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Abstract 

We present a new method for classijication using the 
maximum entropy principle’, allowingjid use of relevant 
training data and smoothing the data space. To classifl 
a test point we compute a maximum entropy weight dis- 
tribution over a subset of training data and constrain the 
weights to exactly reconstruct the test point. The classijica- 
tion problem is formulated as a linearly constrained opti- 
muation problem and solved using a primal-dual logarith- 
mic barrier method, well suited for high-dimensional data. 
We discuss theoretical advantages and present experimen- 
tal results on vowel data which demonstrate that the method 
performs competitiveb for speech classijication tasks. 

1 Introduction 

Speech processing may use supervised classification 
to determine what is being said (speech recognition), to 
determine who spoke (speaker recognition), and in sub- 
problems, such as segmenting the acoustic waveform. 

Speech recognition systems begin with an acoustic pro- 
cessor that accepts a speech waveform and outputs either 
feature vectors over time (such as cepstral coefficients) or a 
sequence of symbols (such as estimated phones). The fea- 
ture vector signal or symbol sequence may then be passed 
onto a linguistic processing unit, If the acoustic processor 
is to output a sequence of symbols it must contain a classi- 
fication unit. 

‘This work was partiaUy supported by the NSF under grant 2DTA442. 

Speaker recognition systems receive speech waveforms, 
compute feature vectors, and then class@ the feature vec- 
tors as one of the categories of speakers. 

Both of these classification problems are examples of su- 
pervised classijiem-the classifier has at its disposal a set 
of labeled training data and is given the task of automat- 
ically classifying similar test data. Effective classification 
algorithms vary widely from simplie nearest-neighbor-type 
methods to more complex techniques such as discriminant 
analysis, decision trees, and neural nets [4]. Each classifica- 
tion method models the data space differently and thus may 
be more or less suited to a particular real-world application 
or feature representation. 

We present a new Classification algorithm that uses the 
maximum entropy principle (see, for example, [8]) and sug- 
gest its application to the classification of speech feature 
vectors. In Section 2 we explain the maximum entropy 
classification (MEC) algorithm and present its theoretical 
underpinnings in Section 3. An efficient implementation 
of the algorithm is described in Section 4. The results of 
vowel recognition experiments on benchmark reflection co- 
e5cient vowel data are discussed in Section 6 and com- 
pared to standard classification methods. 

2 The MEC algorithm 

Define a labeled training point as a pak (x, g )  E Rn x 8, 
where 9 is a set of class labels. Given a set of p la- 

proposed method classifies a test point 2 as belonging to 
a class 5 as follows: 

beled training points (xl,gl), (x2,g2), . . -, (xP,gp), the 
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Step 1 Choose a subset of the training points as a basis 
for 8 (e.g., all training points falling within a fixed radius 
of 2). Denote the basis by the subset ,L3 = ( j l ,  j , ,  . . . , j k ) ,  
where k 5 p. 

Step 2 Calculate the distribution of weights w = 
[wjl, wjz,. . . , wj,]*that solves 

subject to the constraints 

i€P 

w 2 0. (4) 

Step 3 Classify f as belonging to class 5, the solution to 

where 

In words, the algorithm says that for each test point, find 
the training points in its neighborhood, and then solve for 
the weighting that each of these local trainiug points should 
receive so that the hear weighted sum feconstsucts the 
test point. Finding these weights is equivalent to solving 
a matrix equation of the form Az = b. However, if there 
are more points in the chosen neighborhood than feature 
dimensions (the linear problem is underdetermined), then 
there will be more than one possible solution for the weight 
vector. In those cases we choose from those weight vec- 
tors which satisfy the linear reconstruction constraint the 
weight vector that has the maximum entropy. If there are 
not enough training points in the neighborhood to recon- 
struct the test point (i.e. the linear problem is not feasible), 
then we give equal weighting to all the neighborhood points. 

We consider choosing the neighborhood to be a param- 
eter of the algorithm that can be trained on the training 
data (note that this the only training the algorithm requires). 
Both how to determine the neighborhood and the size of the 
neighborhood are open for experimentation, We have ex- 
perimented with nine ways to define a local neighborhood, 
including using all k nearest-neighbors to each test point 
(training the parameter k on the training data). 

