

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SIAM J. SCI. COMPUT. c© 2008 Society for Industrial and Applied Mathematics
Vol. 30, No. 4, pp. 1706–1729

GLOBAL AND FINITE TERMINATION OF A TWO-PHASE
AUGMENTED LAGRANGIAN FILTER METHOD FOR GENERAL

QUADRATIC PROGRAMS∗

MICHAEL P. FRIEDLANDER† AND SVEN LEYFFER‡

Abstract. We present a two-phase algorithm for solving large-scale quadratic programs (QPs).
In the first phase, gradient-projection iterations approximately minimize a bound-constrained aug-
mented Lagrangian function and provide an estimate of the optimal active set. In the second phase,
an equality-constrained QP defined by the current active set is approximately minimized in order to
generate a second-order search direction. A filter determines the required accuracy of the subproblem
solutions and provides an acceptance criterion for the search directions. The resulting algorithm is
globally and finitely convergent. The algorithm is suitable for large-scale problems with many degrees
of freedom, and provides an alternative to interior-point methods when iterative methods must be
used to solve the underlying linear systems. Numerical experiments on a subset of the CUTEr QP
test problems demonstrate the effectiveness of the approach.

Key words. large-scale optimization, quadratic programming, gradient projection, active-set
methods, filter methods, augmented Lagrangian

AMS subject classifications. 65K05, 90C06, 90C20, 90C26, 90C52

DOI. 10.1137/060669930

1. Introduction. Quadratic programs (QPs) play a fundamental role in opti-
mization. They are useful across a rich class of applications, such as the simulation of
rigid multibody dynamics [2, 50], optimal control [7, 32, 53], and financial-portfolio
optimization [15, 54]. They also arise as a sequence of subproblems within algorithms
for solving more general nonlinear optimization problems. Of particular interest for
us are sequential quadratic programming (SQP) methods, which have proved to be
a reliable approach for general problems (for a recent survey, see Gould and Toint
[47]). Our purpose is to develop a QP algorithm that may be used effectively within
an SQP framework for solving large-scale nonlinear problems.

Compared to interior-point methods for QPs, active-set methods are especially
effective as subproblem solvers within the SQP framework because they can exploit
increasingly good starting points in order to reduce the number of iterations required
for convergence. Inertia-controlling active-set strategies (see, e.g., [33, 43]) are robust
in practice, but their overall efficiency is limited by the number of active-set changes
that can be made at each iteration (typically, a single index changes at each iteration).
The combinatorial nature of such an approach severely limits its effectiveness on truly
large-scale, nonconvex problems that may have many degrees of freedom. However,
the robustness and warm-start capability of active-set approaches motivate us to

∗Received by the editors September 15, 2006; accepted for publication (in revised form) August 27,
2007; published electronically April 23, 2008. Preliminary versions appeared as Preprint ANL/MCS-
P1370-0906 and UBC Department of Computer Science Technical report TR-2007-16.

http://www.siam.org/journals/sisc/30-4/66993.html
†Department of Computer Science, University of British Columbia, Vancouver V6T 1Z4, BC,

Canada (mpf@cs.ubc.ca). The research of this author was supported in part by a Discovery Grant
from the Natural Science and Engineering Research Council of Canada.

‡Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL 60439
(leyffer@mcs.anl.gov). The work of this author was supported by the Mathematical, Information,
and Computational Sciences Division subprogram of the Office of Advanced Scientific Computing
Research, Office of Science, U.S. Department of Energy, under contract W-31-109-ENG-38.

1706

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

TWO-PHASE FILTER METHOD FOR QUADRATIC PROGRAMMING 1707

propose a method that is capable of extremely large changes to the active set at each
iteration and yet continues to be finitely convergent.

Interior-point methods are often preferred over active-set approaches because they
have proved effective for large problems and because they have strong theoretical con-
vergence properties. For convex QPs, interior methods are convergent in polynomial
time [56]. However, the key subproblems within these methods lead to linear sys-
tems (known as Karush–Kuhn–Tucker (KKT), or saddle-point, systems) that are in-
herently ill-conditioned [38, Theorem 4.2]. Implementations based on iterative linear
solvers need to overcome this ill-conditioning by appealing to specialized precondition-
ers; this has led to significant research efforts for developing effective preconditioners
[41, 12, 11, 10, 16].

In contrast, the KKT systems that arise in active-set methods do not suffer from
the artificial ill-conditioning inherent in the barrier term of interior methods. We rec-
ognize that preconditioning KKT systems is still an active and open research area, but
our expectation is that KKT systems arising in active-set methods will more easily
lend themselves to effective preconditioning than those arising in interior-point meth-
ods. We are particularly interested in developing methods that have a strong potential
to be effective within a matrix-free context. Such methods may have applicability,
for example, to the large problems that arise in PDE-constrained optimization with
inequality constraints.

With this goal in mind, we propose a new algorithm for solving QPs that is
motivated by the computational effectiveness of gradient-projection methods (such as
those described by [13, Chapter 2] and [21]) for bound-constrained QPs. A simplistic
extension of gradient projection to general QPs would lead to a subproblem that is
almost as difficult to solve as the original QP: Each projection of the objective gradient
onto the feasible set is itself a QP. Instead, we use the augmented Lagrangian function
to transform the QP into a bound-constrained problem on which we can perform
inexpensive gradient-projection iterations.

Each iteration of our algorithm has two main phases. The first phase applies inex-
pensive gradient-projection iterations in order to minimize the augmented Lagrangian
function subject to the original problem’s bound constraints. This phase encourages
rapid changes to the active set and provides an estimate of the optimal active set.
With that active-set estimate, the second phase then solves an equality-constrained
QP (it is this subproblem that gives rise to the KKT system). A filter method [36]
is used to dynamically control the accuracy of the bound-constrained solves, thereby
eliminating an arbitrary and sometimes troublesome sequence of parameters com-
monly used in augmented Lagrangian techniques.

We prove global and finite convergence of the algorithm and show that it identifies
the optimal active set in a finite number of iterations. Once this active set has been
identified, the algorithm may be interpreted as a Newton iteration on the active set.
We present preliminary numerical results that demonstrate the effectiveness of this
approach.

1.1. The quadratic program. We consider general QPs of the form

(GQP)
minimize

x∈Rn
cTx + 1

2x
THx

subject to Ax = b, x ≥ 0,

where b and c are m- and n-vectors, H is an n×n symmetric (and possibly indefinite)
matrix, and A is an m× n matrix. Typically, n � m. QPs with more general upper
and lower bounds are easily accommodated by our method.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1708 MICHAEL P. FRIEDLANDER AND SVEN LEYFFER

Notation. Unless otherwise indicated, the 2-norm of a vector v is denoted by ‖v‖.
Subscripts on vectors indicate components, so that vi is the ith component of v, and
if I is an index set, then vI is a subvector indexed by I. Unless indicated otherwise,
superscripts indicate iterates, so that vk is the kth iterate. With vector arguments,
the functions min{·, ·} and max{·, ·} are defined componentwise.

We define the augmented Lagrangian corresponding to (GQP) as

Lρ(x, y) = cTx + 1
2x

THx− yT(Ax− b) + 1
2ρ‖Ax− b‖2,

where x and the m-vector y are independent variables and ρ > 0. The usual La-
grangian function is then L0(x, y). When yk and ρk are fixed, we often use the
shorthand notation Lk(x) := Lρk(x, yk). Define the first-order multiplier estimate by

(1.1) ỹρ(x, y) = y − ρ(Ax− b).

The derivatives of Lρ with respect to x may be written as follows:

∇xLρ(x, y) = c + Hx−ATỹρ(x, y),(1.2a)

∇2
xxLρ(x, y) = H + ρATA.(1.2b)

We assume that (GQP) is feasible and has at least one point (x∗, y∗) that satisfies
the first-order KKT conditions.

Definition 1.1 (first-order KKT conditions). A pair (x∗, y∗) is a first-order
KKT point for (GQP) if

min{x∗,∇xL0(x
∗, y∗)} = 0,(1.3a)

Ax∗ = b.(1.3b)

The vector of z∗ := ∇xL0(x
∗, y∗) is the set of Lagrange multipliers that corre-

sponds to the bounds x ≥ 0. Our method remains feasible with respect to the simple
bounds, and we define the active and inactive bound constraints at x by the index
sets

A(x) = {j ∈ 1, . . . , n | xj = 0} and I(x) = {j ∈ 1, . . . , n | xj > 0}.

The symbol x∗ may denote a (primal) solution of (GQP) and may also be used to
denote a limit point of the sequence {xk}. Let A∗ := A(x∗) and I∗ := I(x∗). For
j ∈ Ik, let Hk be the submatrix formed from the jth rows and columns of H. Similarly,
let Ak and A∗ be the submatrices formed from the columns of A indexed by Ik and
I∗, respectively.

A vital component of our algorithm is the concept of a filter [36], which we use
to determine the required subproblem optimality and to test acceptance during the
linesearch procedure. The filter is defined by a collection of tuples together with a
rule that must be enforced among all entries maintained in the filter. We denote the
filter at the kth iteration by Fk; it is fully defined in section 2.1.

