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Abstract. The basis pursuit problem seeks a minimum one-norm solution of an underdeter-
mined least-squares problem. Basis pursuit denoise (BPDN) fits the least-squares problem only
approximately, and a single parameter determines a curve that traces the optimal trade-off between
the least-squares fit and the one-norm of the solution. We prove that this curve is convex and con-
tinuously differentiable over all points of interest, and show that it gives an explicit relationship to
two other optimization problems closely related to BPDN. We describe a root-finding algorithm for
finding arbitrary points on this curve; the algorithm is suitable for problems that are large scale and
for those that are in the complex domain. At each iteration, a spectral gradient-projection method
approximately minimizes a least-squares problem with an explicit one-norm constraint. Only matrix-
vector operations are required. The primal-dual solution of this problem gives function and derivative
information needed for the root-finding method. Numerical experiments on a comprehensive set of
test problems demonstrate that the method scales well to large problems.
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1. Basis pursuit denoise. The basis pursuit problem aims to find a sparse
solution of the underdetermined system of equations Ax = b, where A is an m-by-
n matrix and b is an m-vector. Typically, m � n, and the problem is ill-posed.
The approach advocated by Chen, Donoho, and Saunders [15] is to solve the convex
optimization problem

(BP) minimize
x

‖x‖1 subject to Ax = b.

In the presence of noisy or imperfect data, however, it is undesirable to exactly fit the
linear system. Instead, the constraint in (BP) is relaxed to obtain the basis pursuit
denoise (BPDN) problem

(BPσ) minimize
x

‖x‖1 subject to ‖Ax− b‖2 ≤ σ,

where the positive parameter σ is an estimate of the noise level in the data. The case
σ = 0 corresponds to a solution of (BP)—i.e., a basis pursuit solution.

There is now a significant body of work that addresses the conditions under
which a solution of this problem yields a sparse approximation to a solution of the
underdetermined system; see Candès, Romberg, and Tao [11], Donoho [24], and Tropp
[48], and references therein. The sparse approximation problem is of vital importance
to many applications in signal processing and statistics. Some important applications
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include image reconstruction, such as MRI [36, 37] and seismic [31, 32] images, and
model selection in regression [26]. In many of these applications, the data sets are
large, and the matrix A is available only as an operator. In compressed sensing [10, 11,
12, 23], for example, the matrices are often fast operators such as Fourier or wavelet
transforms. It is therefore crucial to develop algorithms for the sparse reconstruction
problem that scale well and work effectively in a matrix-free context.

We present an algorithm, suitable for large-scale applications, that is capable of
finding solutions of (BPσ) for any value of σ ≥ 0. Our approach is based on recasting
(BPσ) as a problem of finding the root of a single-variable nonlinear equation. At
each iteration of our algorithm, an estimate of that variable is used to define a convex
optimization problem whose solution yields derivative information that can be used
by a Newton-based root-finding algorithm.

1.1. One-norm regularization. The convex optimization problem (BPσ) is
only one possible statement of the one-norm regularized least-squares problem. In
fact, the BPDN label is typically applied to the penalized least-squares problem

(QPλ) minimize
x

‖Ax− b‖22 + λ‖x‖1,

which is the problem statement proposed by Chen, Donoho, and Saunders [14, 15].
A third formulation,

(LSτ ) minimize
x

‖Ax− b‖2 subject to ‖x‖1 ≤ τ,

has an explicit one-norm constraint and is often called the Lasso problem [46]. The
parameter λ is related to the Lagrange multiplier of the constraint in (LSτ ) and to
the reciprocal of the multiplier of the constraint in (BPσ). Thus, for appropriate
parameter choices of σ, λ, and τ , the solutions of (BPσ), (QPλ), and (LSτ ) coincide,
and these problems are in some sense equivalent. However, except for special cases—
such as A orthogonal—the parameters that make these problems equivalent cannot
be known a priori.

The formulation (QPλ) is often preferred because of its close connection to convex
quadratic programming, for which many algorithms and software are available; some
examples include iteratively reweighted least squares [7, section 4.5] and gradient
projection [27]. For the case where an estimate of the noise-level σ is known, Chen,
Donoho, and Saunders [15, section 5.2] argue that the choice λ = σ

√
2 logn has

important optimality properties. However, this argument hinges on the orthogonality
of A.

We focus on the situation where σ is approximately known—such as when we can
estimate the noise levels inherent in an underlying system or in the measurements
taken. In this case it is preferable to solve (BPσ), and here this is our primary goal. An
important consequence of our approach is that it can also be used to efficiently solve
the closely related problems (BP) and (LSτ ). Our algorithm also applies to all three
problems in the complex domain, which can arise in signal processing applications.

1.2. Approach. At the heart of our approach is the ability to efficiently solve a
sequence of (LSτ ) problems using a spectral projected-gradient (SPG) algorithm [5, 6,
18]. As with (QPλ), this problem is parameterized by a scalar; the crucial difference,
however, is that the dual solution of (LSτ ) yields vital information on how to update
τ so that the next solution of (LSτ ) is much closer to the solution of (BPσ).
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Let xτ denote the optimal solution of (LSτ ). The single-parameter function

(1.1) φ(τ) = ‖rτ‖2, with rτ := b−Axτ

gives the optimal value of (LSτ ) for each τ ≥ 0. As we describe in section 2, its
derivative is given by −λτ , where λτ ≥ 0 is the unique dual solution of (LSτ ). Impor-
tantly, this dual solution can easily be obtained as a by-product of the minimization
of (LSτ ); this is discussed in section 2.1. Our approach is then based on applying
Newton’s method to find a root of the nonlinear equation

(1.2) φ(τ) = σ,

which defines a sequence of regularization parameters τk → τσ, where xτσ is a solution
of (BPσ). In other words, τσ is the parameter that causes (LSτ ) and (BPσ) to share
the same solution.

There are four distinct components to this paper. The first two are related to
the root-finding algorithm for (BPσ). The third is an efficient algorithm for solving
(LSτ )—and hence for evaluating the function φ and its derivative φ′. The fourth gives
the results of a series of numerical experiments.

Pareto curve (section 2). The Pareto curve defines the optimal trade-off between
the two-norm of the residual r and the one-norm of the solution x. The problems
(BPσ) and (LSτ ) are two distinct characterizations of the same curve. Our approach
uses the function φ to parameterize the Pareto curve by τ . We show that, for all
points of interest, φ—and hence the Pareto curve—is continuously differentiable. We
are also able to give an explicit expression for its derivative. This surprising result
permits us to use a Newton-based root-finding algorithm to find roots of the nonlinear
equation (1.2), which correspond to points on the Pareto curve. Thus we can find
solutions of (BPσ) for any σ ≥ 0.

Root finding (section 3). Each iteration of the root-finding algorithm for (1.2)
requires the evaluation of φ and φ′ at some τ , and hence the minimization of (LSτ ).
This is a potentially expensive subproblem, and the effectiveness of our approach
hinges on the ability to solve this subproblem only approximately. We present rate-
of-convergence results for the case where φ and φ′ are known only approximately.
This is in contrast to the usual inexact-Newton analysis [22], which assumes that φ is
known exactly. We also give an effective stopping rule for determining the required
accuracy of each minimization of (LSτ ).

Projected gradient for Lasso (section 4). We describe an SPG algorithm for solv-
ing (LSτ ). Each iteration of this method requires an orthogonal projection of an
n-vector onto the convex set ‖x‖1 ≤ τ . In section 4.2 we give an algorithm for this
projection with a worst-case complexity of O(n logn). In many important applica-
tions, A is a Fourier-type operator, and matrix-vector products with A and AT can
be obtained with O(n log n) cost. The projection cost is typically much smaller than
the worst case, and the dominant cost in our algorithm consists of the matrix-vector
products, as it does in other algorithms for BPDN. We also show how the projec-
tion algorithm can easily be extended to project complex vectors, which allows us to
extend the SPG algorithm to problems in the complex domain.

