Line 3 selects an atom
or a convex combination of atoms from the set A exposed by the
current negative gradient z(k) := −∇f(x(k)). In the language of atomic
alignment, the LMO step selects an atom a(k) that is A-aligned with
z(k). In particular, observe

〈a(k), z(k)〉 = σA(z(k)) = γA(a(k)) · σA(z(k)),

where the second equality follows from a(k) ∈ A—i.e., γA(a(k)) = 1.
Line 5 of Algorithm 6.2 merges the selected element a(k) with the

collection of atoms exposed at previous iterations, and thus the latest
iterate x(k) represents an aggregate of these atoms. Various choices for
the steplength θ(k) exist, including a steplength derived from a linesearch
on the objective function f (which requires additional evaluations of
the function to ensure sufficient decrease) and a decaying steplength
that follows a predetermined schedule.

We express the merge step at iteration k recursively as

x(k) =
k∑
i=0

θ̂(i)a(i), θ̂(i) := θ(i)
i∏

j=0
(1− θ(j)). (6.6)

This expression makes explicit the one-atom-at-a-time construction of
the current iterate x(k), each taken from a face exposed by the negative
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gradients. Thus, the latest iterate lies in the convex hull of the faces
exposed up to iteration k:

x(k) ∈
k∑
i=1

θ̂(i)FA(z(i)).

In an idealized, perfectly greedy run of the algorithm, the sequence
of exposed faces FA(z(k)) are expanding, i.e., FA(z(k)) ⊆ FA(z(k+1)),
and converge to an optimal face FA(z∗), where z∗ := −∇f(x∗). In
practice, however, we do not expect such efficiency, and the algorithm
may inadvertently collect many atoms not at all related to the optimal
face. Thus, the computed decomposition (6.6) at any iteration may
contain atoms a(k) not in the optimal support SA(x∗). In applications
such as matrix-completion, described in Example 6.2 below, the cost of
storing intermediate atoms a(k)—say, as singular pairs (u(k), v(k))—can
be prohibitively expensive for large problems. Various modifications of
the basic CG method aim to compress or trim the collected atoms to
reduce unnecessary storage [63].

The recent appeal of these methods lies with the computational
efficiency of the linear minimization oracle (Line 3 of Algorithm 6.2)
for many important atomic sets, especially those where the associated
projection or proximal operations are not computationally feasible. The
next example illustrates the point.

Example 6.1 (Euclidean Projection Onto the Nuclear-Norm Ball). Sup-
pose the n-by-m matrix X has the singular-value decomposition

X = U Diag({σi(X)}m∧ni=1 )V T .

The projection ofX onto the unit nuclear-norm ballA := {Z | ‖Z‖∗ ≤ 1}
is given by the matrix

projA(X) = U Σ̄V T ,

where the diagonal matrix

Σ̄ = Diag(min{1, σi(X)}m∧ni=1 )

contains the singular values of X truncated to unit value. Thus, the
projection operation requires computing all of the singular triples of X
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up to unit value. In contrast, the linear minimization oracle in Line 3
of Algorithm 6.2 requires only computing one of the maximal singular
triples of the negative gradient (a matrix, in this case). For this reason,
the CG method often features in applications of matrix completion
[64]–[66], which are characterized typically by high-dimensional
data.

6.3 Constrained Least-Squares

For problems with a least-squares objective function, the alignment
principle provides a simple device that can be used to reduce storage
requirements for the CG method. Instead of storing intermediate primal
iterates and atoms, we store only reduced versions of these quantities.
We illustrate this approach with the constrained least-squares problem

minimize
x∈Â

1
2‖Mx− b‖22, (6.7)

where M : Rn → Rm is a linear operator with m < n, b is an m-vector,
and Â coincides with the constraint of the generic constrained prob-
lem (6.5). The approach requires storage of order O(m), and thus is
most effective when m� n.

Algorithm 6.3 describes a dual version of the standard CG method
shown in Algorithm 6.2. It’s similar to the approach implemented by
Yurtsever et al. [67], who maintain a low-memory random sketch of the
primal iterate x(k). Algorithm 6.3, however, forgoes direct reference to
the primal iterate during the CG iteration loop, and instead tracks a
sequence of m-vectors that satisfy the relations

r(k) = b−Mx(k), p(k) = Ma(k),

z(k) = M∗r(k) = −∇f(x(k)), q(k) = Mx(k),

∆r(k) = M(a(k) − x(k)).