1.2. Related work. Our method is related to a number of nonlinear program-
ming approaches. The two-phase aspect of our method is reminiscent of sequential
linear programming/equality quadratic programming methods, which have received
much attention recently. For examples of such approaches, see Fletcher and Sainz
de la Maza [35] and, more recently, Chin and Fletcher [19] and Byrd et al. [17]. A
common approach of these methods is to solve a relatively inexpensive linear pro-
gramming subproblem in order to estimate the optimal active set, and then solve an
equality-constrained QP to obtain a search direction in a subspace. The idea of using

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

TWO-PHASE FILTER METHOD FOR QUADRATIC PROGRAMMING 1709

Algorithm 1: Outline of QP Filter Method (QPFIL).

initialization: k ← 0, x0 given, initialize F0

while not optimal do

Approximately minimize Lk(x), subject to x ≥ 0, to find an x̃k acceptable to Fk.1

Identify an active set Ak and update the penalty parameter ρk+1.2

Update the multiplier estimate: ỹk ← yk − ρk(Ax̃k − b).3

Solve an equality-constrained QP for a second-order step (Δx,Δy).4

Linesearch: find α such that (x̃k + αΔx, ỹk + αΔy) is acceptable to Fk.5

Update iterates: (xk+1, yk+1) ← (x̃k + αΔx, ỹk + αΔy).6

Update filter Fk+1.7

k ← k + 1.8

gradient projection to predict the optimal active set has been used in the context of
bound-constrained QPs (i.e., with no general linear constraints) by Moré and Toraldo
[55] and by Friedlander and Mart́inez [39], among others. Bound-constrained QP
solvers have also been considered by [6, 20, 26, 27, 25].

Our algorithm may be interpreted as a second-order version of the classical aug-
mented Lagrangian algorithm for nonlinear programming, as implemented in the soft-
ware package LANCELOT [22]. We follow [40] and use the term bound-constrained
Lagrangian (BCL) for these methods because they involve only bound constraints on
each subproblem. Typically the original bound constraints are repeated verbatim in
each subproblem and enforced at all iterations. See [13, Chapter 2] and [23] for an
overview of BCL methods. BCL methods for convex QPs with general constraints
have recently been considered by Dostál, Friedlander, and Santos [28, 29, 30] and by
Delbos and Gilbert [24]. Active-set methods for solving large-scale nonconvex QPs
include Galahad’s QPA [48], BQPD [34], and SQOPT [42]; see Gould and Toint [49]
for a recent survey.

2. Augmented Lagrangian filter algorithm for QPs. Our algorithm differs
from classical BCL methods in three important ways: First, the main role of the
augmented Lagrangian minimization in our algorithm is to provide an estimate of
the optimal active set, which is used to define an equality-constrained QP that is
subsequently solved for a second-order step. The second-order step improves both the
reliability and the convergence rate of BCL methods. Second, we use a filter to control
various aspects of the algorithm related to global convergence. The filter allows us to
dispense with two forcing sequences commonly used in BCL methods (the subproblem
tolerance and the accept/reject threshold for updating the Lagrange multipliers). It
also provides a nonmonotone globalization strategy that is more likely to accept steps
computed by inexact solutions. Third, we exploit the special structure of the QP
problem to obtain estimates of the required penalty parameter. These estimates are
more adaptive than traditional penalty update schemes, which may overestimate the
penalty parameter. Algorithm 1 outlines the main steps of our approach, which we
call QPFIL.

At this point, the careful reader may ask why QPFIL uses both a filter and a
penalty function—after all, filter methods are meant to replace penalty functions
(such as the augmented Lagrangian). The reason is simple: We use the augmented
Lagrangian to transform the general QP into a bound-constrained QP so that we
can use efficient gradient-projection techniques to derive an active-set estimate. We
emphasize that global convergence is enforced by the filter and not through the aug-
mented Lagrangian.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1710 MICHAEL P. FRIEDLANDER AND SVEN LEYFFER

A crucial feature of QPFIL is its suitability for high-performance computing.
The two computational kernels of the algorithm are the bound-constrained minimiza-
tion of the augmented Lagrangian function (step 1) and the solution of an equality-
constrained QP (step 4). Scalable tools that perform well on high-performance archi-
tectures exist for both steps. For example, TAO [9] and PETSc [4, 3] are suitable,
respectively, for the bound-constrained subproblem and the equality-constrained QP.
In the remainder of this section we give details of each step of the QPFIL algorithm.

2.1. An augmented Lagrangian filter. The iterations of a BCL method for
nonconvex optimization typically are controlled by two fundamental forcing sequences
that ensure convergence to a solution. A decreasing sequence, ωk → 0, determines
the required optimality of each subproblem solution and controls the convergence of
the dual infeasibility (see (1.3a)). The second decreasing sequence, ηk → 0, tracks
the primal infeasibility (see (1.3b)) and determines whether the penalty parameter ρk

should be increased or left unchanged.
In the definition of our filter we use quantities that are analogous to ωk and ηk:

ω(x, y) := ‖min{x,∇xL0(x, y)}‖,
η(x) := ‖Ax− b‖,

which are based on the optimality and feasibility of a current pair (x, y). As we prove
in section 3, such a choice allows us to dispense with the sequences normally found
in BCL methods and instead defines these sequences implicitly. We observe that the
filter will generally be less conservative than BCL methods in the acceptance of a
current subproblem solution or multiplier update.

Note that w(x, y) is based on the gradient of the Lagrangian function, not on
the augmented Lagrangian. Thus, our decision on when to exit the minimization of
the current subproblem is based on the optimality of the current subproblem iterate
for the original problem, rather than on the optimality of the current subproblem,
as is usually the case in BCL methods. This approach ensures that the subproblem
iterations (defined below) always generate solutions that are acceptable to the filter.
Another advantage of this definition is that the filter is, in effect, independent of the
penalty parameter ρk and hence does not need to be updated if ρk is increased.

In the remainder of the paper we use the abbreviations

ωk := ω(xk, yk) and ηk := η(xk).

Definition 2.1 (augmented Lagrangian filter). The following rules define an
augmented Lagrangian filter:

1. A pair (ω′, η′) dominates another pair (ω, η) if ω′ ≤ ω and η′ ≤ η, and at
least one inequality holds strictly.

2. A filter F is a list of pairs (ω, η) such that no pair dominates another.
3. A filter F contains an entry (called the upper bound)

(2.1) (ω̄, η̄) = (U, 0),

where U is a positive constant.
4. A pair (x′, y′) is acceptable to the filter F if and only if

(2.2) ω′ ≤ βω� or η′ ≤ βη� − γω′

for each (ω�, η�) ∈ F , where β, γ ∈ (0, 1) are constants.
We use the shorthand notation � ∈ F to imply that (ω�, η�) ∈ F .

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

TWO-PHASE FILTER METHOD FOR QUADRATIC PROGRAMMING 1711

U ω(x, y)

upper bound

η(x)

Fig. 2.1. A typical filter. All pairs (ω, η) that are below and to the left of the envelope (dashed
line) are acceptable to the filter (cf. (2.2)).

A typical filter is illustrated in Figure 2.1. Typical values for the envelope con-
stants are β = 0.999, γ = 0.001. A suitable choice for the upper bound U in (2.1)
is U = δmax{1, ω0}, with δ = 1.25. Filter methods are typically insensitive to the
choice of these parameters, and most importantly, these parameters are not problem-
dependent, unlike penalty parameters which must be chosen with more care. We note
that (2.2) creates a sloping envelope around the filter. Together with (2.1), this implies
that a sequence {(ωk, ηk)} of pairs each acceptable to Fk must satisfy ωk → ω∗ = 0.
If the second condition in (2.2) were weakened to ηk+1 ≤ βη�, then the sequence of
pairs acceptable to Fk could accumulate to points where ηk → η∗ = 0, but which are
nonstationary because ωk → ω∗ > 0.

A consequence of η(x) ≥ 0 and the sloping envelope is that the upper bound
(U, 0) is theoretically unnecessary—the sloping envelope implies an upper bound U =
ηmin/γ, where ηmin is the least η� for all � ∈ F . In practice, however, we impose the
upper bound U in order to avoid generating entries with excessively large values ωk.

We remark that the axes in the augmented Lagrangian filter appear to be the
reverse of the usual definition: Feasibility is on the vertical axis instead of the hor-
izontal axis, as it typically appears in the literature. This reflects the dual view of
the augmented Lagrangian: It can be shown that Ax− b is a steepest descent direc-
tion at x for the augmented Lagrangian [14, section 2.2], and that ω(x, y) is the dual
feasibility error. This definition of the filter is similar to the one used in [45]. The
gradient of the Lagrangian has also been used in the filter by M. Ulbrich, S. Ulbrich,
and Vicente [59], together with a centrality measure, in the context of interior-point
methods.

2.2. Active-set prediction and second-order steps. Let x̃k be an approxi-
mate minimizer of the augmented Lagrangian Lk at iteration k. We use this solution to
derive an active-set estimate Ak := A(x̃k), which in turn is used to define an equality-
constrained QP (EQP) in the free variables, which are indexed by Ik := I(x̃k). The
variables Ak are held fixed at the active bounds.

A second-order correction to x̃k in the space of free variables may be found by
solving the following EQP for Δx = (ΔxA, ΔxI):

(EQPk)
minimize

Δx
cT(x̃k + Δx) + 1

2 (x̃k + Δx)TH(x̃k + Δx)

subject to A(x̃k + Δx) = b, ΔxAk = 0.