Implementation and numerical experiments (sections 5 and 6). To demonstrate
the effectiveness of our approach, we apply our algorithm on a set of benchmark prob-
lems and compare it to other state-of-the-art solvers. In sections 6.1 and 6.2 we report
numerical results on a series of (BPσ) and (BP) problems, which are normally con-
sidered as distinct problems. In section 6.3 we report numerical results on a series of
(LSτ ) problems for various values of τ , and compare against the equivalent (QPλ) for-
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mulations. In section 6.4 we show how to capitalize on the smoothness of the Pareto
curve to obtain quick and approximate solutions to (BPσ).

1.3. Assumption. We make the following blanket assumption throughout.
Assumption 1.1. The vector b ∈ range(A), and b 	= 0.
This assumption is only needed in order to simplify the discussion, and it implies

that (BPσ) is feasible for all σ ≥ 0. In many applications, such as compressed sens-
ing [10, 11, 12, 23], A has full row rank, and therefore this assumption is satisfied
automatically.

1.4. Related work.
Homotopy approaches. A number of approaches have been suggested for solving

(BPσ), many of which are based on repeatedly solving (QPλ) for various values of λ.
Notable examples of this approach are Homotopy [41, 42] and Lars [26], which solve
(QPλ) for essentially all values of λ. In this way, they eventually find the value of
λ that recovers a solution of (BPσ). These active-set continuation approaches begin
with λ = ‖AT b‖∞ (for which the corresponding solution is xλ = 0) and gradually re-
duce λ in stages that predictably change the sparsity pattern in xλ. The remarkable
efficiency of these continuation methods follows from their ability to systematically
update the resulting sequence of solutions. (See Donoho and Tsaig [25] and Fried-
lander and Saunders [28] for discussions of the performance of these methods.) The
computational bottleneck for these methods is the accurate solution at each iteration
of a least-squares subproblem that involves a subset of the columns of A. In some
applications (such as the seismic image reconstruction problem [32]) the size of this
subset can become large, and thus the least-squares subproblems can become pro-
hibitively expensive. Moreover, even if the correct value λσ is known a priori, the
method must necessarily begin with λ = ‖AT b‖∞ and traverse all critical values of λ
down to λσ.

BPDN as a cone program. The problem (BPσ) with σ > 0 can be considered as
a special case of a generic second-order cone program [8, Chapter 5]. Interior-point
(IP) algorithms for general conic programs can be very effective if the matrices are
available explicitly. Examples of general-purpose software for cone programs include
SeDuMi [45] and MOSEK [39]. The software package �1-magic [9] contains an IP
implementation specially adapted to (BPσ). In general, the efficiency of IP imple-
mentations relies ultimately on their ability to efficiently solve certain linear systems
that involve highly ill-conditioned matrices.

Basis pursuit as a linear program. The special case σ = 0 corresponding to (BP)
can be reformulated and solved as a linear program. Again, IP methods are known
to be effective for general linear programs, but many IP implementations for general
linear programming, such as CPLEX [16] and MOSEK, require explicit matrices. The
solver PDCO [44], available within the SparseLab package, is capable of using A as
an operator only, but it often requires many matrix-vector multiplications to converge,
and as we report in section 6.2, it is not generally competitive with other approaches.
We are not aware of simplex-type implementations that do not require A explicitly.

Sampling the Pareto curve. A common approach for obtaining approximate so-
lutions to (BPσ) is to sample various points on the Pareto curve; this is often accom-
plished by solving (QPλ) for a decreasing sequence of values of λ. As noted by Das
and Dennis [19], and more recently by Leyffer [35], a uniform distribution of weights
λ can lead to an uneven sampling of the Pareto curve. In contrast, by instead param-
eterizing the Pareto curve by σ or τ (via the problem (BPσ) or (LSτ )), it is possible
to obtain a more uniform sample of the Pareto curve; see section 6.4.
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Projected gradient. Our application of the SPG algorithm to solve (LSτ ) follows
Birgin, Mart́ınez, and Raydan [5] closely for the minimization of general nonlinear
functions over arbitrary convex sets. The method they propose combines projected-
gradient search directions with the spectral step length that was introduced by Barzilai
and Borwein [1]. A nonmonotone line search is used to accept or reject steps. The
key ingredient of Birgin, Mart́ınez, and Raydan’s algorithm is the projection of the
gradient direction onto a convex set, which in our case is defined by the constraint
in (LSτ ). In their recent report, Figueiredo, Nowak, and Wright [27] describe the
remarkable efficiency of an SPG method specialized to (QPλ). Their approach builds
on the earlier report by Dai and Fletcher [18] on the efficiency of a specialized SPG
method for general bound-constrained quadratic programs (QPs).

2. The Pareto curve. The function φ defined by (1.1) yields the optimal value
of the constrained problem (LSτ ) for each value of the regularization parameter τ .
Its graph traces the optimal trade-off between the one-norm of the solution x and
the two-norm of the residual r, which defines the Pareto curve. Figure 2.1 shows the
graph of φ for a typical problem.

The Newton-based root-finding procedure that we propose for locating specific
points on the Pareto curve—e.g., finding roots of (1.2)—relies on several important
properties of the function φ. As we show in this section, φ is a convex and differentiable
function of τ . The differentiability of φ is perhaps unintuitive, given that the one-
norm constraint in (LSτ ) is not differentiable. To deal with the nonsmoothness of
the one-norm constraint, we appeal to Lagrange duality theory. This approach yields
significant insight into the properties of the trade-off curve. We discuss the most
important properties below.

2.1. The dual subproblem. The dual of the Lasso problem (LSτ ) plays a
prominent role in understanding the Pareto curve. In order to derive the dual of
(LSτ ), we first recast (LSτ ) as the equivalent problem

(2.1) minimize
r,x

‖r‖2 subject to Ax+ r = b, ‖x‖1 ≤ τ.
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Fig. 2.1. A typical Pareto curve (solid line) showing two iterations of Newton’s method. The
first iteration is available at no cost.
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The dual of this convex problem is given by

(2.2) maximize
y,λ

L(y, λ) subject to λ ≥ 0,

where

L(y, λ) = inf
x,r
{‖r‖2 − yT(Ax + r − b) + λ(‖x‖1 − τ)}

is the Lagrange dual function, and the m-vector y and scalar λ are the Lagrange
multipliers (e.g., dual variables) corresponding to the constraints in (2.1). We use the
separability of the infimum in r and x to rearrange terms and arrive at the equivalent
statement

L(y, λ) = bTy − τλ− sup
r
{yTr − ‖r‖2} − sup

x
{yTAx− λ‖x‖1}.

We recognize the suprema above as the conjugate functions of ‖r‖2 and of λ‖x‖1,
respectively. For an arbitrary norm ‖ · ‖ with dual norm ‖ · ‖∗, the conjugate function
of f(x) = α‖x‖ for any α ≥ 0 is given by

(2.3) f∗(y) := sup
x
{yTx− α‖x‖} =

{
0 if ‖y‖∗ ≤ α,
∞ otherwise;

see Boyd and Vandenberghe [8, section 3.3.1]. With this expression of the conjugate
function, it follows that (2.2) remains bounded if and only if the dual variables y and
λ satisfy the constraints ‖y‖2 ≤ 1 and ‖ATy‖∞ ≤ λ. The dual of (2.1), and hence of
(LSτ ), is then given by

(2.4) maximize
y,λ

bTy − τλ subject to ‖y‖2 ≤ 1, ‖ATy‖∞ ≤ λ;

the nonnegativity constraint on λ is implicitly enforced by the second constraint.
Importantly, the dual variables y and λ can easily be computed from the optimal

primal solutions. To derive y, first note that, from (2.3),

(2.5) sup
r
{yTr − ‖r‖2} = 0 if ‖y‖2 ≤ 1.