The negative-gradient vector z(k) → z∗ = −∇f(x∗). The corresponding
approximation x(k) to the primal solution x∗ is subsequently recovered
in Line 11. The justification for this step is based on the A-alignment
between x∗ and z∗, as spelled out by Theorem 5.1. In some applications,
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Algorithm 6.3: Dual conditional gradient for the constrained
least-squares problem (6.7).
0 Input: M , b, ε > 0
1 r(0) = b; q(0) = 0
2 for k = 0, 1, 2, . . . do
3 z(k) = M∗r(k) [z(k) ≡ −∇f(x(k))]
4 p(k) ∈MFA(z(k)) [p(k) ≡Ma(k), a(k) ∈ FA(z(k))]
5 ∆r(k) = p(k) − q(k) [∆r(k) ≡M(a(k) − x(k))]
6 ρ(k) = 〈∆r(k), r(k)〉 [optimality gap]
7 if ρ(k) < ε then break [break if optimal]
8 θ(k) = min{1, ρ(k)/‖∆r(k)‖22} [exact linesearch]
9 r(k+1) = r(k) − θ(k)∆r(k) [r(k+1) ≡ b−Mx(k+1)]

10 q(k+1) = q(k) + θ(k)∆r(k) [q(k+1) ≡Mx(k+1)]

11 x(k) ∈ arg minx {1
2‖Mx− b‖22 | SA(x) ⊆ τEA(z(k))}

12 return x(k)

however, it may be sufficient to skip this step and instead return the
set of exposed atoms EA(z(k)).

The optimality test on Line 7 is equivalent to the optimality test in
Algorithm 6.2 because

〈∆r(k), r(k)〉 = 〈p(k) − q(k), r(k)〉

= 〈M(a(k) − x(k)), r(k)〉

= 〈a(k) − x(k),M∗r(k)〉 = 〈a(k) − x(k), z(k)〉.

The linesearch parameter θ(k) is an exact minimizer of the equivalent
objective function ‖r(k) − θ∆r(k)‖2 over θ ∈ [0, 1].

The following example describes an application of Algorithm 6.3 to
solve the matrix-completion problem.

Example 6.2 (Matrix Completion and Delayed atom Generation). Con-
sider the low-rank matrix completion problem

minimize
X∈Rm×n

1
2‖Ω ◦X −B‖

2
F subject to ‖X‖∗ ≤ τ. (6.8)

This problem appears in recommender systems [68], where the (i, j)th
element of the sparse matrix B records the rating score given by user i
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for product j. Ratings are observed only for a subset of user-product
pairs indexed by the binary mask

Ωij =

1 if user i has rated product j;
0 otherwise.

The goal is to predict the unseen ratings, captured in the dense unknown
matrix X. A structural low-rank assumption is used to capture an
“archetype” phenomenon—users who often like the same movies serve as
good predictors for each other, and movies that are liked by the same
users probably are also similar. Therefore, we consider each user as a
sparse linear combination of archetypal individuals (and similarly with
products), where the inner product of their feature vectors give the
same prediction rating. The nuclear-norm constraint on X is a common
approach for encouraging low-rank solutions [12].

Algorithm 6.4 describes a specialization of the dual CG method
(Algorithm 6.3) for the matrix-completion problem (6.8). Most of the
computational cost for an implementation of this specialization is rep-
resented in Line 4, which computes a maximal singular triple of the
negative gradient

Z(k) ≡ −∇f(X(k)) = Ω ◦ (B −X(k)),

represented as a sparse matrix indexed by Ω. Thus, the atoms exposed
by Z(k) are rank-1 outer products in the set

EA(Z(k)) = {uvT ∈ A | 〈u, Z(k)v〉 = σmax(Z(k))} ,

where A is the unit nuclear norm ball; cf. Example 2.6. Algorithm 6.4
does not store these pairs or their aggregate in a primal iteration
matrix X(k). Instead, the algorithm computes only a sparse matrix of
the form Ω ◦ (uvT ), which requires minimal storage. The algorithm
returns the primal iterate in the factored form X(k) := USV T.

Table 6.1 lists the results of applying the primal and dual CG
algorithm variants on a set of random matrix-completion problems. For
varying problem sizes with m = n, we generate the binary mask Ω with
10% nonzeros, and generate the observation matrix

B = Ω ◦ (UV T + 0.1 ·N),
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Table 6.1: Performance of the primal and dual variants of conditional gradient for
the matrix-completion problem (Example 6.2) after 10 iterations of Algorithm 6.2
(primal CG) and Algorithm 6.4 (dual CG). Estimated rank of final solution is
computed as the smallest number of singular values that account for 90% of its
Frobenious norm. Time is measured in seconds

Size Primal CG Dual CG

m = n Residual Rank Time Residual Rank Time

100 10.3 6 0.0 10.3 1 0.0
250 25.2 6 0.1 25.2 1 0.1
1,000 100.4 6 1.3 100.4 1 0.3
5,000 501.7 6 48.3 501.7 1 11.4
10,000 998.9 6 242.9 998.9 1 63.3

Algorithm 6.4: Specialization of the dual conditional gradient
method (Algorithm 6.3) for the matrix-completion problem (6.8).
0 Input: Ω, B, `
1 R(k) = Ω ◦B; Q(k) = 0
2 for k = 1, 2, . . . do
3 Z(k) = Ω ◦R(k)