Note several important aspects of the optimization prob- 
lem in Step 2 of the algorithm. The objective function de- 
fined by (1) is concave. Thus, if the basis generated (the 
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set of local training points) for a particular test point admits 
a feasible problem2, the maximum entropy weight solution 
w* will be necessarily unique. 

If the generated basis does not admit a feasible problem, 
a regdamation term is introduced into the objective and the 
const" allow the weight distribution to be calculated in 
some least-squares sense. This approach will be made more 
precise in Section 4. 

3 TheoryofMEC 

Intuitively, the maximum entropy weight distribution 
chosen by the MEC algorithm allows for the use of all 
relevant training data. By linearly reconstructing the test 
point we take into account the location of each neighbor- 
hood training point, instead of the just the distance, as is 
done in nearest-neighbor methods [5]. This is especially 
important in problems with a high number of feature dimen- 
sions because in high dimensions all points are far apart. 
A linear reconstruction is the least biased reconstruction 
possible. Solving for a distribution of weights over the 
training points that linearly reconstructs the test point is 
the same problem as solving for a probability distribution 
with known mean. When there is more than one distribu- 
tion possible, the weight distribution that has the maximum 
entropy is in fact the maximum likelihood estimate of the 
weights [12]. In some cases the algorithm's performance 
may be improved by using an &formed prior and then solv- 
ing for the dismiution with minimum relative information 
with respect to the prior. An important attriite of the max- 
imum entropy weighting is that it creates smooth solutions 
over the data space, unlike separating hyperplane methods. 

4 Efficient Implementation 

Maximum entropy methods have been used in many 
applications, including image restoration and density es- 
timation for hidden Markov models in speech recogni- 
tion [9,12]. Consequently, a number of methods for solving 
for the maximum entropy distribution have been proposed, 
including hill-climbing, iterative projection, the damped 
Newton method, and iterative scaling. Two papers that pro- 
pose implementations are [2,1] 

The bulk of the computational work in the MEC algo- 
rithm resides in the optimization problem of Step 2. For 
the MEC algorithm to be efficient and scalable, a suitable 
method for calculating a constrained maximum entropy so- 
lution must be used. By efficient and scalable, me mean 
that it exploits structure in the problem to avoid unnecessary 

2An ophization problem is said to befeasible if there exists a point 
satisfying all the comfrahts simultaneously. The set of such pomts is the 
feasibIe set. The optimization problem is infeasible if that set is empty. 



storage requirements, has a high rate of convergence, and 
the computational complexity grows at rate proportional to 
the problem size. 

Our solution method is based on a primal-dud log- 
barrier code implemented by Saunders [ll]. This imple- 
mentation belongs to the class of interior-pointprimal-dual 
methods, so called because all iterates remain in the inte 
rior of the inequality constraints (in this case, all iterates are 
strictly positive). See Nocedal and Wright [ 101 for a discus- 
sion on interior-point methods. 

The implementation has several useful qualities. First, 
the iterates generated at each step of the algorithm remain 
strictly positive. Thus, the maximum entropy objective 
function is guaranteed to always be well defined. Second, 
the iterates do not have to be feasible and we can avoid the 
costly calculation of determining a feasible starting point. 
Third, the algorithm makes explicit use of the positive defi- 
nite, diagonal structure of the Hessian. 

In particular, the implementation solves a perturbed, lin- 
early constrained optimization problem of the form 

subject to A x + r  = 0 
x L 0. 

The regularization term (Jyr1I2 serves to guarantee that if 
Ax = b is infeasible, a solution in some least-squares sense 
can be found. The second regularization term $ll~/611~ en- 
sures that the solution will be bounded. A discussion of 
regularization can be found in Gill et al. [6] .  The param- 
eter y is chosen to balance the least squares solution of w 
against the maximum entropy solution. Regularization pa- 
rameter values of y = 0 and 6 = 10 (FILL IN) yielded good 
performance. 

Classifiers for speech problems are trained on millions 
of data points, although with usually less than 3 6 feature di- 
mensions. Normally we would want to exploit the sparsity 
of the underlying constraint matrix. However, the feature 
vectors generally have few nonzero entries and so A would 
be dense. Solving Optimization problems of this magnitude 
would be extremely costly to solve without leveraging effi- 
ciencies in storage and computation. A novel feature of the 
chosen method that we are not exploiting is the ability to de- 
fine the matrix A as an operator. One avenue of exploration 
sti l l  left to us is the question of whether efficient means for 
calculating Ax and ATx are possible. This would allow us 
to tackle a wider range of problem sizes. Effectively, this is 
a substitute for sparsity of A. 