Therefore, y = r/‖r‖2, and we can without loss of generality take ‖y‖2 = 1 in (2.4).
To derive λ, note that, as long as τ > 0, λ must be at its lower bound, as implied by
the constraint ‖ATy‖∞ ≤ λ. Hence, we take λ = ‖ATy‖∞. (If r = 0 or τ = 0, the
choice of y or λ, respectively, is arbitrary.) The dual variable y can then be eliminated,
and we arrive at the following necessary and sufficient optimality conditions for the
primal-dual solution (rτ , xτ , λτ ) of (2.1):

Axτ + rτ = b, ‖xτ‖1 ≤ τ (primal feasibility);(2.6a)

‖ATrτ‖∞ ≤ λτ‖rτ‖2 (dual feasibility);(2.6b)
λτ (‖xτ‖1 − τ) = 0 (complementarity).(2.6c)

2.2. Convexity and differentiability of the Pareto curve. Let τBP be the
optimal objective value of the problem (BP). This corresponds to the smallest value
of τ such that (LSτ ) has a zero objective value. As we show below, φ is nonincreasing,
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and therefore τBP is the first point at which the graph of φ touches the horizontal axis.
Our assumption that 0 	= b ∈ range(A) implies that (BP) is feasible and that τBP > 0.
Therefore, at the endpoints of the interval of interest,

(2.7) φ(0) = ‖b‖2 > 0 and φ(τBP) = 0.

As the following result confirms, the function is convex and strictly decreasing over
the interval τ ∈ [0, τBP]. It is also continuously differentiable on the interior of this
interval—this is a crucial property.

Theorem 2.1.

(a) The function φ is convex and nonincreasing.
(b) For all τ ∈ (0, τBP), φ is continuously differentiable, φ′(τ) = −λτ , and the

optimal dual variable λτ = ‖ATyτ‖∞, where yτ = rτ/‖rτ‖2.
(c) For τ ∈ [0, τBP], ‖xτ‖1 = τ , and φ is strictly decreasing.
Proof. (a) The function φ can be restated as

(2.8) φ(τ) = inf
x
f(x, τ),

where

f(x, τ) := ‖Ax− b‖2 + ψτ (x) and ψτ (x) :=

{
0 if ‖x‖1 ≤ τ ,
∞ otherwise.

Note that, by (2.3), ψτ (x) = supz{xTz−τ‖z‖∞}, which is the pointwise supremum of
an affine function in (x, τ). Therefore, it is convex in (x, τ). Together with the con-
vexity of ‖Ax− b‖2, this implies that f is convex in (x, τ). Consider any nonnegative
scalars τ1 and τ2, and let x1 and x2 be the corresponding minimizers of (2.8). For
any β ∈ [0, 1],

φ(βτ1 + (1− β)τ2) = inf
x
f(x, βτ1 + (1 − β)τ2)

≤ f(
βx1 + (1 − β)x2 , βτ1 + (1− β)τ2

)
≤ βf(x1, τ1) + (1 − β)f(x2, τ2)
= βφ(τ1) + (1− β)φ(τ2).

Hence, φ is convex in τ . Moreover, φ is nonincreasing because the feasible set enlarges
as τ increases.

(b) The function φ is differentiable at τ if and only if its subgradient at τ is
unique [43, Theorem 25.1]. By [4, Proposition 6.5.8(a)], −λτ ∈ ∂φ(τ). Therefore, to
prove the differentiability of φ, it is enough to show that λτ is unique. Note that λ
appears linearly in (2.4) with coefficient −τ < 0, and thus λτ is not optimal unless it is
at its lower bound, as implied by the constraint ‖ATy‖∞ ≤ λ. Hence, λτ = ‖ATyτ‖∞.
Moreover, the convexity of (LSτ ) implies that its optimal value is unique, and so
rτ ≡ b − Axτ is unique. Also, ‖rτ‖ > 0 because τ < τBP (cf. (2.7)). As discussed
in connection with (2.5), we can then take yτ = rτ/‖rτ‖2, and so the uniqueness of
rτ implies the uniqueness of yτ , and hence the uniqueness of λτ , as required. The
continuity of the gradient follows from the convexity of φ.

(c) The assertion holds trivially for τ = 0. For τ = τBP, ‖xτBP
‖1 = τBP by

definition. It only remains to prove part (c) on the interior of the interval. Note that
φ(τ) ≡ ‖rτ‖ > 0 for all τ ∈ [0, τBP). Then by part (b), λτ > 0, and hence φ is strictly
decreasing for τ < τBP. But because xτ and λτ both satisfy the complementarity
condition in (2.6), it must hold that ‖xτ‖1 = τ .
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2.3. Generic regularization. The technique used to prove Theorem 2.1 does
not in any way rely on the specific norms used in the objective and regularization
functions, and it can be used to prove similar properties for the generic regularized
fitting problem

(2.9) minimize
x

‖Ax− b‖s subject to ‖x‖p ≤ τ,

where 1 ≤ (p, s) ≤ ∞ define the norms of interest, i.e., ‖x‖p = (
∑

i |xi|p)1/p. More
generally, the constraint here may appear as ‖Lx‖p, where Lmay be rectangular. Such
a constraint defines a seminorm, and it often arises in the discrete approximations of
derivative operators. In particular, least-squares with Tikhonov regularization [47],
which corresponds to p = s = 2, is used extensively for the regularization of ill-posed
problems; see Hansen [29] for a comprehensive study. In this case, the Pareto curve
defined by the optimal trade-off between ‖x‖2 and ‖Ax−b‖2 is often called the L-curve
because of its shape when plotted on a log-log scale [30].

If we define p̄ and s̄ such that

1/p+ 1/p̄ = 1 and 1/s+ 1/s̄ = 1,

then the dual of the generic regularization problem is given by

maximize
y,λ

bTy − τλ subject to ‖y‖s̄ ≤ 1, ‖ATy‖p̄ ≤ λ.

As with (2.4), the optimal dual variables are given by y = r/‖r‖p̄ and λ = ‖ATy‖s̄.
This is a generalization of the results obtained by Dax [21], who derives the dual
for p and s strictly between 1 and ∞. The corollary below, which follows from a
straightfoward modification of Theorem 2.1, asserts that the Pareto curve defined for
any 1 ≤ (p, s) ≤ ∞ in (2.7) has the properties of convexity and differentiability.

Corollary 2.2. Let θ(τ) := ‖rτ‖s, where rτ := b −Axτ , and xτ is the optimal
solution of (2.9).

(a) The function θ is convex and nonincreasing.
(b) For all τ ∈ (0, τBP), θ is continuously differentiable, θ′(τ) = −λτ , and the

optimal dual variable λτ = ‖ATyτ‖p̄, where yτ satisfies yT rτ = ‖rτ‖s.
(c) For τ ∈ [0, τBP], ‖xτ‖p = τ , and θ is strictly decreasing.

3. Root finding. As we briefly outlined in section 1.2, our algorithm generates
a sequence of regularization parameters τk → τσ based on the Newton iteration

(3.1) τk+1 = τk + Δτk, with Δτk :=
(
σ − φ(τk)

)
/φ′(τk),

such that the corresponding solutions xτk
of (LSτk

) converge to xσ. For values of σ ∈
(0, ‖b‖2), Theorem 2.1 implies that φ is convex, strictly decreasing, and continuously
differentiable. In that case it is clear that τk → τσ superlinearly for all initial values
τ0 ∈ (0, τBP) (see, e.g., Bertsekas [3, Proposition 1.4.1]).