Equivalently, a second-order search direction from the current point (x̃k, ỹk) is gener-

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1712 MICHAEL P. FRIEDLANDER AND SVEN LEYFFER

ρρmin

y∗

y

D

(a) Nonlinear constraints

ρρmin

y

D

(b) Linear constraints

Fig. 2.2. The sets D illustrate the required penalty parameter for the BCL method when the
constraints are either nonlinear or linear.

ated from the (first-order) optimality conditions of (EQPk):

(2.3)

(
−Hk AT

k

Ak

)(
ΔxI

Δy

)
=

(
[c + Hx̃k]Ik −AT

k ỹ
k

b−Ax̃k

)
.

A projected search in the full space is then based on the vector (Δx,Δy).

Note that step 1 of Algorithm 1 requires that the approximate augmented La-
grangian minimizer x̃k be acceptable to the filter. Moreover, as we demonstrate in
section 3.2, the first-order multiplier estimate ỹk must also be acceptable to the filter.
These two properties ensure that even if a linesearch along (Δx,Δy) fails to obtain a
positive steplength α such that (x̃k + αΔx, ỹk + αΔy) is acceptable to the filter, the
algorithm can still make progress with the first-order step alone. In this case, α = 0,
and the algorithm relies on the progress of the standard BCL iterations.

2.3. Estimating the penalty parameter. It is well known that BCL meth-
ods, under standard assumptions, converge for all large enough values of the penalty
parameter ρk. The threshold value ρmin is never computed explicitly; instead, BCL
methods attempt to discover the threshold value by increasing ρk in stages. Typically
the norm of the constraint violation is used to guide the decisions regarding when to
increase the penalty parameter: A linear decrease (as anticipated by the BCL local
convergence theory) signals that the penalty parameter may be held constant; less
than linear convergence—or a large increase in constraint violations—indicates that
a larger ρk is needed.

When the constraints are nonlinear, the penalty-parameter threshold and the
initial Lagrange multiplier estimates are closely coupled. Poor estimates yk of y∗

imply that a larger ρk is needed to induce convergence. This coupling is fully de-
scribed by Bertsekas [13, Proposition 2.4]. When the constraints are linear, however,
the Lagrange multipliers do not appear in (1.2b), and we see that yk and ρk are
essentially decoupled—the curvature of Lk can be influenced by changing ρk alone.
This observation is illustrated in Figure 2.2, in which the left figure corresponds to
nonlinear constraints and the right figure to linear constraints. The regions in the
penalty/multiplier plane for which BCL methods converge are indicated by the shaded
regions D. The result below provides an explicit threshold value ρmin needed to ensure
that the Hessian of the augmented Lagrangian is positive definite (a positive multiple
of ρmin is enough to induce convergence). Let λmin(·) and σmin(·), respectively, denote
the leftmost eigenvalue and the smallest singular value of a matrix.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

TWO-PHASE FILTER METHOD FOR QUADRATIC PROGRAMMING 1713

Lemma 2.2. Suppose that pTHp > 0 for all nonzero p such that Ap = 0 and A
has full row rank. Then H + ρATA is positive definite if and only if

(2.4) ρ > ρmin := λmin

(
A
(
H + γATA)−1AT

)−1 − γI

for any γ ≥ 0 such that H + γATA is nonsingular.
Proof. The required result follows from Bertsekas [13, Proposition 2.5], where the

Jacobian and Hessian are taken as constant.
The bound provided by Lemma 2.2 is sharp: It is both necessary and sufficient.

However, the formula on the right-hand side of (2.4) is unsuitable for large-scale
computation. The following lemma develops an upper bound for the required ρ that
is more easily computed.

Lemma 2.3. Under the conditions of Lemma 2.2,

(2.5) ρmin <
max{0,−λmin(H)}

σmin(A)2
.

Proof. Consider unit-norm vectors p such that Ap 	= 0. Otherwise, pT(H +
ρATA)p = pTHp > 0 for all p such that Ap = 0. Let U = [u1 · · ·um] be the orthogonal
left-singular vectors of A, and let Σ = diag(σi) be the singular values, with σ1 ≥
σ2 ≥ · · · ≥ σm ≡ σmin > 0 (we assume that A has full rank). Then p can be
expressed as p =

∑m
i=1 αiui with

∑m
i=1 α

2
i = 1, for some scalars αi not all zero. Thus

ATA = UΣTΣUT, and

(2.6) pTATAp =

(
m∑
i=1

αiu
T
i

)
(UΣTΣUT)

(
m∑
i=1

αiui

)
=

m∑
i=1

α2
iσ

2
i .

Similarly, let Q = [q1 · · · qn] be the orthogonal eigenvectors of H, and let Λ = diag(λi)
be the eigenvalues, with λ1 ≥ λ2 ≥ · · · ≥ λn ≡ λmin. Then there exist scalars βi not
all zero such that p =

∑n
i=1 βiqi with

∑n
i=1 β

2
i = 1, and

(2.7) pTHp =

(
n∑

i=1

βiq
T
i

)
H

(
n∑

i=1

βiqi

)
=

n∑
i=1

β2
i λi.

Therefore, (2.6) and (2.7) imply that

pT(H + ρATA)p =

n∑
i=1

β2
i λi + ρ

m∑
i=1

α2
iσ

2
i

> min(0, λmin)

n∑
i=1

β2
i + ρσ2

min

m∑
i=1

α2
i

= min(0, λmin) + ρσ2
min,

and so H + ρATA is positive definite if min(0, λmin) + ρσ2
min > 0 or, equivalently, if

(2.8) ρ >
max(0,−λmin)

σ2
min

.

Because the bound ρmin in Lemma 2.2 is sharp, (2.8) implies that (2.5) holds.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1714 MICHAEL P. FRIEDLANDER AND SVEN LEYFFER

For a given active set Ak, Lemma 2.3 implies that ρk larger than

(2.9) ρmin(Ak) :=
max{0,−λmin(Hk)}

σmin(Ak)2

is sufficient at iteration k to ensure that Lk is convex in that subspace. Note that this
lower bound tends to infinity as the smallest singular value of Ak tends to zero. This
property is consistent with (2.4), where we see that if Ak is rank deficient, then the
required bound in Lemma 2.2 does not exist. In section 3 we show that for a given
optimal active set, a multiple of this bound is required to induce convergence to an
optimal solution in our method.

We are not entirely satisfied with (2.9) because it requires an estimate (or at
least a lower bound) of the smallest singular value of the current Ak, which can be
relatively expensive to compute. One possibility for estimating this value is to use a
Lanczos bidiagonalization procedure, as implemented in PROPACK [51].

Ideally, we would compute the penalty value according to (2.4) or (2.5). However,
for the size of problems of interest, this approach would be prohibitive in terms of
computational effort. In our numerical experiments we have instead used the quantity

ρmin(Ak) = max

⎧⎪⎨⎪⎩1,
‖Hk‖1

max
{

1√
|Ik|

‖Ak‖∞ , 1√
m
‖Ak‖1

}
⎫⎪⎬⎪⎭ ,

where |Ik| is the number of free variables and m is the number of general equality
constraints, as a simple approximation to (2.9). We note that the penalty parameter
appears only within the subproblem minimization (step 1 of Algorithm 1), and not in
the definition of the filter. If only a rough approximation to (2.9) is available, then
a multiple of the approximation might be used so as to increase the likelihood that
a large enough quantity is obtained. In the remainder of the paper, we assume that
ρmin(Ak) is given by (2.9).

2.4. Minimizing the augmented Lagrangian subproblem. Like classical
BCL methods, our method generates a sequence of approximate minimizers of the
bound-constrained subproblem

(2.10) minimize
x

Lk(x) subject to x ≥ 0.

Instead of optimizing the subproblem to a prescribed tolerance, however, each itera-
tion of the inner algorithm approximately optimizes it in stages (i.e., a few iterations
of some minimization procedure are applied), so that at each iteration j of the inner
algorithm, the current iterate xj satisfies the approximate optimality conditions

(2.11) ‖min{x,∇xLρj (x, ȳ)}‖∞ ≤ εj ,

where ȳ is the latest multiplier estimate yk. The only requirement for the sequence of
approximate minimizations is that they eventually solve the subproblem in the limit,
and thus that εj → 0. The iterate xj and the implied first-order multiplier (1.1) are
tested for acceptability against the current filter. The inner-minimization algorithm
is described in Algorithm 2.

The penalty parameter ρj is checked at each inner iteration to ensure that it
satisfies the bound implied by Lemma 2.2 (see steps 5 and 7). If the current submatrix

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

TWO-PHASE FILTER METHOD FOR QUADRATIC PROGRAMMING 1715

Algorithm 2: Bound-Constrained Lagrangian Filter (BCLFIL).