4 (u, v) = svds(Z(k), 1) [expose atom A(k) ≡ τuvT]
5 ∆R(k) = Ω ◦ (τuvT )−Q(k) [Ω ◦ (τuvT ) ≡ τ(uivi)(ij)∈Ω]
6 ρ(k) = 〈∆R(k), R(k)〉 [optimality gap]
7 if ρ(k) < ε then break [break if optimal]
8 θ(k) = min{1, ρ(k)/‖∆R(k)‖2F} [exact linesearch]
9 R(k+1) = R(k) − θ(k)∆R(k) [R(k+1) ≡ Ω ◦ (B −X(k))]

10 Q(k+1) = Q(k) + θ(k)∆R(k) [Q(k+1) ≡ Ω ◦X(k)]

11 (U, V,Σ) = svds(Z(k), `) [top ` singular vectors]

12 S ∈ arg minS
{

1
2‖Ω ◦ (USV T −B)‖22 | tr(S) ≤ τ, S � 0

}
13 return (U, S, V )

where U ∈ Rm×r, V ∈ Rn×r, and N are generated i.i.d. from a standard
Gaussian distribution. The “true rank” r was set to round(m/100).
Interestingly, the leading singular value of the final computed dual
solution estimate Z(k) was always isolated (i.e., multiplicity 1), which
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Algorithm 6.5: Fully-corrective conditional gradient method for
problem (6.5).
0 Input: x(0) ∈ A, ε > 0, A(0) = {0}
1 for k = 0, 1, 2, . . . do
2 z(k) = −∇f(x(k))
3 a(k) ∈ FA(z(k))
4 if 〈a(k) − x(k), z(k)〉 < ε then break
5 A(k+1) = A(k) ∪ {a(k)} [optionally compress A(k+1)]
6 x(k+1) = arg minx {f(x) | x ∈ convA(k+1)}
7 return x(k)

made trivial the primal-recovery phase in Line 12 of Algorithm 6.4. The
residual values between the two variants are the same, confirming that
they recover solutions of similar quality. The dual variant, however, is
significantly faster because it doesn’t need to manipulate storage for a
primal iterate X(k).

6.4 Simplicial Conditional Gradient and Cutting Planes

The simplicial version of the CG method maintains a collection of ν
atoms exposed through to iteration k, and replaces the 1-dimensional
linesearch in Line 5 of Algorithm 6.2 with a ν-dimensional linesearch
over the convex hull of the collected atoms. (The term simplicial refers
to the simplex in which the atom weights lie.) When ν = k (i.e., the
collection contains a complete history of exposed atoms), the method is
also known as the fully-corrective conditional gradient (FC-CG) method
[17], [69]. Although there are no generic guarantees that this algorithm
performs better than the basic CG method, for some problems an exact
minimizer of the original problem can be obtained after a small number
of iterations. One relevant example is orthogonal matching pursuit [70],
which can be interpreted as a special case of the FC-CG method. The
iterates of the FC-CG variant for problem (6.5) are summarized in
Algorithm 6.5.
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Algorithm 6.6: Cutting plane method for problem (6.9).
0 Input: z(0) ∈ Rn, ε > 0, A(0) = {0}
1 for k = 0, 1, 2, . . . do
2 a(k) ∈ FA(z(k))
3 if 〈a(k), z(k)〉 − σA(k)(z(k)) < ε then break
4 A(k+1) = A(k) ∪ {a(k)} [optionally compress A(k+1)]
5 z(k+1) = arg minz {f∗(−z) + σA(k+1)(z)}
6 return z(k)

Bertsekas and Yu [71] show that the FC-CG method and Kelley’s
cutting plane (CP) method [72] are dual variations of the same al-
gorithm. Here we show the equivalence of the two methods by the
atomic alignment property. We begin with the Fenchel–Rockafellar dual
problem of (6.5)

minimize
z∈Rn

f∗(−z) + σA(z). (6.9)

The iterates of the CP method applied to problem (6.9) are summarized
by Algorithm 6.6. The version we describe is a partial CP method that
builds a cutting-plane model for the function σA, but uses the conjugate
function f∗ directly [73]. The key step in Algorithm 6.6 is Line 5, where
σA(k) can be viewed as a sublinear minorant for σA built from a collection
of k atoms in A. Proposition 6.3 shows that the iteration pair (x(k), z(k))
generated by Algorithms 6.5 and 6.6 are A(k)-aligned and identical. It
also follows that stopping conditions in both algorithms are equivalent,
and thus that both algorithms are equivalent.