The efficiency of our method, as with many Newton-type methods for large prob-
lems, ultimately relies on the ability to carry out the iteration described by (3.1) with
only an approximation of φ(τk) and φ′(τk). Although the nonlinear equation (1.2)
that we wish to solve involves only a single variable τ , the evaluation of φ(τ) involves
the solution of (LSτ ), which can be a large optimization problem that is expensive to
solve to full accuracy.
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For systems of nonlinear equations in general, inexact Newton methods assume
that the Newton system analogous to the equation

φ′(τk)Δτk = σ − φ(τk)

is solved only approximately, with a residual that is a fraction of the right-hand
side. A constant fraction yields a linear convergence rate, and a fraction tending to
zero yields a superlinear convergence rate (see, e.g., Nocedal and Wright [40, Theo-
rem 7.2]). However, the inexact-Newton analysis does not apply to the case where
the right-hand side (i.e., the function itself) is known only approximately, and it is
therefore not possible to know a priori the accuracy required to achieve an inexact
Newton-type convergence rate. This is the situation that we are faced with if (LSτ )
is solved approximately. As we show below, with only approximate knowledge of the
function value φ, this inexact version of Newton’s method still converges, although the
convergence rate is sublinear. The rate can be made arbitrarily close to superlinear
by increasing the accuracy with which we compute φ.

3.1. Approximate primal-dual solutions. In this section we use the dual-
ity gap to derive an easily computable expression that bounds the accuracy of the
computed function value of φ. The algorithm for solving (LSτ ) outlined in section 4
maintains feasibility of the iterates at all iterations. Thus, an approximate solution
x̄τ and its corresponding residual r̄τ := b−Ax̄τ satisfy

(3.2) ‖x̄τ‖1 ≤ τ and ‖r̄τ‖2 ≥ ‖rτ‖2 > 0,

where the second set of inequalities holds because x̄τ is suboptimal and τ < τBP. We
can thus construct the approximations

ȳτ := r̄τ/‖r̄τ‖2 and λ̄τ := ‖ATȳτ‖∞
to the dual variables that are dual feasible, i.e., they satisfy (2.6b). The value of the
dual problem (2.2) at any feasible point gives a lower bound on the optimal value
‖rτ‖2, and the value of the primal problem (2.1) at any feasible point gives an upper
bound on the optimal value. Therefore,

(3.3) bTȳτ − τλ̄τ ≤ ‖rτ‖2 ≤ ‖r̄τ‖2.
We use the duality gap

(3.4) δτ := ‖r̄τ‖2 − (bTȳτ − τλ̄τ )

to measure the quality of an approximate solution x̄τ . By (3.3), δτ is necessarily
nonnegative.

Let φ̄(τ) := ‖r̄τ‖2 be the objective value of (LSτ ) at the approximate solution x̄τ .
The duality gap at x̄τ provides a bound on the difference between φ(τ) and φ̄(τ). If
we additionally assume that A is full rank (so that its condition number is bounded),
we can also use δτ to provide a bound on the difference between the derivatives φ′(τ)
and φ̄′(τ). From (3.3)–(3.4) and from Theorem 2.1(b), for all τ ∈ (0, τBP),

(3.5) φ̄(τ) − φ(τ) < δτ and |φ̄′(τ) − φ′(τ)| < γδτ

for some positive constant γ that is independent of τ . It follows from the definition
of φ′ and from standard properties of matrix norms that γ is proportional to the
condition number of A.
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3.2. Local convergence rate. The following theorem establishes the local con-
vergence rate of an inexact Newton method for (1.2) where φ and φ′ are known only
approximately.

Theorem 3.1. Suppose that A has full rank, σ ∈ (0, ‖b‖2), and δk := δτk
→ 0.

Then if τ0 is close enough to τσ, the iteration (3.1)—with φ and φ′ replaced by φ̄ and
φ̄′—generates a sequence τk → τσ that satisfies

(3.6) |τk+1 − τσ| = γδk + ηk|τk − τσ|,
where ηk → 0 and γ is a positive constant.

Proof. Because φ(τσ) = σ ∈ (0, ‖b‖2), (2.7) implies that τσ ∈ (0, τBP). By
Theorem 2.1 we have that φ(τ) is continuously differentiable for all τ close enough to
τσ, and so by Taylor’s theorem,

φ(τk)− σ =
∫ 1

0

φ′(τσ + α[τk − τσ]) dα · (τk − τσ)

= φ′(τk)(τk − τσ) +
∫ 1

0

[
φ′(τσ + α[τk − τσ])− φ′(τk)

] · dα (τk − τσ)

= φ′(τk)(τk − τσ) + ω(τk, τσ),

where the remainder ω satisfies

(3.7) ω(τk, τσ)/|τk − τσ| → 0 as |τk − τσ| → 0.

By (3.5) and because (3.2) holds for τ = τk, there exist positive constants γ1 and γ2,
independent of τk, such that∣∣∣∣φ(τk)− σ

φ′(τk)
− φ̄(τk)− σ

φ̄′(τk)

∣∣∣∣ ≤ γ1δk and |φ′(τk)|−1 < γ2.

Then, because Δτk =
(
σ − φ̄(τk)

)
/φ̄′(τk),

|τk+1 − τσ| = |τk − τσ + Δτk|

=
∣∣∣∣− φ̄(τk)− σ

φ̄′(τk)
+

1
φ′(τk)

[
φ(τk)− σ − ω(τk, τσ)

]∣∣∣∣
≤

∣∣∣∣φ(τk)− σ
φ′(τk)

− φ̄(τk)− σ
φ̄′(τk)

∣∣∣∣ +
∣∣∣∣ω(τk, τσ)
φ′(τk)

∣∣∣∣
= γ1δk + γ2|ω(τk, τσ)|
= γ1δk + ηk|τk − τσ|,

where ηk := γ2|ω(τk, τσ)|/|τk − τσ|. With τk sufficiently close to τσ, (3.7) implies that
ηk < 1. Apply the above inequality recursively � ≥ 1 times to obtain

|τk+� − τσ| ≤ γ1

�∑
i=1

(γ1)�−iδk+i−1 + (ηk)�|τk − τσ|,

and because δk → 0 and ηk < 1, it follows that τk+� → τσ as �→∞. Thus τk → τσ,
as required. By again applying (3.7), we have that ηk → 0.

Note that if (LSτ ) is solved exactly at each iteration, such that δk = 0, then
Theorem 3.1 shows that the convergence rate is superlinear, as we expect of a standard
Newton iteration. In effect, the convergence rate of the algorithm depends on the rate
at which δk → 0. If A is rank deficient, then the constant γ in (3.6) is infinite; we
thus expect that ill-conditioning in A leads to slow convergence unless δk = 0, i.e., φ
is evaluated accurately at every iteration.
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Algorithm 1: Spectral projected gradient for (LSτ ).

Input: x, τ , δ
Output: xτ , rτ

Set minimum and maximum step lengths 0 < αmin < αmax.
Set initial step length α0 ∈ [αmin, αmax] and sufficient descent parameter γ ∈ (0, 1).
Set an integer line search history length M ≥ 1.
Set initial iterates: x0 ← Pτ [x], r0 ← b− Ax0, g0 ← −ATr0.
�← 0
begin

δ� ← ‖r�‖2 − (bTr� − τ‖g�‖∞)/‖r�‖2 [compute duality gap]1

if δ� < δ then break [exit if converged]2

α← α� [initial step length]3

begin
x̄← Pτ [x� − αg�] [candidate line search iterate]4

r̄ ← b− Ax̄ [update the corresponding residual]5

if ‖r̄‖22 ≤ maxj∈[0,min{k,M−1}] ‖r�−j‖22 + γ(x̄− x�)
Tg� then6

break [exit line search]7

else
α← α/2 [decrease step length]8

end

x�+1 ← x̄, r�+1 ← r̄, g�+1 ← −ATr�+1 [update iterates]9

Δx← x�+1 − x�, Δg ← g�+1 − g�10

if ΔxTΔg ≤ 0 then [Update the Barzilai-Borwein step length]11

α�+1 ← αmax12

else
α�+1 ← min

{
αmax , max

[
αmin, (ΔxTΔx)/(ΔxTΔg)

]}
13

�← � + 1
end

return xτ ← x�, rτ ← r�

4. Solving the Lasso problem (evaluating φ). Each iteration of the Newton
root-finding method described in section 3 requires the (approximate) evaluation of
φ(τ), and therefore a procedure for minimizing (LSτ ). In this section we outline an
SPG algorithm for this purpose.