Inputs: x0, ȳ, ρ1, F Outputs: x̃, ỹ, ρ̃

Set α ∈ [0, 1), j ← 0
repeat

j ← j + 11

Choose εj > 0 such that limj→∞ εj = 02

Find a point xj that satisfies (2.11) [approximately solve (2.10)]3

Aj ← A(xj) [update active set]4

if σmin(Aj) = 0 then5

Find a point xj that satisfies (2.13) [feasibility restoration]6

else if ρj < 2ρmin(Aj) then7

ρj+1 ← 2ρmin(Aj) [increase penalty parameter]8

else9

yj ← ȳ − ρj(Axj − b) [provisional multiplier update]10

(ωj , ηj) ←
(
ω(xj , yj), η(xj)

)
[update primal-dual infeasibility]11

if (ωj , ηj) is acceptable to F then12

return x̃ ← xj , ỹ ← yj , ρ̃ ← ρj

ρj+1 ← ρj [keep penalty parameter]13

until converged

Aj is rank deficient (i.e., σmin(Aj) = 0), then there does not exist a finite ρ that makes
the reduced Hessian positive definite. In that case, we are not assured that reducing
the augmented Lagrangian brings the next iterate any closer to optimality of the
original subproblem. Instead, we make progress towards feasibility of the iterates by
approximately solving the minimum infeasibility problem

(2.12) minimize
x

1
2‖Ax− b‖2 subject to x ≥ 0,

and we thus require that xj satisfy the approximate necessary and sufficient condition

(2.13) ‖min{x,AT(Ax− b)}‖∞ ≤ εj .

The point xj ≥ 0 solves the minimum infeasibility problem if AT
j (Ajx

j
Ij − b) = 0,

which can be satisfied at infeasible points if Aj is rank deficient.
An alternative to step 6 of Algorithm 2 is to increase ρj by a fixed multiple. A

similar strategy is used in the method suggested in [30], where ρj is increased if the
current iterate is not “extended regular.” With this update, it can be shown that if
ρj → ∞, then every limit point x∗ of xj is either a KKT point of (GQP) or a solution
of (2.12) (see Theorem A.1). The analysis given in [30] shows that x∗ continues to
be a solution of the original QP, but this conclusion depends crucially on the strict
convexity of (GQP)—an assumption that we do not make here.

In classical BCL methods, the gradient of the augmented Lagrangian at the latest
iterate xj and the latest multiplier estimate ȳ is used to test termination of the inner
iterations. The test in step 12 of Algorithm 2 is based on the norm of the (usual)
Lagrangian function at xj , but it differs from BCL in using the first-order multiplier
estimate yj = ȳ−ρj(Axj − b). We note that the identity ∇xLρj (xj , ȳ) = ∇xL0(x

j , yj)
implies that the quantities used to test termination in Algorithm 2 and in classical
BCL methods are in fact identical. Algorithm 2 additionally uses the current primal
infeasibility ηj as a criterion. The inner minimization terminates when the current

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1716 MICHAEL P. FRIEDLANDER AND SVEN LEYFFER

Algorithm 3: QP Filter Method (QPFIL).

Inputs: x0, y0 Outputs: x∗, y∗

Set penalty parameter ρ0 > 0 and positive filter envelope parameters β, γ < 1.
Set filter upper bound U ← γ max

{
1, ‖Ax0 − b‖

}
, and add (U, 0) to filter F0.

Set minimum steplength αmin > 0.
Compute infeasibilities ω0 ← ω(x0, y0) and η0 ← η(x0).
k ← 0
if ω0 > 0 and η0 > 0 then add (ω0, η0) to F0.1

while not optimal do
k ← k + 12

(x̃k, ỹk, ρk) ← BCLFIL(xk−1, yk−1, ρk−1,Fk−1)3

Ak ← A(x̃k)4

Find (Δxk, Δyk) that solves (2.3)5

Find αk ∈ [αmin, 1] such that (x̃k + αΔxk, ỹk + αΔyk) is acceptable to Fk
6

if linesearch failed then7

(xk, yk) ← (x̃k, ỹk) [keep first-order iterates]8

else

(xk, yk) ← (x̃k + αkΔxk, ỹk + αΔyk) [second-order update]9

(ωk, ηk) ←
(
ω(xk, yk), η(xk)

)
[compute infeasibilities]10

if ωk > 0 then11

Fk ← Fk−1 ∪ {(ωk, ηk)}12

Remove redundant entries from Fk
13

if ηk = 0 then update upper bound U14

return x∗ ← xk, y∗ ← yk

iterates are acceptable to the filter and the penalty parameter is large enough for the
current active set.

To establish that our algorithm finitely identifies the optimal active set (see sec-
tion 4), we assume that each approximate minimization reduces the objective by
at least as much as does a Cauchy point of a projected-gradient method (see, e.g.,
[57, section 16.6]). This is a mild assumption that is satisfied by most globally con-
vergent bound-constrained solvers. In practice, we perform one or two steps of a
bound-constrained optimization algorithm and then test the acceptability of (ωj , ηj)
to the filter. This requirement is often weaker than traditional augmented Lagrangian
methods, which at each outer iteration must reduce the projected gradient beyond a
specified tolerance that goes to zero; in contrast, here the inner-iteration tolerances
are independent across outer iterations.

2.5. Detailed algorithm statement. The proposed algorithm is structured
around outer and inner iterations. The outer iterations handle management of the
filter, the solution of (EQPk), and the subsequent linesearch. The inner iterations
minimize the augmented Lagrangian function, update the multipliers and the penalty
parameter, and identify a candidate set of active constraints used to define (EQPk)
for the outer iteration. Thus, each inner iteration performs steps 1–3 of Algorithm 1.

In step 6 of Algorithm 3 we perform a filter linesearch by trying a sequence of
steps α = γi, i = 0, 1, 2, . . . , for some constant γ ∈ (0, 1) until an acceptable point
is found or until α < αmin, where αmin > 0 is a constant parameter. The parameter
αmin is needed because the first-order point (x̃k, ỹk) could lie in a corner of the filter

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

TWO-PHASE FILTER METHOD FOR QUADRATIC PROGRAMMING 1717

with the second-order step implying a step into the filter. In that case there exists
no α > 0 that yields an acceptable step. Other ways of deciding when to terminate
the linesearch are possible, based, for example, on requiring that the new filter area
induced by the linesearch step be larger than the new filter area induced by the
first-order step.

The filter update in step 12 of Algorithm 3 removes redundant entries that are
dominated by a new entry. The upper bound (U, 0) also allows us to manage the
number of filter entries that we wish to store. If this number is exceeded, then we
can reset the upper bound as U = max�{ω� | ω� ∈ Fk} and subsequently delete
dominated entries from Fk, thus reducing the number of filter entries.

3. Global convergence. Global convergence of Algorithm 3 (QPFIL) is based
on progress made by the inner iterations of step 3. The second-order updates in
steps 5–9 serve only to accelerate convergence. Therefore, we can establish global
convergence of QPFIL by analyzing a first-order version of the algorithm that does not
use the second-order updates. The following assumption holds implicitly throughout.

Assumption 3.1. The sequences {xj} and {xk} generated by Algorithms 2 and 3
lie in a compact set. Hence, each sequence has at least one limit point.

3.1. Preliminaries. When A∗ has full rank, define the least-squares multiplier
estimate ŷ(x) as the unique solution of the least-squares problem

(3.1) ŷ(x) := arg min
y

‖[c + Hx]I∗ −AT
∗y‖.

Because the least-squares multiplier estimate is unique, there exists a positive constant
α1 such that

(3.2) ‖ŷ(x) − ŷ(x∗)‖ ≤ α1‖x− x∗‖.

Note that the definition of ŷ requires a priori knowledge of the bounds that are active
at the solution; however, ŷ is used only for analysis and is never computed.

Lemma 3.2. Suppose that A∗ has full rank and y is an approximate least-squares
solution of (3.1) for some x. Then there exists a positive constant α2 such that

(3.3) ‖ŷ(x) − y‖ ≤ α2‖[c + Hx]I∗ −AT
∗y‖.

Proof. Let r̂(x) and r be the least-squares residuals associated with ŷ(x) and y,
respectively, so that AT

∗ŷ(x) + r̂(x) = [c + Hx]I∗ and AT
∗y + r = [c + Hx]I∗ . Then

AT
∗(ŷ(x) − y) + r̂(x) − r = 0,

and because A∗r̂(x) = 0, it follows that A∗A
T
∗(ŷ(x) − y) + A∗r = 0. Because A∗

has full rank, it is straightforward to show that there exists a positive constant α2

such that ‖ŷ(x) − y‖ ≤ α2‖r‖, and the required result follows immediately from the
definition of r.

The next result shows how a sequence of multiplier estimates is related to the
least-squares multiplier estimates.

Lemma 3.3. Let {ωk} and {ρk} be sequences of positive scalars where ωk → 0.
Let {xk} and {yk} be any sequences of n-vectors and m-vectors, respectively, that
together satisfy

(3.4) ‖min{xk,∇xL0(x
k, yk)}‖∞ ≤ ωk.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1718 MICHAEL P. FRIEDLANDER AND SVEN LEYFFER

Let x∗ be any limit point of {xk} with an associated sequence of indices K. Suppose
that A∗ has full rank and let y∗ := ŷ(x∗). Then there are positive constants α1 and
α2 such that

(3.5) ‖yk − y∗‖ ≤ βk := α1‖xk − x∗‖ + α2ω
k

for all k ∈ K large enough.
Proof. Set zk := ∇xL0(x

k, yk). For k ∈ K large enough, xk is sufficiently close to
x∗ that xk

i > 0 if x∗
i > 0. Then for such k, (3.4) and ωk → 0 imply that min{xk

i , z
k
i } =

z∗i , so that

(3.6) ‖zkI∗‖ ≤ ‖min{xk, zk}‖ ≤
√
n ωk.

We now derive (3.5). From the triangle inequality,

(3.7) ‖yk − y∗‖ ≤ ‖ŷ(xk) − yk‖ + ‖ŷ(xk) − y∗‖.
Also, (3.3) (with x = xk and y = yk) and (3.6) together imply that

‖ŷ(xk) − yk‖ ≤ α2ω
k.