Proposition 6.3 (Equivalence Between FC-CG and CP Methods). Assume
that f : Rn → R is strongly convex, differentiable and finite everywhere.
Suppose that Algorithms 6.5 and 6.6, respectively, are initialized with the
iterates x(0) and z(0) := −∇f(x(0)). If the atom-selection strategy from
the exposed faces FA(z(k)) is deterministic, then the iterates x(k) and
z(k) generated by the algorithms are A(k)-aligned, and z(k) = −∇f(x(k))
for all k ≥ 1.
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Proof. It is sufficient to prove that for all k ≥ 1, x(k) and z(k) can be
obtained as the solutions to the saddle-point problem

min
x

max
z
〈x, z〉+ f(x)− σA(k)(z). (6.10)

First, we verify x(k):

x(k) = arg min
x∈convA(k)

f(x)

= arg min
x

f(x) + δconvA(k)(x)

= arg min
x

f(x) + σ∗A(k)(x)

= arg min
x

f(x) + max
z

[
〈x, z〉 − σA(k)(z)

]
= arg min

x
max
z
〈x, z〉+ f(x)− σA(k)(z). (6.11)

Next, we verify z(k):

z(k) = arg max
z

−f∗(−z)− σA(k)(z)

= arg max
z

min
x
〈x, z〉+ f(x)− σA(k)(z). (6.12)

Note that Line 6 in Algorithm 6.5 and Line 5 in Algorithm 6.6 are
Fenchel–Rockafellar duals to each other and problem (6.10) is the
associated saddle-point problem. Since f is finite everywhere, by [35,
Theorem 31.1] we know that the strong duality holds and it follows
that the minx and maxz in problem (6.10) can be exchanged. So z(k) is
indeed the maximizer in the saddle-point problem (6.10).

Since f is strongly convex and differentiable, it follows that both
x(k) and z(k) are unique. Differentiate the inner minimization problem
in (6.12) with respect to x to obtain

z(k) = −∇f(x(k)).

Subdifferentiate the inner maximization in (6.11) with respect to z to
obtain

x(k) ∈ FA(k)(z(k)),

which implies that x(k) and z(k) are A(k) aligned by Corollary 3.4.
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6.5 Connections to the Augmented Lagrangian Method

In the previous subsection, we show the equivalence between FC-CG
method and CP method through alignment. In this subsection, we
generalize this result to augmented Lagrangian fully-corrective condi-
tional gradient (AL-FC-CG) method and proximal bundle (PB) method.
To the best of our knowledge, we are the first to talk about such
equivalence.

Consider Line 6 in Algorithm 6.5, which can be equivalently ex-
pressed as

minimize
x∈Rn,u∈Rn

f(x) + δconvA(k)(u) subject to x = u. (6.13)

The augmented Lagrangian methods, originate from Hestenes [74],
replace the constraint x = u with a penalty function that promotes
the feasibility. Specifically, given an augmented Lagrangian parameter
λ > 0 and a Lagrange multiplier z ∈ Rn, (6.13) will become

x(k+1) = arg min
x∈Rn

min
u∈Rn

f(x) + δconvA(k)(u) + 〈z, x− u〉+ λ

2 ‖x− u‖
2
2

= arg min
x∈Rn

f(x) + min
u∈convA(k)

(
〈z, x− u〉+ λ

2 ‖x− u‖
2
2

)
= arg min

x∈Rn
f(x) + λ

2 min
u∈convA(k)

∥∥∥∥x+ 1
λ
z − u

∥∥∥∥2

2

= arg min
x∈Rn

f(x) + λ

2 dist2
A(k)

(
x+ 1

λ
z

)
. (6.14)

The detailed AL-FC-CG method for (6.5) is shown in Algorithm 6.7.
PB method was first introduced by Kiwiel [75] as a stabilization of

CP method. The detailed PB method for (6.9) is shown in Algorithm 6.8.
Similar to Algorithm 6.6, here we only build CP model for σA and
f∗ is unchanged. The main improvement is Line 5 in Algorithm 6.8,
where the difference is the addition of a quadratic penalty function.
The next proposition shows the equivalence between Algorithm 6.7
and Algorithm 6.8.
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Algorithm 6.7: Augmented Lagrangian fully-corrective condi-
tional gradient method for problem (6.5).
0 Input: x(0) ∈ A, ε > 0, A(0) = {0}, λ > 0
1 for k = 0, 1, 2, . . . do
2 z(k) = −∇f(x(k))
3 a(k) ∈ FA(z(k))
4 if 〈a(k) − x(k), z(k)〉 < ε then break
5 A(k+1) = A(k) ∪ {a(k)} [optionally compress A(k+1)]
6 x(k+1) = arg minx {f(x) + λ

2 dist2
A(k+1)(x+ 1

λz
(k))}

7 return x(k)

Algorithm 6.8: Proximal bundle method for problem (6.9).
0 Input: z(0) ∈ Rn, ε > 0, A(0) = {0}, λ > 0
1 for k = 0, 1, 2, . . . do
2 a(k) ∈ FA(z(k))
3 if 〈a(k), z(k)〉 − σA(k)(z(k)) < ε then break
4 A(k+1) = A(k) ∪ {a(k)} [optionally compress A(k+1)]
5 z(k+1) = arg minz {f∗(−z) + σA(k+1)(z) + 1

2λ‖z − z
(k)‖22}

6 return z(k)