4.1. Spectral projected gradient. The SPG procedure that we use for solving
(LSτ ) closely follows Birgin, Mart́ınez, and Raydan [5, Algorithm 2.1], and is outlined
in Algorithm 1. The method depends on the ability to project iterates onto the
feasible set {x | ‖x‖1 ≤ τ}. This is accomplished via the operator

(4.1) Pτ [c] :=
{

argmin
x

‖c− x‖2 subject to ‖x‖1 ≤ τ
}
,

which gives the projection of an n-vector c onto the one-norm ball with radius τ .
Each iteration of the algorithm searches the projected gradient path Pτ [x�−αg�],

where g� is the current gradient for the function ‖Ax− b‖22 (which is the square of the
(LSτ ) objective); see steps 4–8. Because the feasible set is polyhedral, the projected
gradient path is piecewise linear. The criterion used in step 6 results in a nonmonotone
line search, which ensures that at least every M iterations yield a sufficient decrease
in the objective function.
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The initial candidate iterate in step 4 is determined by the step length computed
in steps 10–13. Birgin, Mart́ınez, and Raydan [5, Algorithm 2.1] relate this step
length, introduced by Barzilai and Borwein [1], to the eigenvalues of the Hessian of
the objective. (In this case, the Hessian is ATA.) They prove that the method is
globally convergent. The effectiveness in practice of the scaling suggested by Barzilai
and Borwein has led many researchers to continue to explore enhancements to this
choice of step length; for examples, see Dai and Fletcher [18] and Dai et al. [17]. The
method proposed by Daubechies, Fornasier, and Loris [20] is related to Algorithm 1.

4.2. One-norm projection. There are three potentially expensive steps in Al-
gorithm 1: steps 5 and 9 compute the matrix vector products Ax and ATr, and step 4
computes the projection Pτ [·] of a candidate iterate. In this section we give an algo-
rithm for computing the projection defined in (4.1). The algorithm has a worst-case
complexity of O(n logn), but numerical experiments presented in section 6 suggest
that the overall work on average is much less than for the worst case.

In order to simplify the following discussion, we assume that the entries of the
n-vector c are nonnegative. This does not lead to any loss of generality: note that if
the entries of c had different signs, then it would be possible to replace the objective
in (4.1) with the equivalent objective ‖Dc − Dx‖2, where the diagonal matrix D =
diag(sgn(c)). The true solution can then recovered by applying D−1.

Our algorithm for solving (4.1) is motivated as follows. We begin with the trial
solution x ← c. If this is feasible for (4.1), then we exit immediately with Pτ [c] :=
x∗ = c. Otherwise, we attempt to decrease the norm of the trial x by

(4.2) ν := ‖x‖1 − τ,
which is the amount of infeasibility. Therefore, we must find a vector d such that
‖x− d‖1 = τ and, in order to minimize the potential increase in the objective value,
choose d so that ‖d‖2 is minimal. The correction d must therefore solve

minimize
d

‖d‖2 subject to d ≥ 0, ‖d‖1 = ν.

It is straightforward to verify that

(4.3) d∗ = γe, with γ = ν/n,

is a solution of this subproblem.
However, we cannot exit with x ← c − d∗ if some of these entries are negative

because doing so increases the value of ‖x‖1—i.e., the projection must preserve the
sign pattern of c. Therefore,

(4.4) if each d∗i < cmin := mini ci, set x← c− d∗

and exit with the solution of (4.1). Otherwise, we enforce

(4.5) xi = 0 for all i ∈ I := {i | d∗i ≥ cmin},

and then recursively repeat the process described above for the remaining variables
{1, . . . , n}\I.

Algorithm 2 is a distillation of this procedure. In order to make it efficient and
to reduce overhead due to bookkeeping, we apply the procedure to a sequence of
subelements of c: the first iteration starts with a single element that is largest in
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Algorithm 2: Real projection onto the set {x ∈ Rn | ‖x‖1 ≤ τ}.
Input: c, τ
Output: x

if ‖c‖1 ≤ τ then return c [quick exit if c is feasible]1

γ ← 0, δ ← 0, ν ← −τ [initialization]2

c̄← BuildHeap(|c|) [c̄ is a heapified copy of the absolute value of c]3

for j ← 1 to n do4

cmin ← c̄[1] [extract the next largest element from c̄]5

ν ← ν + cmin [accumulate the infeasibility; see (4.2)]6

γ ← ν/j [define the current solution of (4.2); see (4.3)]7

if γ ≥ cmin then break [remaining iterations all satisfy (4.5)]8

c̄← DeleteMax(c̄) [remove xmax from the heap and re-heapify]9

δ ← γ [record the latest solution of (4.3)]10

x← SoftThreshold(c, δ) [soft-threshold input vector c; see (4.6)]11

return x

magnitude, and each subsequent iteration adds one more element that is next largest
in magnitude. This approach avoids having to sort the entire vector c. Instead, step
3 of Algorithm 2 uses BuildHeap to build a binomial heap structure in which the first
element of the heap is largest in magnitude. The cost of BuildHeap is O(n), where n
is the length of the vector c. The cost in subsequent iterations is dominated by step
9, where the function DeleteMax removes the current largest element from the heap
and restores the heap property. The scalar cmin, set in step 5, is the smallest element
of the current subvector; cf. (4.4). (At iteration j, cmin corresponds to the element of
the overall vector c that is jth greatest in magnitude.) If step 8 tests true, then the
algorithm can exit the for-loop because all remaining iterates must satisfy (4.5).

The concluding step uses rules (4.4) and (4.5) to generate the final solution. This
is accomplished in step 11 by applying the soft-thresholding operation

(4.6) x← SoftThreshold(c,δ) ⇐⇒ xi ← sgn(ci) ·max{0, |ci| − δ}
componentwise to the original vector c; the scalar δ is obtained in step 10. This
operation damps elements that are larger in magnitude than δ, and sets to zero any
elements that are smaller in magnitude than δ.

In the worst case, Algorithm 2 will proceed for the full n iterations, and the
dominant cost is n calls to DeleteMax. The overall cost of the algorithm is therefore
O(n logn) in the worst case.

Note that the soft-thresholding operator we have just defined yields the solution
of the separable convex optimization problem

(4.7) minimize
x

1
2‖x− c‖22 + δ‖x‖1,

as shown by Chambolle et al. [13, section III]. In this light, Algorithm 2 can be
interpreted as a procedure for finding the optimal dual variable δ associated with the
constraint in (4.1).

4.3. Complex one-norm projection. Chambolle et al.’s [13] derivation of the
soft-thresholding operation (4.6) as a solution of (4.7) applies to the case in which the
minimization is done over the complex domain. If c ∈ Cn, then the soft-thresholding
operation damps the modulus of each element of c that is larger than δ and sets to
zero any elements of c that have modulus smaller than δ. (When applied to a complex
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Algorithm 3: Complex projection onto the set {z ∈ Cn | ‖z‖1 ≤ τ}.
Input: c, τ
Output: z

r ← |c| [compute the componentwise modulus of c]1

r̄ ← Pτ [r] [apply Algorithm 2; see (4.1)]2

foreach i = 1 to n do
if ri > 0 then zi ← ci(r̄i/ri) [compute sgn(ci) · r̄i; see (4.6)]3

else zi ← 0 [the element ci was zero; keep it]4

return z

number z, the signum function sgn(z) = z/|z| projects z onto the unit circle of the
complex domain; by convention, sgn(0) = 0.) Thus, the thresholding operation on c
acts only on the modula of each component, leaving the phases untouched.