Substituting this and (3.2) (with x = xk) into (3.7), we obtain (3.5).

3.2. Convergence of inner iterations. We expect that the usual behavior of
Algorithm 2 will be to terminate finitely. However, as the next theorem proves, if the
algorithm does not terminate, then the inner iterations converge to a KKT point of
(GQP) or they converge to a solution of the minimum infeasibility problem (2.12).
For this section only, let

yj := ȳ − ρj(Axj − b) and zj := ∇xL0(x
j , yj).

Theorem 3.4 (convergence of inner iterations). Let {xj} and ρk be sequences
generated by Algorithm 2. Then the algorithm terminates finitely, or every limit point
x∗ of {xj} is a KKT point of (GQP) or solves (2.12).

Proof. We first consider the case where step 5 tests true finitely many times and
then treat separately the two other cases where step 5 tests true infinitely many times
(and hence ρj → ∞) and A∗ is either full rank or not.

Case 1 (step 5 tests true finitely many times). In this case, the alternative steps 7
or 9 must evaluate true for all j large enough. But there are only finitely many
different active sets, and so step 5 can evaluate true only finitely many times. Hence,
{ρj} remains bounded and step 12 is tested for all j large enough. Consider only such
j. Because each xj satisfies (2.11), steps 10 and 11 ensure that ωj → 0. Moreover,
for every � ∈ F , ω� > 0 (see steps 1 and 11 of Algorithm 3), and so ωj must be
acceptable to the filter (see (2.2)) after finitely many iterations. Hence, Algorithm 2
exits finitely.

Case 2 (step 5 tests true infinitely many times). In this case, each xj in some
subsequence J satisfies (2.13). Because εj → 0, the limit point x∗ associated with
the sequence J satisfies (2.13), and it must therefore be a solution of (2.12).

In Theorem A.1 (see the appendix) we give an analogous convergence proof for
a slightly modified version of Algorithm 2 that offers an alternative to steps 5–6. See
[1] for a related convergence analysis that relies on a set of different assumptions.

The hypotheses of Theorem 3.4 can fail to hold if there are no convergent sub-
sequences (i.e., Assumption 3.1 fails to hold) or if Algorithm 2 breaks down because
no iterate xj can be found to satisfy the stopping condition (2.11). For example,
the subproblem is unbounded below, which can happen if there exists a nonzero and
nonnegative vector d such that dTHd < 0 and Ad = 0.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

TWO-PHASE FILTER METHOD FOR QUADRATIC PROGRAMMING 1719

3.3. Convergence of first-order algorithm. For this section only, we con-
sider a simplified algorithm that skips the second-order update (steps 5–10 of Algo-
rithm 3). In this case, (xk, yk) ≡ (x̃k, ỹk), and we refer to the sequence {(xk, yk)}
of augmented Lagrangian minimizers and multiplier estimates as Cauchy points; our
intent is to emphasize that these solutions can be interpreted as steepest-ascent steps
of the augmented Lagrangian function and thus can yield only linear convergence.

We prove that the first-order sequence {(xk, yk)} generated in step 3 converges to
a stationary point of (GQP). This result is of interest also within the context of more
established BCL methods because it illustrates how a filter can be used in place of
the two arbitrary forcing sequences (ωk and ηk) commonly associated with augmented
Lagrangian methods.

We show that the sequence of penalty parameters ρk is bounded, and that every
limit point of the primal-dual pair (xk, yk) satisfies (1.3a) and is thus dual feasible.

Lemma 3.5. The penalty parameter is updated finitely often.
Proof. This follows from the fact that there exist only a finite number of different

active sets that could result in a penalty-parameter update.
Lemma 3.6. Any limit point (x∗, y∗) of {(xk, yk)} satisfies ωk ≡ ω(xk, yk) → 0.
Proof. We consider two mutually exclusive cases, depending on whether a finite

or an infinite number of entries are added to the filter. If a finite number of entries
are added to the filter (i.e., if step 11 of Algorithm 3 tests true only finitely many
times), then it follows that ωk = 0 for all k sufficiently large. The required result then
follows immediately. If, on the other hand, an infinite number of entries (ωk, ηk) are
added to the filter, then the required result follows from [19, Lemma 1]—where we
take f(x) = η(x) and h(x) = ω(x, y)—because η(x) is trivially bounded below.

The following theorem is our main convergence result on the sequence of Cauchy
points.

Theorem 3.7 (global convergence with single limit point). Consider a version of
Algorithm 3 that skips steps 5–10. Assume that the algorithm generates a sequence of
Cauchy points {(xk, yk)}, and that x∗ is the single limit point of {xk}. Then yk → y∗,
where y∗ := ŷ(x∗), and (x∗, y∗) is a KKT point of (GQP).

Proof. Step 3 of Algorithm 3, together with Lemma 3.6, ensures that each xk, yk,
ρk, and ωk, for k ∈ K, satisfy the conditions of Lemma 3.3. Then (3.4)–(3.5) hold,
and yk → y∗, as required. Because ωk → 0, (3.4) implies that

0 ≤ lim
k→∞

‖min{xk,∇xL0(x
k, yk)}‖∞ ≤ lim

k→∞
ωk = 0,

and so min{x∗,∇xL0(x
∗, y∗)} = 0. Therefore, (x∗, y∗) satisfies (1.3a).

The “single-limit-point” assumption on xk and the definition of yk = yk−1 −
ρk(Axk− b) (see step 10 of Algorithm 2) imply that ‖yk−yk−1‖ → 0. By Lemma 3.5,
ρk is bounded for all k, so

(3.8) ‖yk − yk−1‖ = ρk‖Axk − b‖ → 0,

and x∗ satisfies (1.3b). Hence, (x∗, y∗) is a KKT pair of (GQP).
Recall that (GQP) is nonconvex, and hence the subproblem may have many

stationary points. The single-limit-point assumption of Theorem 3.7 excludes the
situation in which consecutive minimizations of the augmented Lagrangian subprob-
lem converge to different stationary points. Otherwise, the corresponding Lagrange
multiplier updates would not have a limit point and (3.8) would not hold. We could
relax the single-limit-point assumption if we instead assume that the subproblem

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1720 MICHAEL P. FRIEDLANDER AND SVEN LEYFFER

solver finds a stationary point closest in norm to xk. Such a requirement cannot be
verified in practice, but depending on the subproblem solver, it is, arguably, often sat-
isfied. A similar assumption is made implicitly in a classical proof of convergence of
the augmented Lagrangian method: Bertsekas [13, Proposition 2.4] assumes that all
minimizers of the augmented Lagrangian fall within a small neighborhood. The single-
limit-point assumption made in Theorem 3.7 considerably simplifies the analysis and
leads to similar conclusions. In the case where (GQP) is convex, every subproblem
has a unique minimizer and neither assumption is required.

If we instead assume that a second-order sufficiency condition exists at a limit
point x∗, we can drop the single-limit-point assumption. In effect, the following
theorem shows that second-order points are attractors, and the algorithm generates
increasingly better Lagrange multiplier estimates.

Theorem 3.8 (global convergence with second-order sufficiency). Consider a
version of Algorithm 3 that skips steps 5–10. Assume that the algorithm generates a
sequence of Cauchy points {(xk, yk)} and that a limit point x∗ satisfies the second-
order sufficiency condition

(3.9) pTHp > 0 for all p 	= 0 satisfying Ap = 0 with pj = 0 for all j ∈ A∗.

Then there exist positive constants δ1, δ2, δ3, and a positive constant γ < 1 such that

‖yk − y∗‖ ≤ δ1ω
k + γ‖yk−1 − y∗‖,(3.10a)

‖xk − x∗‖ ≤ δ2ω
k + δ3‖yk−1 − y∗‖,(3.10b)

ρk‖Axk − b‖ ≤ δ1ω
k + (γ + 1)‖yk−1 − y∗‖,(3.10c)

where (x∗, y∗) is a KKT point of (GQP).
Proof. Step 3 of Algorithm 3 together with Lemma 3.6 ensures that each xk, yk,

ρk, and ωk, for k ∈ K, satisfy the conditions of Lemma 3.3. Therefore, (3.6) holds,
and by a symmetric argument, xk

A∗ satisfies a similar inequality, and so

(3.11) ‖zkI∗‖ ≤
√
n ωk and ‖xk

A∗‖ ≤
√
n ωk.

Note that each xk, yk, and zk satisfies

c + Hxk −ATyk = zk and yk = yk−1 − ρk(Axk − b).

Rearranging terms, we have

(3.12)

(
−Hk AT

k

Ak
1
ρk I

)(
xk

I∗

yk

)
=

(
[c− zk]I∗

1
ρk y

k−1 + b

)
.

Now consider the equality QP (cf. (EQPk))

minimize
x

cTI∗x + 1
2x

THkx subject to Akx = b,

which has optimality conditions

(3.13)

(
−Hk AT

k

Ak

)(
x∗

I∗

y∗

)
=

(
cI∗

b

)
.