Proposition 6.4 (Equivalence Between AL-FC-CG Method and PB
Method). Assume that f : Rn → R is strongly convex, differentiable
and finite everywhere. Suppose that Algorithms 6.7 and 6.8, respec-
tively, are initialized with the iterates x(0) and z(0) := −∇f(x(0)). If the
atom-selection strategy from the exposed faces FA(z(k)) is deterministic,
then the iterates x(k) + ε(k) and z(k) generated by the algorithms are
A(k)-aligned with

ε(k) = 1
λ

(z(k−1) − z(k)),

and z(k) = −∇f(x(k)) for all k ≥ 1.
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Proof. It is sufficient to prove that for all k ≥ 1, x(k) and z(k) can be
obtained as the solutions to the saddle-point problem

min
x

max
z
〈x, z〉+ f(x)− σA(k)(z)−

1
2λ‖z − z

(k)‖2. (6.15)

First, we verify x(k):

x(k) = arg min
x

f(x) + λ

2 dist2
A(k)

(
x+ 1

λ
z(k−1)

)
= arg min

x
f(x) + min

u∈convA(k)

(
〈z(k−1), x− u〉+ λ

2 ‖x− u‖
2
)

= arg min
x

f(x) + δconvA(k)�

(
〈z(k−1), ·〉+ λ

2 ‖ · ‖
2
)

(x)

= arg min
x

f(x) +
(
σA(k)(·) + 1

2λ‖ · −z
(k−1)‖2

)∗
(x)

= arg min
x

f(x) + max
z

(
〈x, z〉 − σA(k)(z)−

1
2λ‖z − z

(k−1)‖2
)

= arg min
x

max
z
〈x, z〉+ f(x)− σA(k)(z)−

1
2λ‖z − z

(k−1)‖2,

(6.16)
where the second equality follows from (6.14) and the fourth equality
follows from Rockafellar [35, Theorem 16.4]. Next, we check z(k):

z(k) = arg max
z

−f∗(−z)− σA(k)(z)−
1

2λ‖z − z
(k−1)‖2

= arg max
z

min
x
〈x, z〉+ f(x)− σA(k)(z)−

1
2λ‖z − z

(k−1)‖2.

(6.17)
Note that Line 6 in Algorithm 6.7 and Line 5 in Algorithm 6.8 are
Fenchel–Rockafellar duals to each other and problem (6.15) is the
associated saddle-point problem. Since f is finite everywhere, by [35,
Theorem 31.1] we know that the strong duality holds and it follows
that the minx and maxz in problem (6.15) can be exchanged. So z(k) is
indeed the maximizer in the saddle-point problem (6.15).

Since f is strongly convex and differentiable, it follows that both
x(k) and z(k) are unique. Differentiate the inner minimization problem
in (6.17) with respect to x to obtain

z(k) = −∇f(x(k)).
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Subdifferentiate the inner maximization in (6.16) with respect to z to
obtain

x(k) + ε(k) ∈ FA(k)(z(k)),

which implies that x(k) + ε(k) and z(k) are A(k) aligned by
Corollary 3.4.



7
Alignment in Convolution of Atomic Sets

The theory of atomic decomposition and polar alignment developed thus
far is tied to a single atomic set A. Correspondingly, the regularized
optimization problems considered in Section 5 involve only a single
gauge regularization function γA meant to encourage minimizers that
have sparse atomic decompositions with respect to A. Richer atomic
decompositions and regularized formulations, however, may be con-
structed by combining different atomic sets. We describe in this section
the theory of polar convolution, which mixes any number of atomic sets
to form computable regularization functions useful for defining complex
decompositions with respect to multiple atomic sets.

Consider the atomic decomposition of an n-vector x with respect to
two atomic sets A1 and A2:

x =
∑
a1∈A1

ca1a1 +
∑
a2∈A2

ca2a2 cai ≥ 0 ∀ai. (7.1)

(It’s convenient to restrict our discussion to two atomic sets, but all of
the results in this section readily extend to three or more sets.) This
decomposition appears often in models for separating a mixture of
structurally different signals, each one well represented by atoms from
one of the base atomic sets A1 or A2 [76]–[81].

346
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The common approach to constructing sparse representations using
multiple atomic sets is to form a regularization function from the sum of
corresponding gauges, i.e., γA1 + γA2 . However, the alignment principles
that connect atomic decompositions and regularization, including their
algorithmic implications, don’t apply to these constructions.

Thus, we focus on an alternative and less-often used approach that
forms an aggregate atomic set from the vector sum

A1 +A2 = {a1 + a2 | a1 ∈ A1, a2 ∈ A2}

of the base atomic sets. This construction directly mirrors the desired
decomposition in (7.1). As we show in this section, the sum of atomic
sets corresponds to the polar convolution of the corresponding gauge
functions [82]. This connection to the theory of polar convolution allows
us to extend properties of alignment to aggregate atomic sets, and also
to extend the dual algorithms discussed in Section 6. We show how these
extensions lead to practical approaches for optimization formulations
that arise in demixing applications.