We can use Algorithm 2 (projection of a real vector) to bootstrap an efficient
algorithm for projection of complex vectors. Algorithm 3 outlines this approach. First,
the vector of modula r = (|c1| · · · |cn|) is computed (step 1) and then is projected onto
the (real) one-norm ball with radius τ (step 2). Next, the soft-thresholding operation
of (4.6) is applied in steps 3–4.

The SPG method outlined in Algorithm 1 requires only an efficient procedure
for the projection onto the convex feasible set—the form of that convex set has no
effect on the rest of the algorithm. An important benefit of this is that, with the real-
and complex-projection Algorithms 2 and 3, the SPG method applies equally well to
problems in the real and complex domains.

5. Implementation. The methods that we describe in this paper have been
implemented as a single Matlab [38] software package called SPGL1. It implements
the root-finding algorithm described in section 3 and the spectral projected-gradient
algorithm described in section 4; the latter is, in fact, the computational kernel.

The SPGL1 implementation is structured around major and minor iterations.
Each major iteration is responsible for determining the next element of the sequence
{τk} and for invoking the SPG method described in Algorithm 1 to determine ap-
proximate values of φ(τk) and φ′(τk). For each major iteration k, there is a cor-
responding set of minor iterates converging to (xτk

, rτk
) that comprise the iterates

of Algorithm 1. Unless the user can provide a good estimate for the solution τσ of
(1.2), the root-finding algorithm chooses τ0 = 0. This leads to an essentially “free”
first major iteration because φ(0) = ‖b‖2 and φ′(0) = ‖ATb‖∞; with (3.1), it holds
immediately that the next Newton iterate τ1 = (σ − ‖b‖2)/‖ATb‖∞ exactly.

A small modification to Algorithm 1 is needed before we can implement the
inexact Newton method of the outer iterations. Instead of using a fixed threshold δ, we
compare the duality-gap test in step 2 to the current relative error in satisfying (1.2).
Thus, the (LSτ ) subproblem is solved to low accuracy during early major iterations
(when τσ in known only roughly), but more accurately as the error in satisfying (1.2)
decreases. If only the solution of (LSτ ) is required, then a single call to Algorithm 1
is made with δ held at some fixed value.

6. Numerical experiments. This section summarizes a series of numerical ex-
periments in which we apply SPGL1 to basis pursuit, basis pursuit denoise (BPσ),
and Lasso (LSτ ) problems. The experiments include a selection of sixteen relevant
problems from the Sparco collection [2] of test problems. The chosen problems are
all real-valued and suited to one-norm regularization. We exclude problems that are
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Table 6.1

Key to symbols used in Tables 6.2–6.4.
m, n number of rows and columns of A
‖b‖2 two-norm of the right-hand-side vector
‖r‖2 two-norm of the computed residual
‖x‖1 one-norm of the computed solution
nnz(x) number of nonzeros in the computed solution; see (6.1)
nMat total number of matrix-vector products with A and AT

f solver failed to return a feasible solution
t solver failed to converge within allotted CPU time

Table 6.2

The Sparco test problems used.
Problem ID m n ‖b‖2 Operator

blocksig 2 1024 1024 7.9e+1 wavelet
blurrycam 701 65536 65536 1.3e+2 blurring, wavelet
blurspike 702 16384 16384 2.2e+0 blurring
cosspike 3 1024 2048 1.0e+2 DCT
dcthdr 12 2000 8192 2.3e+3 restricted DCT
finger 703 11013 125385 5.5e+1 2D curvelet
gcosspike 5 300 2048 8.1e+1 Gaussian ensemble, DCT
jitter 902 200 1000 4.7e−1 DCT
p3poly 6 600 2048 5.4e+3 Gaussian ensemble, wavelet
seismic 901 41472 480617 1.1e+2 2D curvelet
sgnspike 7 600 2560 2.2e+0 Gaussian ensemble
soccer1 601 3200 4096 5.5e+4 binary ensemble, wavelet
spiketrn 903 1024 1024 5.7e+1 1D convolution
srcsep1 401 29166 57344 2.2e+1 windowed DCT
srcsep2 402 29166 86016 2.3e+1 windowed DCT
yinyang 603 1024 4096 2.5e+1 wavelet

complex-valued, that are better suited to total-variation regularization, or that are
pathological examples designed only for debugging codes. Each problem in the col-
lection includes a linear operator A and a right-hand-side vector b.

Table 6.1 defines the symbols used in Tables 6.2–6.4. The quantity nnz(x) counts
the number of nonzero entries in the vector x. Because it can be difficult to judge
whether small entries in a solution vector are significantly different from zero, we
compute the number of nonzeros in a vector x as the minimum number of entries that
carry 99.9% of the one-norm of the vector, i.e.,

(6.1) nnz(x) = {min r such that
∑r

i |x�i�| ≥ 0.999 · ‖x‖1},
where |x�1�| ≥ · · · ≥ |x�n�| are the n elements of x sorted by absolute value.

Table 6.2 summarizes the selected problems: following the problem name and
Sparco ID are the number of rows (m) and columns (n) of A, and the two-norm of
b. The last column is a brief description of A, which is often a compound opera-
tor. The operator’s wavelet, DCT (discrete cosine transform), blurring, curvelet, and
convolution are all available implicitly, and the products Ax and ATy are computed
using fast algorithms. The operators Gaussian ensemble and binary ensemble are ex-
plicit matrices with normally distributed random entries and random zero-one entries,
respectively.

All experiments reported in this section were run on a Mac Pro (with two 3GHz
dual-core Intel Xeon processors and 4Gb of RAM) running Matlab 7.5. Each at-
tempt to solve a problem was limited to one hour of CPU time. The data files and
Matlab scripts used to generate all of the numerical results presented in the following
subsections can be obtained at http://www.cs.ubc.ca/labs/scl/spgl1.
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Table 6.3

Basis pursuit denoise comparisons.
Homotopy SPGL1

Problem ‖r‖2 ‖x‖1 nnz(x) nMat ‖r‖2 ‖x‖1 nnz(x) nMat

blocksig 7.9e+0 3.8e+2 64 230 7.9e+0 3.8e+2 64 21
7.9e−2 4.5e+2 71 246 7.9e−2 4.5e+2 71 22

blurrycam 1.3e+1 1.2e+3 298 1290 1.3e+1 1.2e+3 299 34
t t t t 1.3e−1 9.1e+3 59010 2872

blurspike 2.2e−1 1.5e+2 175 770 2.2e−1 1.5e+2 181 264
t t t t 2.3e−3 3.4e+2 15324 3238

cosspike 1.0e+1 1.3e+2 2 8 1.0e+1 1.3e+2 2 31
1.0e−1 2.2e+2 113 496 1.0e−1 2.2e+2 113 77

dcthdr 2.3e+2 3.7e+4 133 568 2.3e+2 3.7e+4 133 34
2.3e+0 4.4e+4 266 1436 2.3e+0 4.4e+4 266 114

finger t t t t 5.5e+0 4.4e+3 7968 252
t t t t 5.5e−2 5.5e+3 13564 1128

gcosspike 8.1e+0 1.3e+2 4 20 8.1e+0 1.3e+2 4 34
8.1e−2 1.8e+2 94 882 8.1e−2 1.8e+2 112 434