Subtracting (3.12) from (3.13), we get

(3.14)

(
−Hk AT

k

Ak
1
ρk I

)(
[xk − x∗]I∗

yk − y∗

)
=

(
−zkI∗

1
ρk (yk−1 − y∗)

)
.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

TWO-PHASE FILTER METHOD FOR QUADRATIC PROGRAMMING 1721

Note that this matrix is nonsingular if and only if Ĥk := H + ρkAT
kAk is nonsingular

[37, Proposition 2]. But Algorithm 2 exits only if ρk > 2ρmin(Ak), and by Lemma 2.3

and (3.9), Ĥk is, in fact, positive definite. Therefore, the solutions to (3.13) and (3.14)
are unique. Moreover, inverting (3.14), we arrive at

(3.15)

(
[xk − x∗]I∗

yk − y∗

)
=

(
−Ĥ−1

k ρkĤ−1
k AT

k

ρkAkĤ
−1
k ρkI − (ρk)2AkĤ

−1
k AT

k

)(
−zkI∗

1
ρk (yk−1 − y∗)

)
.

Apply the triangle inequality to the second equation to arrive at

(3.16) ‖yk − y∗‖ ≤ ρk‖AkĤ
−1
k ‖︸ ︷︷ ︸

(a)

‖zkI∗‖ + ‖I − ρkAkĤ
−1
k AT

k ‖︸ ︷︷ ︸
(b)

‖yk−1 − y∗‖.

Because ρk is bounded and Ĥk is positive definite, there exists a positive constant δ1
that bounds (a). Next, note that AkĤ

−1
k AT

k = (A+T
k HkA

+
k + ρkI)−1. If λi are the

eigenvalues of A+T
k HkA

+
k , then

ρk > 2
max{0,−λmin(Hk)}

σmin(Ak)
> 2 min

i
λi.

Therefore,

‖I − ρkAkĤ
−1
k AT

k ‖ = max
i

(
1 − ρk

λi + ρk

)
= max

i

(
λi

λi + ρk

)
< 1,

and so we have a bound on (b). Together with (3.11) and (3.16), this implies that
(3.10a) holds.

In order to derive (3.10b), we first observe that (3.11) implies that

(3.17) ‖xk − x∗‖ ≤
√
n ωk + ‖[xk − x∗]I∗‖.

Also, from the first set of equations in (3.15),

‖[xk − x∗]I∗‖ ≤ ‖Ĥ−1
k ‖ ‖zkI∗‖ + ρk‖Ĥ−1

k AT
k ‖ ‖yk−1 − y∗‖.

Substitute (3.10a) into the above, and subsequently substitute the result into (3.17)
to obtain (3.10b).

To derive (3.10c), use the definition yk and the triangle inequality to derive the
bound

ρk‖Axk − b‖ = ‖yk−1 − yk‖ ≤ ‖yk − y∗‖ + ‖yk−1 − y∗‖.

Substituting (3.10a) into the above and rearranging terms, we arrive at (3.10c).
It is important to note that the conclusion of Theorem 3.8 does not imply linear

convergence of the Lagrange multiplier estimates. However, it still holds that yk → y∗:
repeatedly apply (3.10a) to obtain

‖yk+� − y∗‖ ≤ δ1

�∑
i=1

γ�−iωk+i−1 + γ�‖yk − y∗‖

for � ≥ 1. Because ωk → 0 and γ < 1, it follows that yk+� → y∗ as � → ∞. Thus,
yk → y∗, and with (3.10b) and (3.10c), xk → x∗ and ‖Axk − b‖ → 0.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1722 MICHAEL P. FRIEDLANDER AND SVEN LEYFFER

4. Finite identification of the active set. An interesting feature of the
QPFIL algorithm is its finite identification of the optimal active set: The gradi-
ent of the augmented Lagrangian reveals the optimal active set after a finite number
of iterations. This key property implies that only finitely many KKT systems need
to be solved in order for the algorithm to converge to an exact solution of (GQP).
This property is based on the requirement that a gradient-projection step on the
augmented Lagrangian subproblem must ensure at least a Cauchy decrease. A strict
complementarity assumption is needed.

Definition 4.1 (strict complementarity). The first-order point (x∗, y∗) satisfies
strict complementarity if [∇xL0(x

∗, y∗)]i > 0 for all j ∈ A∗.
Theorem 4.2. Assume that the inner minimization performs a gradient pro-

jection that ensures at least a Cauchy decrease on the augmented Lagrangian, that
(GQP) satisfies strict complementarity, and that (xk, yk) → (x∗, y∗), which is a local
minimizer of (GQP). Then Algorithm 3 identifies the correct active set in a finite
number of iterations.

Proof. The gradient projection in the inner iteration computes the projected-
gradient path and then finds the first minimum of the augmented Lagrangian along
this piecewise linear path. The proof largely follows the derivation of the breakpoints
and local minima presented in [57, section 16.6].

Because the penalty parameter ρk is updated finitely often (see Lemma 3.5), we
can assume that it is fixed for all k large enough and that ρk ≡ ρ. Consider only
such k, and let ∇Lk := ∇xL0(x

k, yk). It follows from the convergence of (xk, yk) and
the assumption of strict complementarity that, for all k large enough, there exist a
neighborhood Nε and a positive constant τ � ε such that (xk, yk) ∈ Nε and

[∇Lk]i ≥ τ and xk
i ≤ ε for all i ∈ A∗,(4.1a)

|[∇Lk]i| ≤ ε and xk
i ≥ τ for all i ∈ I∗.(4.1b)

We now consider the projected-gradient path for the augmented Lagrangian. The
breakpoints along the piecewise linear projected-gradient path from xk in the direction
−∇Lk are given by

t̄i =

{
xk
i /[∇Lk]i if [∇Lk]i > 0,

∞ otherwise.

Together with (4.1), this implies that the breakpoints t̄i satisfy

(4.2) t̄i ≤
ε

τ
for all i ∈ A∗ and t̄i ≥

τ

ε
for all i ∈ I∗.

Because τ � ε, it follows that the breakpoints corresponding to active constraints
A∗ are much smaller than the breakpoints corresponding to inactive constraints I∗.
Note also that if xk

i = 0, then t̄i = 0, and this bound therefore remains active because
[∇Lk]i ≥ τ > 0.

The piecewise linear projected-gradient path can now be parameterized in t ≥ 0:

xi(t) =

{
xk
i − t [∇Lk]i if t ≤ t̄i,

xk
i − t̄i[∇Lk]i otherwise.

Next, we remove duplicate and zero entries from the breakpoints {t̄1, . . . , t̄n} and sort
the remaining entries into an ordered sequence

0 < t1 < t2 < · · · < ta−1 < ta < ti < ti+1 < · · · .

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

TWO-PHASE FILTER METHOD FOR QUADRATIC PROGRAMMING 1723

Observe that (4.2) implies that this ordering separates the active indices 1, . . . , a from
the inactive indices i, i + 1, . . . , and that

ta ≤ ε

τ

 τ

ε
≤ ti.

We now show that the first minimizer of the augmented Lagrangian occurs in the
interval [ta, ti] for ε sufficiently small, and therefore the correct active set is identified.
We must first demonstrate that the augmented Lagrangian has no minimizer in any
of the intervals [tj−1, tj] for j ≤ a. Let j ≤ a, and consider the piecewise search
direction on [tj−1, tj]:

(4.3) pj−1
i =

{
−[∇Lk]i if tj−1 ≤ t̄i,

0 otherwise.

Next, consider the path segment given by

x(t) = x(tj−1) + Δt pj−1 for Δt ∈ [0, tj − tj−1],

and look for a minimizer of the augmented Lagrangian in this segment. We expand
the Lagrangian along this segment and compute the directional gradient on [tj−1, tj]:

−f ′
j−1 = −(∇Lk)Tpj−1 − x(tj−1)

T(H + ρATA)pj−1.

From (4.1a) and (4.3), it follows that the first term on the right-hand side above is
bounded below by τ2, whereas the second term is O(ετ). Therefore, the first term
dominates, and −f ′

j−1 ≥ τ2 for j ≤ a + 1.
Next, observe that the directional Hessian on [tj−1, tj],

f ′′
j−1 = pj−1(H + ρATA)pj−1,

is bounded because H + ρATA and pj−1 are bounded. Using (4.1a) and (4.3), we
conclude that there exist positive constants κ1 and κ2, independent of ε, such that
κ1τ

2 ≤ f ′′
j−1 ≤ κ2. Because f ′′

j−1 > 0, the minimizer of the augmented Lagrangian on
the segment [tj−1, tj] is given by

t∗j = min

{−f ′
j−1

f ′′
j−1

, tj − tj−1

}
.

The first term in the minimum can be bounded below by τ2/κ2 � ε, and the second
term is O(ε). Thus, for ε sufficiently small, the minimum of the quadratic on the
segment [tj−1, tj] occurs at tj for all j ≤ a, and the projected-gradient search proceeds
to the next segment, [tj , tj+1]. Repeating this argument for all j ≤ a shows that there
is no minimum of the augmented Lagrangian in any of the segments [tj−1, tj] for
j ≤ a. Therefore, all active constraints are identified correctly.

Next, we show that the interval [ta, ti] contains a minimum of the augmented
Lagrangian in its interior. We can use the same estimates as above for the directional
gradient and the Hessian because the left-hand boundary corresponds to an active
index. Thus, we again consider the case where f ′′

a = O(κ2) > 0 and f ′
a = O(τ2) > 0.