7.1 Atomic Sums

One important application of the alignment principles that we discuss
in this section is in the analysis of the various demixing problems

minimize
x1, x2

f(x1 + x2) + ρmax {γA1(x1), γA2(x2)} , (7.2a)

minimize
x1, x2

f(x1 + x2) subj to max {γA1(x1), γA2(x2)} ≤ α, (7.2b)

minimize
x1, x2

max {γA1(x1), γA2(x2)} subj to f(x1 + x2) ≤ τ. (7.2c)

Compared with the formulations in (5.1), these formulations aim to
decompose a solution as x = x1 + x2, where each component xi has a
sparse structure with respect to the atomic set Ai. The regularization
function

max {γA1(x1), γA2(x2)}
replaces the single regularizer γC, used in the generic problems (5.1).
The central result of this subsection is a corollary to Theorem 5.1 that
reveals the optimal alignment property that each of the computed
components xi holds with respect to Ai.
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Corollary 7.1 (Optimality and Atomic Sums). Let f : Rn → R be a
differentiable convex function and sets Ai ⊂ Rn, i = 1, 2, contain the
origin in its interior. Assume that at the respective solutions, the gauge
values are positive in all three problems and the constraints in (7.2b)
and (7.2c) hold with equality. Then the vectors x∗1 and x∗2 are optimal
if and only if x∗i is Ai-aligned with z∗ := −∇f(x∗1 +x∗2) for i = 1, 2, and

σA1(z∗) + σA2(z∗) = ρ for problem (7.2a);
γA1(x∗1) = γA2(x∗2) = α for problem (7.2b);

f(x∗1 + x∗2) = τ for problem (7.2c).

Before we can establish the proof of this result, we first require
several tools from polar convolution and its connection to the sum of
atomic sets. The proof of Corollary 7.1 is given in Subsection 7.3.1.

7.2 Polar Convolution

The polar convolution of two gauges functions γA1 and γA2 is defined by
the function

(γA1� γA2)(x) = inf
x1, x2

max {γA1(x1), γA2(x2) | x = x1 + x2} . (7.3)

This operation first appears in Rockafellar [35, Theorem 5.8] for general
convex functions, and is subsequently analyzed by Seeger and Volle [83].
When specialized to gauge functions, as shown in (7.3), this convolution
operation is tightly connected to the polarity operation applied to the
defining atomic sets. In that case, Friedlander et al. [82] refer to the
operation as polar convolution.

The next result shows that the gauge values are necessarily equal at
a solution of the infimum defined in (7.3).

Lemma 7.2 (Balancing in Polar Convolution). Suppose that the sets A1
and A2 contain the origin in their interiors and that the infimum in (7.3)
is achieved at (x∗1, x∗2). Then

γA1(x∗1) = γA2(x∗2).

Proof. We proceed by contradiction. Without loss of generality, assume
that

γA1(x∗1) > γA2(x∗2) = γA2(x− x∗1).
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Then
0 ∈ ∂max {γA1(x∗1), γA2(x− x∗1)}

= ∂γA1(x∗1)
= ∂σA◦1(x∗1),

where the inclusion follows from the optimality of x∗1 for (7.3), the
first equality follows from Hiriart-Urruty and Lemaréchal [39, Theo-
rem D.4.4.2], and the second equality follows from Proposition 3.2(b).
Thus, σA◦1(x∗1) = 0. As a consequence,

γA2(x∗2) < γA1(x∗1) = σA◦1(x∗1) = 0,

which contradicts the fact the gauge function is non-negative. Therefore,
we must have

γA1(x∗1) = γA2(x∗2).

The next result demonstrates that the polar convolution of gauges
is the functional counterpart to the vector sum of the underlying sets.

Proposition 7.3 (Polar Convolution of Gauges). Let A1 and A2 be non-
empty closed convex sets that contain the origin. If at least one set
contains the origin in its interior, then the polar convolution of the
gauges γA1 and γA2 is the gauge

γA1� γA2 = γA1+A2 .

Proof. The hypothesis that one of the sets A1 or A2 contains the origin
implies that the corresponding gauge (say, γA1) is finite and therefore
continuous. Thus,

γA1� γA2 = (γA◦1 + γA◦1)◦ = γA1+A2 ,

where the first equality follows from [82, Lemma 3.3] and the continuity
of γA1 , and the second equality follows from [82, Lemma 3.4].

For the remainder of this subsection, we assume that any gauge γAi
are continuous, which holds if the origin is contained in the interior of
its generating set Ai.
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7.3 Alignment to the Sum of Sets

The polar convolution operation, which mixes atoms via the sum of sets,
has the appealing property that it explicitly decomposes a vector as a
sum of elements, each belonging to one of the atomic sets. In particular,
evaluating the polar convolution

(γA1� γA2)(x) = γA1+A2(x)
= inf

x1, x2
max {γA1(x1), γA2(x2) | x = x1 + x2}

at a point x implicitly generates a decomposition

x =
∑

a∈A1+A2

caa =
∑
a1∈A1
a2∈A2

ca(a1 + a2) = x1 + x2,

where each xi ∈ coneAi, i.e., xi has a valid atomic decomposition with
respect to Ai. The vectors xi in this decomposition exhibit an alignment
property with their corresponding atomic sets Ai, as described by the
next result.