jitter 4.7e−2 1.6e+0 3 12 4.7e−2 1.6e+0 3 20
4.7e−4 1.7e+0 3 12 5.3e−4 1.7e+0 3 30

p3poly 5.4e+2 1.4e+3 155 708 5.4e+2 1.4e+3 155 68
8.5e+1 1.7e+3 494 3364 5.4e+0 1.7e+3 518 478

seismic 1.1e+1 2.8e+3 554 4172 1.1e+1 2.8e+3 646 141
t t t t 1.1e−1 3.9e+3 14806 709

sgnspike 2.2e−1 1.8e+1 20 80 2.2e−1 1.8e+1 20 30
2.2e−3 2.0e+1 20 80 2.2e−3 2.0e+1 20 44

soccer1 5.5e+3 5.5e+1 4 16 5.5e+3 5.5e+1 4 14
5.5e+1 3.1e+2 769 3460 5.5e+1 3.1e+2 1073 1250

spiketrn 5.7e+0 1.0e+1 51 310 5.7e+0 1.0e+1 73 617
5.7e−2 1.3e+1 35 480 5.7e−2 1.3e+1 418 4761

srcsep1 t t t t 2.2e+0 8.0e+2 7838 160
t t t t 2.2e−2 1.0e+3 22428 1125

srcsep2 t t t t 2.3e+0 8.6e+2 8652 246
t t t t 2.3e−2 1.1e+3 25359 947

yinyang 2.5e+0 1.8e+2 153 668 2.5e+0 1.8e+2 153 44
2.5e−2 2.6e+2 881 4332 2.6e−2 2.6e+2 969 396

6.1. Basis pursuit denoise. For each of the sixteen test problems listed in
Table 6.2, we generate two values of σ: σ1 = 10−1‖b‖2 and σ2 = 10−3‖b‖2. We thus
have a total of thirty-two test problems of the form (BPσ) to which we apply SPGL1.

As a benchmark, we also give results for the SolveLasso solver available within
the SparseLab package, which we apply in its “lasso” mode (there is also an optional
“lars” mode). In this mode, SolveLasso applies the homotopy method described in
section 1.4 to solve (QPλ) for all values of λ ≥ 0. The SolveLasso solver begins with
λ = ‖ATb‖∞, which has the corresponding trivial solution xλ = 0 and reduces λ in
stages so that the corresponding sequence of solutions xλ have exactly one additional
nonzero entry each. The norm of the residual rλ ≡ b − Axλ decreases monotoni-
cally. We set the parameters resStop = σ and lamStop = 0, which together require
SolveLasso to iterate until ‖rλ‖2 ≤ σ, and xλ is therefore feasible for (BPσ).

Table 6.3 summarizes the results. The rows in each two-row block correspond to
instances of the same test problem (i.e., the same A and b) with parameters σ1 and σ2.
The SparseLab results are shown under the column head “Homotopy.” SparseLab

did not obtain accurate results for nine problems—blurrycam(2), blurspike(2),
finger(1,2), seismic(2), srcsep1(1,2), and srcsep2(1,2) (the numbers in paren-
theses refer to the particular problem instance)—because it failed to converge within
the allotted time. For these problems, the number of nonzero elements in the current
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Table 6.4

Basis pursuit comparisons.
PDCO Homotopy SPGL1

Problem ‖r‖2 ‖x‖1 ‖r‖2 ‖x‖1 ‖r‖2 ‖x‖1

blocksig 3.3e−04 4.5e+02 1.0e−04 4.5e+02 2.0e−14 4.5e+02
blurrycam t t t t 9.9e−05 1.0e+04
blurspike 9.1e−03 3.4e+02 t t 9.9e−05 3.5e+02
cosspike 1.6e−04 2.2e+02 1.0e−04 2.2e+02 8.6e−05 2.2e+02
dcthdr 1.3e−05 4.4e+04 5.5e−08 4.4e+04 4.9e−05 4.4e+04
finger t t t t 8.2e−05 5.5e+03
gcosspike 1.9e−05 1.8e+02 1.0e−04 1.8e+02 9.9e−05 1.8e+02
jitter 1.3e−05 1.8e+00 1.0e−04 1.7e+00 5.3e−05 1.7e+00
p3poly 4.6e−02 1.7e+03 8.5e+01f 1.8e+03 9.5e−05 1.7e+03
seismic t t t t 8.6e−05 3.9e+03
sgnspike 9.3e−06 2.0e+01 1.0e−04 2.0e+01 8.0e−05 2.0e+01
soccer1 t t t t 1.0e−04 4.2e+02
spiketrn 3.6e−03 1.3e+01 1.0e−04 1.3e+01 9.9e−05 1.3e+01
srcsep1 8.2e−03 1.1e+03 t t 8.6e−05 1.1e+03
srcsep2 5.5e−03 1.1e+03 t t 1.0e−04 1.1e+03
yinyang 1.4e−03 2.6e+02 2.8e−03f 4.7e+02 9.6e−05 2.6e+02

PDCO Homotopy SPGL1
Problem nnz(x) nMat nnz(x) nMat nnz(x) nMat
blocksig 71 703 71 246 71 21
blurrycam t t t t 62756 8237
blurspike 15513 59963 t t 15585 5066
cosspike 119 2471 115 500 115 111
dcthdr 270 79911 270 1436 270 294
finger t t t t 13333 3058
gcosspike 335 14755 59 934 195 2535
jitter 678 43 3 12 3 38
p3poly 559 145053 503f 3882 526 3047
seismic t t t t 22816 3871
sgnspike 1018 131 20 80 20 56
soccer1 t t t t 3805 63233
spiketrn 30 1169 12 480 12 26406
srcsep1 40950 78385 t t 24641 2881
srcsep2 67029 47109 t t 26653 2432
yinyang 1733 34667 981f 9680 1031 1198

solution vector grows very large. SparseLab maintains a dense factorization of the
submatrix of A corresponding to these indices, and the time needed to update this
factorization can grow very large as the nonzero index set grows. In contrast, the
homotopy method can be very efficient when the number of nonzeros in the solution
is small. SPGL1 succeeds in obtaining solutions to every problem instance, and we
note that the memory requirements are constant throughout all iterations.

The quadratically constrained solver l1qc newton, available within the �1-magic

software package [9], is also applicable to the problem (BPσ) when A is only available
as an operator. However, we do not include the results obtained with �1-magic be-
cause it failed on all but ten of the thirty-two test problems—the solver either reported
“stuck on cone iterations” (i.e., it could not compute a sufficiently accurate search
direction within a predetermined number of conjugate-gradient iterations) or failed
to return a solution within the allotted one hour of CPU time. Other quadratically
constrained solvers such as MOSEK and SeDuMi are not applicable because they all
require A as an explicit matrix.

6.2. Basis pursuit. The basis pursuit problem can be considered to be a special
case of (BPσ) in which σ = 0. In this section we give the results of experiments that



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

PROBING THE PARETO FRONTIER FOR BP SOLUTIONS 907

show that SPGL1 can be an effective algorithm for solving (BP). We apply SPGL1 to
sixteen (BP) problems generated from the test set shown in Table 6.2.

As benchmarks, we also give the results of applying the solvers SolveLasso and
SolveBP, which are both available within the SparseLab package. For SolveLasso,
we again use its “lasso” mode and set the parameters resStep = 10−4 and lamStep =
0. We use default parameters for SolveBP. Note that SolveBP applies the interior-
point code PDCO [44] to a linear programming reformulation of (BP) and requires
only matrix-vector products with A and AT.