It follows that the quotient −fa/f
′′
a is a constant independent of ε. However, the

right-hand boundary of the segment

Δt ∈ [0, ti − ta] = [0, τO(1/ε)]

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1724 MICHAEL P. FRIEDLANDER AND SVEN LEYFFER

becomes large as ε becomes small. Thus, for ε sufficiently small, the minimum of the
augmented Lagrangian occurs in the interior of the segment [ta, ti], and no additional
inactive constraints are identified as active.

Theorem 4.2 implies the following corollary, which establishes global convergence
of Algorithm 3.

Corollary 4.3. Let the assumptions of Theorem 4.2 hold, and assume in addi-
tion that the augmented system (2.3) in step 4 of Algorithm 3 is solved exactly. Then
the algorithm terminates finitely at a KKT point of (GQP).

Proof. The proof follows because Algorithm 3 identifies the correct active set in a
finite number of iterations, and an exact solve of (2.3) subsequently gives the solution
of (GQP).

5. Numerical results. We implemented the QPFIL algorithm on a subset of
medium-scale QPs from the CUTEr [46] test set, with the aim of demonstrating the
global convergence and active-set identification properties of QPFIL.

Our test problems are taken from the AMPL versions of the CUTEr test prob-
lems [60]; we selected a subset of the test problems that had up to 20,000 variables or
constraints. General inequality constraints were converted into equalities by introduc-
ing slack variables. The chosen test problems and their sizes are listed in Table 5.1.

The QPFIL algorithm is based on two computational kernels: the gradual min-
imization of the bound-constrained augmented Lagrangian function (step 3 of Algo-
rithm 2) and the solution of an EQP (step 5 of Algorithm 3). Our implementation
uses the bound-constrained solver within TAO [8] (version 1.8.1) which is based on
TRON [52] for step 3 of Algorithm 2. TAO’s flexible interface allows a user-defined
termination criterion; we use this feature to implement the filter-based termination
criterion defined in steps 11–12 of Algorithm 2.

The EQP in step 5 of Algorithm 3 is solved by using PETSc [4, 3, 5] (version 2.3.1).
We use PETSc’s implementation of GMRES with a restart frequency of 300 and an
iteration limit of 1000. Other linear solvers can easily be used within the PETSc
framework, and specialized linear solvers and preconditioners for KKT systems are
currently an active area of research (see, e.g., [58, 44, 31]). We have deliberately chosen
the general-purpose solver GMRES because it is readily available within PETSc and
because it simplifies our initial implementation.

We compare our implementation with two general-purpose interior-point solvers:
KNITRO [18, 62] and LOQO [61]. Although these methods are targeted to general
nonlinear optimization problems, both solvers detect whether the problem is a QP and
use appropriate algorithmic options. At this stage we are not interested in a direct
comparison between QPFIL and these production-quality interior implementations;
rather, we are interested in the number of iterations it takes for QPFIL to identify
the optimal active set—KNITRO and LOQO serve as relative benchmarks.

All tests were performed on a desktop PC with a 2.5 GHz Intel Pentium 4 pro-
cessor with 512 KB RAM, running Red Hat Linux version 7.3. Our implementation
is compiled using the GNU gcc compiler (version 3.3.5) with the -O flag. The source
code and makefiles are available from the second author upon request.

We present our numerical results in Table 5.1 comparing major (i.e., outer) iter-
ations and CPU time. The first metric is the most similar across the solvers: at each
outer iteration, QPFIL solves a KKT system that is structurally similar to the KKT
system that interior-point methods need to solve at each of their own major iterations.
The second measure is more dependent on the implementation of the linear algebra.
We note that QPFIL easily outperforms the two interior-point methods in terms of

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

TWO-PHASE FILTER METHOD FOR QUADRATIC PROGRAMMING 1725

Table 5.1

Major iteration counts and CPU times (seconds) for KNITRO, LOQO, and QPFIL.

KNITRO LOQO QPFIL
Problem n m itns CPU itns CPU itns CPU

aug2dc 20200 9996 13 1.9 13 3.5 3 27.5
aug2dcqp 20200 9996 19 4.4 24 3.2 4 85.7
aug2dqp 20192 9996 20 4.6 23 3.1 2 99.2
aug3dcqp 3873 1000 21 0.8 15 0.3 5 0.4
aug3dqp 3873 1000 21 0.8 17 0.3 3 0.5
avgasa 12 6 16 0.0 12 0.0 3 0.0
avgasb 12 6 18 0.0 12 0.0 3 0.0
biggsc4 11 7 17 0.2 21 0.0 5 0.0
blockqp1 2006 1001 21 0.6 15 0.1 2 0.0
blockqp2 2006 1001 21 0.6 10 0.1 1 0.0
blockqp4 2006 1001 21 0.6 16 0.2 8 11.0
cvxqp1 1000 500 16 1.7 25 0.7 18 39.8
dual1 85 1 22 0.2 17 0.1 6 0.0
dual2 96 1 17 0.2 16 0.1 5 0.0
dual3 111 1 16 0.2 16 0.1 6 0.0
dual4 75 1 16 0.1 15 0.1 4 0.0
dualc5 8 1 11 0.0 13 0.0 4 0.0
genhs28 10 8 1 0.0 2 0.0 1 0.0
hatfldh 11 7 13 0.0 16 0.0 2 0.0
hs021 3 1 16 0.0 12 0.0 1 0.0
hs035 4 1 13 0.0 10 0.0 2 0.0
hs044 10 6 6 0.0 15 0.0 6 0.0
hs053 5 3 5 0.0 11 0.0 1 0.0
hs076 7 3 12 0.0 11 0.0 3 0.0
hs118 32 17 22 0.0 17 0.0 10 0.0
hs268 10 5 16 0.0 26 0.0 2 0.0
huestis 10000 2 18 1.2 500 11.0 1 7.9
ksip 1020 1000 17 0.4 42 0.3 17 1.2
liswet11 20002 10000 30 2.3 500 22.9 9 794.0
liswet12 20002 10000 56 4.1 500 22.9 7 680.0
liswet2 20002 10000 31 2.4 10 0.5 12 1200.0
liswet7 20002 10000 27 2.1 11 0.5 8 559.0
lotschd 12 7 12 0.0 19 0.0 1 0.0
mosarqp1 3200 700 18 0.4 15 0.1 7 29.6
mosarqp2 1500 600 15 0.2 19 0.1 6 680.0
ncvxqp5 1000 250 51 2.2 205 11.8 4 4.1
ncvxqp6 1000 250 89 3.6 117 6.9 8 10.7
tame 2 1 2 0.0 9 0.0 1 0.0
zecevic2 4 2 12 0.0 11 0.0 3 0.0

major iterations. This indicates that our strategy for finding the optimal active set is
efficient.

In terms of CPU time, the interior-point codes are faster than QPFIL. This disap-
pointing performance of our algorithm can be traced mainly to the poor performance
of the GMRES solver on the KKT system (2.3) (the interior-point methods, on the
other hand, compute sparse factors of the KKT system). On a typical run, for exam-
ple, code profiling indicates that the KKT solver consumes almost 90% of CPU time.
This situation is discouraging considering the ease with which we are able to solve
the bound-constrained subproblem with a conjugate gradient method. We expect

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1726 MICHAEL P. FRIEDLANDER AND SVEN LEYFFER

that preconditioners and iterative solvers that are specially designed for KKT sys-
tems (see, e.g., [10]) will dramatically improve this performance. We plan to explore
this in future implementations.

6. Discussion and conclusions. We have presented a new active-set method
for solving QPs that has the potential for solving very large problems and holds the
promise of working efficiently on high-performance architectures. We are encour-
aged by the speed with which the method identifies a correct active set (see Proposi-
tion 4.2). One of the remaining challenges for an efficient implementation is finding
a computationally effective way to solve the KKT systems arising from the equality-
constrained QP subproblems. This is the same problem that must be faced by any
interior-point implementation, however; the advantage that we hope to leverage in
the QPFIL framework is that the KKT systems are not arbitrarily ill-conditioned.

Two interesting questions remain which we will address in future reports. The
first question arises out of Theorem 4.2: Is it possible to simplify the inner iterations
further and require gradient-projection steps only until a filter-acceptable point is
found? This approach may require a Cauchy-like condition on the inner iteration
(which currently is included implicitly by assuming that we perform a few iterations
of the minimization of the augmented Lagrangian). Such an approach would have
the advantage of removing the need for conjugate gradient iterations involving the
Hessian of the augmented Lagrangian—namely, H + ρATA—which may be difficult
to precondition because of the presence of the term ρATA.

The second question concerns the usefulness of the second-order step. If we are far
from the minimum, then it may be better to choose the step that adds the largest area
to the filter, rather than take a short step in the direction generated by the second-
order step. Also, because global convergence relies only on the first-order sequence, it
should be possible to save work by solving the KKT systems only approximately, and
then tighten the tolerances for the KKT solves when it appears that a correct active
set has been identified. We plan to investigate these questions numerically.

Appendix. As discussed in section 3, an alternative to step 6 of Algorithm 2 is
to increase the penalty parameter if the current reduced Jacobian is rank deficient.
The following theorem, analogous to Theorem 3.4, confirms that the main effect of
this increase is that it encourages iterates to move closer to feasibility.

Theorem A.1 (convergence of inner iterations). Suppose that step 6 of Algo-
rithm 2 is replaced by ρj+1 ← 2ρj. Then the algorithm terminates finitely, or every
limit point x∗ of {xj} is a KKT point of (GQP), or it solves (2.12).