Theorem 7.1 (Alignment in Polar Convolution). Suppose that the pair
of n-vectors (x, z) is (A1 +A2)-aligned and

0 < γA1+A2(x) = γA1(x1) = γA2(x2), where x = x1 + x2.

Then the pair (xi, z) is Ai-aligned for i = 1, 2.

Proof. Because x and z are (A1 +A2)-aligned,

γA1+A2(x) · σA1+A2(z) = 〈x, z〉 = 〈x1, z〉+ 〈x2, z〉.

Use the fact that σA1+A2 = σA1 + σA2 and rearrange terms to deduce

σA1(z) + σA2(z) =
〈

x1
γA1(x1) , z

〉
+
〈

x2
γA1(x2) , z

〉
. (7.4)

Because xi/γAi(xi) ∈ Ai it follows that

σAi(z) ≥
〈

xi
γAi(xi)

, z

〉
, i = 1, 2.
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Figure 7.1: Illustration of the polar alignment principle for atomic sums, as described
by Theorem 7.1 (alignment in polar convolution). The vector z simultaneously exposes
atoms, indicated by black dots, in the atomic sets A1 and A2, and also in the sum
of atomic sets A = A1 +A2.

Therefore, the equality (7.4) implies that

γAi(xi) · σAi(z) = 〈xi, z〉, i = 1, 2,

which establish, respectively, that each (xi, z) is Ai-aligned.

Figure 7.1 illustrates this result.

7.3.1 Proof of Corollary 7.1

The first step in the proof is to establish that the regularized optimization
problems in (7.2) are equivalent, respectively, with the problems

minimize
x

f(x) + ργA1+A2(x) (7.5a)

minimize
x

f(x) subject to γA1+A2(x) ≤ α, (7.5b)

minimize
x

γA1+A2(x) subject to f(x) ≤ τ. (7.5c)
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We establish the equivalence for (7.5a); the equivalence for (7.5b)
and (7.5c) follows the same line of reasoning. Observe that

inf
x1, x2
{f(x1 + x2) + ρmax {γA1(x1), γA2(x2)}}

= inf
x, x1
{f(x) + ρmax {γA1(x1), γA2(x− x1)}}

= inf
x
{f(x) + ρ inf

x1
max {γA1(x1), γA2(x− x1)}}

= inf
x
{f(x) + ργA1+A2(x)},

where the last equality follows from the definition of polar convolu-
tion (7.3) and Proposition 7.3.

Next, use Theorem 5.1 to establish that a point x∗ is a solution to
one of the three problems (7.5) if and only if x∗ is (A1+A2)-aligned with
z∗ := −∇f(x∗). The equivalence of the formulations (7.5) and (7.2)
implies that x∗ = x∗1 + x∗2, where x∗1 and x∗2 are optimal for (7.2).
Moreover, optimality of x∗1 and x∗2 implies that γA1+A2(x∗) = γA1(x∗1) =
γA2(x∗2). Thus, Theorem 7.1 applies in this case and each pair (x∗i , z∗)
is Ai-aligned.

7.4 Morphological Component Analysis

We show how the alignment principle can be used as part of a demixing
application in signal separation known as morphological component
analysis [81]. Our discussion focuses on demixing using the constrained
formulation (7.5b), but can be easily extended to the other regularized
formulations shown in (7.5).

Suppose that x∗ is the solution of (7.5b). Then x∗ = x1 + x2 for
some xi ∈ αAi. We recover the constituent components xi using two
stages. In the first stage, we apply the conditional gradient method
(Algorithm 6.2) to (7.5b) with A := A1 + A2 to obtain the negative
gradient z∗ = −∇f(x∗). (The primal iterate x(k) doesn’t need to be
stored). The key to the efficient application of this method is to recognize
that the exposed face of the sum of sets is equal to the sum of exposed
faces, i.e.,

FA1+A2(z) = FA1
(z) + FA2

(z).
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Thus, Step 3 in the CG method can be implemented using separate
procedures available for exposing a face in each of the atomic sets Ai.

In the second stage, we use the vector z∗ obtained in the first stage to
expose the atoms in each component xi. Theorem 7.1 asserts that each
xi is Ai-aligned with the negative gradient z∗ := −∇f(x∗), and therefore
exposes the atoms in Ai that supports xi. Thus, each component xi
can be recovered as the solution of the reduced optimization problem

minimize
x1, x2

f(x1 + x2) subject to γEAi (z∗)(xi) ≤ α, i = 1, 2.

The underlying assumption, of course, is that the exposed face FAi (z
∗)

containing the relevant atoms has small dimension, since otherwise this
problem could be as expensive as the original problem. A variety of
algorithms can be applied to solve this reduced problem.