5 Computational Complexity 

Classification may be slowed by huge training data sets. 
There are at least two ways to ameliorate this problem, clus- 

tering and interior-point weeding. Clustering methods, such 
as the Lloyd algorithm or k-means, accept a parameter k 
and for each class, iteratively create: IC clusters to represent 
all the data points of that class. Each of the IC clusters is 
represented by its centroid. To minimize the training data 
set it may be suitable to replace data with their clusters’ 
centroids. However, using centroid3 instead of the original 
clusters will not guarantee the same results offered by using 
the original training data. 
On the other hand, interior-point weeding will be less ef- 

ficient at reducing the number of used training points, but 
should not change the results. In interior-point weeding, 
any training point that is contained entirely within the con- 
vex hull formed by the other training points within the same 
class are removed. This can be determined using a straight- 
forward linear program. 

6 Vowel Recognition Experiment 

As discussed in the Introduction, supervised classifica- 
tion problems may arise in speech processing both in speech 
recognition and speaker recognition. We demonstrate the 
classifier on a standard set of vowel data available from the 
Information and Computer Science ‘Department at the Uni- 
versity of California, Imine 131. The training data consists 
of 528 data points from eight mixed-gender speakers say- 
ing eleven different words and six data points taken from 
the steady-state vowel of each word,. The test data is com- 
posed of 462 data points from seven speakers. The eleven 
words (classes, classes in this context) are the steady-state 
vowels of British English hid, hId., Ed, hAd, hYd, had, 
hod, hod, hUd, hud, hed. The speech signals were low 
pass filtered at 4.7 kHz and then passed through a 12 bit 
ADC with a 10 kHz sampling rate. Six 512 sample Ham- 
ming windowed segments were taken from the steady part 
of each word’s vowel and then analyzed with twelfth order 
linear predictive analysis. Reflection coefficients were used 
to calculate ten log area parameters which are entered as a 
ten dimensional data point to the classifier. 

For each test point we use as a basis the subset of the 
training data that falls within a radius of 

where the parameter a! was chosen to provide the best clas- 
sification rate on the training data via cross-validation. The 
cross-validation was eight-fold with each speaker removed 
from the training set in turn and the remaining data used as 
the test set. For the results described in Table 1, cr. = .26. 
As a control, we experimented witJ~ using our neighborhood 
selection but then setting the weights equally for all points 
in the neighborhood. We did not train the neighborhood 
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II Test Points 
correctly 

Classification Method 
Single-layer Neural Network 

Classified 
33% 

Linear Discriminant Analysis 

CART (decision tree) 
Multi-layer Neural Network 

Nearest Neighbor 

Proposed Maximum Entropy Classifier 
Equal weight on all points in neighborhood 

' Flexible Discriminant Analysis 

parameter, but chose it to be a! = .26 to make a good com- 
parison to the proposed m a x i "  entropy classifier. 

The best classifier we found for this data set is Flexible 
Discriminant Analysis [7] which achieves a correct classifi- 
cation rate for the vowel test set of 6 1%. Table 1 compares 
the performance of our algorithm against the published re- 
sults of other classifiers [5]. The maximum entropy classi- 
fier also achieves 6 1 %. Using the same neighborhood se- 
lection but giving all points equal weight, 62% of the points 
were classified correctly. This highlights the importance of 
a good neighborhood selection procedure. Since there are 
462 test points, and the estimation of the error rate for the 
classifier is a random variable with a binomial distriiution, 
the expected standard deviation for the probability estimates 
of Table 1 is upper bounded by 2.33%. 

44% 
51% 
54% 
56% 
61% 
61% 
62% 

7 Conclusions 

Maximum entropy classification is a new and well- 
founded method for supervised classification. There is only 
one parameter to set - the neighborhood selection - and thus 
it is easy to train. We have shown that it performs competi- 
tively on speech applications and hope it will find use in the 
future. Though not as readily applied to speech, the same 
algorithm may be applied to regression problems. 
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