The top half of Table 6.4 lists the norms of the computed norms and residuals,
and the bottom half lists the sparsity of the computed solutions and the number of
matrix-vector products required. Both PDCO and the homotopy approach failed to
converge within the allotted one hour of CPU time on problems blurrycam, finger,
seismic, and soccer1. Homotopy had the same failure for problems blurryspike,
srcsep1, and srcsep2, and in addition it failed to return feasible solutions to within
the required tolerance for p3poly and yinyang. SPGL1 succeeded in all cases. Again,
for problems that have very sparse solutions, homotopy can be much more efficient
than SPGL1; for example, see problems gcosspike and spiketrn in Table 6.4.

Figure 6.1 shows the results of applying SPGL1 to problem seismic. The cor-
rupted seismic image in Figure 6.1(a) is missing 35% of its traces (i.e., measurements);
the interpolated image in Figure 6.1(b) is computed from the solution of (BP), where
A is a restricted curvelet transform. Figure 6.1(c) shows a graph of the Pareto curve
for this problem and the trajectory that SPGL1 follows to arrive at a (BP) solution.

6.3. The Lasso and quadratic programs. The main goal of this work is to
provide an efficient algorithm for (BPσ). But for interest, we show here how SPGL1

can also be used to efficiently solve a single instance of the Lasso problem (LSτ ). This
corresponds to solving a single instance of (QPλ), where λ is set to the Lagrange
multiplier of the Lasso constraint.

In Figure 6.2 we compare the performance and computed solutions of the solvers
GPSR (version of August, 2007) [27], L1LS [34], PDCO [44], and SPGL1 applied to
the problems dcthdr and srcsep1. For each of these two problems, we generate
fifty values of λ and τ for which the solutions of (QPλ) and (LSτ ) coincide, and thus
generate fifty test cases each of types (QPλ) and (LSτ ). We apply GPSR, L1LS, and
PDCO to each (QPλ) test case and apply SPGL1 to each (LSτ ) test case.

Plots (a) and (c) in Figure 6.2 show the Pareto curves for problems dcthdr and
srcsep1 and the norms of computed solutions versus the norms of the corresponding
residuals. (Note that these curves are plotted on a semilog scale and thus are not
convex.) For each point in the left-hand figure, the points in the right-hand figure give
the number of matrix-vector products required to obtain the corresponding solution.
Points on the Pareto curve are accurate solutions; inaccurate solutions lie above the
curve, indicating that they do not solve the corresponding problem (QPλ) or (LSτ ).

In Figure 6.2(a), almost all points lie on the Pareto curve, and thus most of the
computed solutions are accurate. The corresponding points in Figure 6.2(b) indicate
that SPGL1 and GPSR use only a small fraction of the matrix-vector products required
by PDCO and L1LS, which are second-order methods. We note that solutions for
problem dcthdr can range over four orders of magnitude, and yet the first-order
methods appear not to be affected by this poor scaling.

In Figure 6.2(c), the computed solutions returned by PDCO and GPSR are pro-
gressively worse as λ tends to zero (and the one-norm of the solution increases).
Interestingly, L1LS consistently yields very accurate solutions for all values of λ; how-
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Fig. 6.1. Corrupted and interpolated images for problem seismic. Graph (c) shows the Pareto
curve and the solution path taken by SPGL1.

ever, as might be expected of an interior-point method based on a conjugate-gradient
linear solver, it can require many matrix-vector products.

It may be progressively more difficult to solve (QPλ) as λ → 0 because the reg-
ularizing effect from the one-norm term tends to become negligible, and there is less
control over the norm of the solution. In contrast, the (LSτ ) formulation is guaranteed
to maintain a bounded solution norm for all values of τ .

6.4. Sampling the Pareto curve. In situations where little is known about
the noise level σ, it may be useful to visualize the Pareto curve in order to understand
the trade-offs between the norms of the residual and the solution. In this section
we aim to obtain good approximations to the Pareto curve for cases in which it is
prohibitively expensive to compute it in its entirety.

We test two approaches for interpolation through a small set of samples i =
1, . . . , k. In the first, we generate a uniform distribution of parameters λi = (i/k)‖ATb‖∞
and solve the corresponding problems (QPλi). In the second, we generate a uni-
form distribution of parameters σi = (i/k)‖b‖2 and solve the corresponding problems
(BPσi). We leverage the convexity and differentiability of the Pareto curve to approx-
imate it with piecewise cubic polynomials that match function and derivative values
at each end. When a nonconvex fit is detected, we switch to a quadratic interpolation
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(b) dcthdr: solver performance
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(c) srcsep1: solution quality
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(d) srsecp1: solver performance

Fig. 6.2. The performance of solvers on equivalent (QPλ) and (LSτ ) problems. The top row
is for problem dcthdr, and the bottom row is for problem srcsep1. The plots on the left show the
norms of the computed residuals and solutions for fifty parameter values; the plots on the right give
the corresponding number of required matrix-vector products. Note that the curves in the left-hand
figures are not convex because they are plotted on a semilog scale.

on the relevant interval and match derivative information only at one end. Extrap-
olation is based on only the function and derivative values of the last sample point.
This naturally suggests that using a linear extrapolation which, due to the convexity
of the Pareto curve, is guaranteed never to overestimate the curve or the value of τBP.
Alternatively, we can use quadratic extrapolation through the last point and require
the minimum of the extrapolation to coincide exactly with the horizontal axis. This
approach works well when the Pareto curve is nearly quadratic at the end, but it is
likely to overestimate the curve in other cases. Forming linear combinations of the two
functions provides a balanced extrapolation that ranges from conservative to risky.

Figure 6.3 illustrates an approximation of the Pareto curve that is based on a small
number of samples. Note that the sampling based on σ gives a better distribution of
points on the curve as compared to sampling based on λ; this was observed for all
problems tested and coincides with the observations made by Das and Dennis [19]
and Leyffer [35]. For the curves shown in plots (a) and (b), the σ-based samples
clearly lead to better approximations. For Pareto curves that are nearly linear, such
as those shown in plots (c) and (d), there is little to no difference between the σ-
and λ-based samples. For this test problem, the relatively sharp bend near the end
of the curve makes it difficult to reconstruct the curve accurately unless σ or λ is



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

910 EWOUT VAN DEN BERG AND MICHAEL P. FRIEDLANDER

0 200 400 600 800 1000 1200
0

5

10

15

20

one−norm of solution

tw
o−

no
rm

 o
f r

es
id

ua
l

Pareto curve
σ−based approximation
λ−based approximation
σ−based samples
λ−based samples

(a) srcsep1: linear extrapolation

0 200 400 600 800 1000 1200
0

5

10

15

20

one−norm of solution

tw
o−

no
rm

 o
f r

es
id

ua
l

(b) srcsep1: quadratic extrapolation
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(c) gcosspike: linear extrapolation

0 50 100 150 200
0

10

20

30

40

50

60

70

80

one−norm of solution

tw
o−

no
rm

 o
f r

es
id

ua
l

(d) gcosspike: pure interpolation

Fig. 6.3. Extrapolation of the Pareto curve based on samples obtained by solving (BPσ) or
(QPλ), respectively, at uniformly spaced values of σ and λ. Graphs (a)–(c) show results for linear
and quadratic extrapolation; graph (d) shows the gains from using the τBP point and pure interpo-
lation.

sampled more finely, or unless the BP solution is sampled as illustrated in (d). An
adaptive approach, such as that proposed by Leyffer [35], could lead to more accurate
sampling.

7. Looking ahead. Our original motivation for developing the method proposed
in this paper is its usefulness for inpainting applications in seismic imaging, where the
problem sizes can stretch into millions of variables [32]. We are currently developing
an out-of-core implementation of SPGL1 based on the SlimPy [33] package.

We are also considering an extension of the root-finding approach for solving the
nonlinear regularization problem

minimize
x

f(x) subject to ‖Ax− b‖2 ≤ σ,

where f is a convex nonlinear function. This may open the door to applying the
Pareto root-finding approach to other applications.
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