Although our discussion above considered only two atomic sets, the
analysis extends easily to any number of atomic sets. The example below
illustrates how to use the alignment principles to separate a mixture of
three signals.

Example 7.4 (Separating Background from Foreground in a Noisy Image).
We give a concrete example from morphological component analysis
that illustrates how this approach can be used in practice to separate
background and foreground from a noisy image. Suppose that the
m-vector

b = xs + x` + ε

encodes a 2-dimensional image composed of a sparse component xs, a
low-rank component x`, and structured noise ε. The ability to decouple
b into these three components rests on their incoherence [76], [79], [80].
Because our aim here is only to illustrate the polar-alignment property,
we make the simplifying assumption that the noise ε is sparse in the
Fourier basis, which is known to be incoherent with sparsity and low-
rank. Based on these assumptions, we choose A1 to be the unit 1-norm
ball (Example 2.5), A2 to be the nuclear-norm ball (Example 2.6), and
A3 = DTA1, where D is the discrete cosine transform. Use Proposi-
tion 3.2(c) to deduce that the gauge that corresponds to A3 is the
transformed 1-norm:

γDTA1(v) = γA1(Dv) = ‖Dv‖1.
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We follow the approach outlined in Subsection 7.4. For the first
stage, we apply the dual CG method to the problem

minimize
x

1
2‖x− b‖

2
2

subject to γA1+A2+A3(x) ≤ τ,

to obtain the negative gradient z∗ := b− x∗ (without storing the primal
iterates x(k) or solution x∗). In the second stage, the primal solution x∗
is recovered by solving the problem

minimize
c

(1)
a , c

(2)
a , c

(3)
a

1
2‖x− b‖

2
2

with x =
∑

i=1,2,3

∑
a(i)∈EAi (z

∗)

c(i)
a a

(i)

over the coefficients c(i)
a . Because in this case the atomic sets are cen-

trosymmetric, we may ignore the nonnegativity requirements of the
coefficients.

The first panel in Figure 7.2 shows a noisy 500-by-500 pixel im-
age of a chess board. The remaining panels show the separated im-
ages obtained after 2000 iterations of the CG algorithm as described
above.

7.5 Atomic Unions and Sum Convolution

The infimal sum convolution between two gauges γA1 and γA2 is defined
through the optimization problem

(γA1� γA2)(x) = inf
x1, x2

{γA1(x1) + γA2(x2) | x = x1 + x2} .

Although here we define this operation only for gauges, it can be
applied to any two convex functions and always results in another
convex function [35, Theorem 5.4]. Normally the operation is simply
called infimal convolution, but here we use the term sum convolution
to distinguish it from the polar convolution operation (i.e., infimal max
convolution) that we use in Subsection 7.1.
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(a) noisy observation (b) low-rank background

(c) sparse foreground (d) reconstructed image

Figure 7.2: Morphological component analysis via polar convolution is used to
denoise and separate foreground from background in an image. The chess-board
image in panel (a) has been corrupted with noise. Panels (b) and (c) show the
extracted low-rank and sparse parts of the image, which are assembled in panel (d)
as the final reconstruction of the observed image (a). See Example 7.4.
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Proposition 7.5 (Sum Convolution of Gauges). Let A1 and A2 be non-
empty closed convex sets that contain the origin. The sum convolution
of the gauges γA1 and γA2 is the gauge

γA1� γA2 = γA1∪A2 .

Proof. Use Proposition 4.1 to derive the following equivalent expressions:

(γA1� γA2)(x) = inf
w

{
inf
ca≥0

{∑
a∈A1

ca

∣∣∣∣ w =
∑
a∈A1

caa

}

+ inf
ca≥0

{∑
a∈A2

ca

∣∣∣∣ x− w =
∑
a∈A2

caa

}}

= inf
ca≥0, w

{ ∑
a∈A1∪A2

ca

∣∣∣∣ w =
∑
a∈A1

caa, x− w =
∑
a∈A2

caa

}

= inf
ca≥0

{ ∑
a∈A1∪A2

ca

∣∣∣∣ x =
∑

a∈A1∪A2

caa

}
= γA1∪A2(x),

which establishes the claim.



8
Conclusions

The theory of polar alignment and its relationship with atomic decom-
positions offers a rich grammar with which to reason about structured
optimization. Of course, the underlying ideas are not entirely new and
many of the conclusions can be derived using standard arguments from
Lagrange multiplier theory. However, we have found that the theory of
polarity and alignment offer a clarifying viewpoint and a powerful suite
of tools. Indeed, concepts such as active sets and supports, which are
intuitive for polyhedral constraints and vectors, easily extend to more
abstract settings when we adopt the vocabulary of alignment, exposed
faces, and the machinery of gauges and support functions.

Further research opportunities remain. For example, most (if not
all) of the ideas we have presented could be generalized to the infinite-
dimensional setting, which would accommodate more general decompo-
sitions. Also, other standard algorithms, such as splitting and bundle
methods [73], seem to exhibit properties that can easily be explained
using the language of polar alignment.
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