Proof. The case where step 5 tests true finitely many times has already been
covered by Theorem 3.4. Therefore, we treat only the cases where step 5 tests true
infinitely many times (and thus ρj → ∞) and A∗ either has full rank or does not.

Case 1 (ρj → ∞ and A∗ has full rank). Let x∗ be any limit point of the sub-
sequence {xj}J . Each xj , for j ∈ J , satisfies (2.11), and because Lρj (xj , ȳ) =
L0(x

j , yj), Lemma 3.3 holds for the sequences {xj}, {yj}, {ρj}, and {εj}, where we
let xk = xj , yk = yj , ρk = ρj , and ωk = εj . Therefore, there exist positive constants
α1 and α2 such that

(A.1) ‖yj − y∗‖ ≤ βj := α1‖xj − x∗‖ + α2ε
j

for all j ∈ J large enough, where y∗ := ŷ(x∗). Because limj∈J xj = x∗ and εj → 0,
the above implies that limj∈J = y∗. Hence, (x∗, y∗) satisfies (1.3a).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

TWO-PHASE FILTER METHOD FOR QUADRATIC PROGRAMMING 1727

In order to show that x∗ is feasible for (GQP), we use the definition of yj to derive

ρj‖Axj − b‖ = ‖yj − ȳ‖ ≤ ‖yj − y∗‖ + ‖y∗ − ȳ‖ ≤ βj + ‖y∗ − ȳ‖,

where we used the triangle inequality and (A.1). Then εj → 0, limj∈J xj = x∗, and
ρj → ∞ imply that Ax∗ = b. Therefore, x∗ satisfies (1.3b), and so (x∗, y∗) is a KKT
point of (GQP), as required.

Case 2 (ρj → ∞ and A∗ does not have full rank). The necessary and sufficient
optimality condition for (2.12) is that x∗ satisfy

(A.2) min{x∗, AT(Ax∗ − b)} = 0.

Each xj and zj satisfies (2.11). Therefore,

lim sup
j∈J

zj ≡ c + Hx∗ −ATȳ + lim sup
j∈J

ρjAT(Axj − b) ≥ 0,

which, because ρj → ∞, necessarily implies that

(A.3) z∗ := lim
j∈J

AT(Axj − b) = AT(Ax∗ − b) ≥ 0.

If we consider only the components I∗ of zj , then by (2.11) and εj → 0, (A.3)
holds with equality. But because ρj → ∞ and AT(Ax∗ − b) ≥ 0, we must have that
z∗I = [AT(Ax∗ − b)]I∗ = 0. Therefore, x∗ and z∗ satisfy (A.2).

Acknowledgments. We are grateful to our summer student Anatoly Eydelzon,
who developed an initial version of QPFIL using TAO and PETSc, and to Ewout
van den Berg for his careful reading of this paper. Sincere thanks to Tamara Kolda,
and to two anonymous referees, whose many valuable suggestions helped to clarify
the approach and sharpen the theoretical development. In particular, the referees’
comments led us to Theorem 3.8 as well as refinements of Algorithm 2.

REFERENCES

[1] R. Andreani, E. G. Birgin, J. M. Mart́inez, and M. L. Schuverdt, Augmented Lagrangian
methods under the constant positive linear dependence constraint qualification, Math. Pro-
gram., 111 (2008), pp. 5–32.

[2] M. Anitescu, Optimization-based simulation of nonsmooth rigid multibody dynamics, Math.
Program., 105 (2006), pp. 113–143.

[3] S. Balay, K. Buschelman, V. Eijkhout, W. D. Gropp, D. Kaushik, M. G. Knepley, L. C.

McInnes, B. F. Smith, and H. Zhang, PETSc Users Manual (Revision 2.1.5), Tech.
report ANL-95/11, Argonne National Laboratory, Argonne, IL, 2004.

[4] S. Balay, K. Buschelman, W. D. Gropp, D. Kaushik, M. G. Knepley, L. C. McInnes,

B. F. Smith, and H. Zhang, PETSc Web Page, http://www.mcs.anl.gov/petsc (2001).
[5] S. Balay, W. D. Gropp, L. C. McInnes, and B. F. Smith, Efficient management of paral-

lelism in object-oriented numerical software libraries, in Modern Software Tools for Scien-
tific Computing, E. Arge, A. M. Bruaset, and H. P. Langtangen, eds., Birkhäuser, Boston,
1997, pp. 163–202.

[6] J. L. Barlow and G. Toraldo, The effect of diagonal scaling on projected gradient methods
for bound constrained quadratic programming problems, Optim. Methods Softw., 5 (1995),
pp. 235–245.

[7] G. Bashein and M. Enns, Computation of optimal controls by a method combining quasi-
linearization and quadratic programming, Internat. J. Control, 16 (1972), pp. 177–187.

[8] S. J. Benson, L. Curfman McInnes, J. J. Moré, T. S. Munson, and J. Sarich,
TAO User Manual (Revision 1.9), Technical manual, Mathematics and Computer Sci-
ence Division, Argonne National Laboratory, Argonne, IL, 2007; available online at
http://www.mcs.anl.gov/tao.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1728 MICHAEL P. FRIEDLANDER AND SVEN LEYFFER

[9] S. J. Benson, L. Curfman McInnes, J. J. Moré, and J. Sarich, Scalable algorithms in
optimization: Computational experiments, in Proceedings of the AIAA Multidisciplinary
Analysis and Optimization Conference, Albany, NY, 2004.

[10] M. Benzi, G. Golub, and J. Liesen, Numerical solution of saddle point problems, Acta
Numer., 14 (2005), pp. 1–137.

[11] M. Benzi and G. H. Golub, A preconditioner for generalized saddle point problems, SIAM J.
Matrix Anal. Appl., 26 (2004), pp. 20–41.

[12] L. Bergamaschi, J. Gondzio, and G. Zilli, Preconditioning indefinite systems in interior
point methods for optimization, Comput. Optim. Appl., 28 (2004), pp. 149–171.

[13] D. P. Bertsekas, Constrained Optimization and Lagrange Multiplier Methods, Academic
Press, New York, 1982.

[14] D. P. Bertsekas, Nonlinear Programming, 2nd ed., Athena Scientific, Belmont, MA, 1999.
[15] M. J. Best and J. Kale, Quadratic programming for large-scale portfolio optimization, in

Financial Services Information Systems, J. Keyes, ed., CRC Press, Boca Raton, FL, 2000,
pp. 513–529.

[16] G. Biros and O. Ghattas, Parallel Lagrange–Newton–Krylov–Schur methods for PDE-
constrained optimization. Part I: The Krylov–Schur solver, SIAM J. Sci. Comput., 27
(2005), pp. 687–713.

[17] R. H. Byrd, N. I. M. Gould, J. Nocedal, and R. A. Waltz, An algorithm for nonlin-
ear optimization using linear programming and equality constrained subproblems, Math.
Program., 100 (2004), pp. 27–48.

[18] R. H. Byrd, J. Nocedal, and R. A. Waltz, KNITRO: An integrated package for nonlin-
ear optimization, in Large-Scale Nonlinear Optimization, G. di Pillo and M. Roma, eds.,
Springer-Verlag, New York, 2006, pp. 35–59.

[19] C. Chin and R. Fletcher, On the global convergence of an SLP-filter algorithm that takes
EQP steps, Math. Program., 96 (2003), pp. 161–177.

[20] T. F. Coleman and Y. Li, A reflective Newton method for minimizing a quadratic function
subject to bounds on some of the variables, SIAM J. Optim., 6 (1996), pp. 1040–1058.

[21] A. R. Conn, N. I. M. Gould, and Ph. L. Toint, Testing a class of methods for solving
minimization problems with simple bounds on the variables, Math. Comp., 50 (1988),
pp. 399–430.

[22] A. R. Conn, N. I. M. Gould, and P. L. Toint, LANCELOT: A Fortran Package for Large-
scale Nonlinear Optimization (Release A), Springer-Verlag, Heidelberg, Germany, 1992.

[23] A. R. Conn, N. I. M. Gould, and Ph. L. Toint, A globally convergent augmented Lagrangian
algorithm for optimization with general constraints and simple bounds, SIAM J. Numer.
Anal., 28 (1991), pp. 545–572.

[24] F. Delbos and J. Gilbert, Global linear convergence of an augmented Lagrangian algorithm
for solving convex quadratic optimization problems, J. Convex Anal., 12 (2005), pp. 45–69.

[25] M. A. Diniz-Ehrhardt, M. A. Gomes-Ruggiero, and S. A. Santos, Numerical analysis
of leaving-face parameters in bound-constrained quadratic minimization, Optim. Methods
Softw., 15 (2001), pp. 45–66.

[26] Z. Dostál, Box constrained quadratic programming with controlled precision of auxiliary prob-
lems and applications, Z. Angew. Math. Mech., 76 (1996), pp. 413–414.

[27] Z. Dostál, Box constrained quadratic programming with proportioning and projections, SIAM
J. Optim., 7 (1997), pp. 871–887.

[28] Z. Dostál, A. Friedlander, and S. A. Santos, Adaptive precision control in quadratic
programming with simple bounds and/or equality constraints, in High Performance Algo-
rithms and Software in Nonlinear Optimization, R. D. Leone, A. Murli, P. M. Pardalos,
and G. Toraldo, eds., Kluwer Academic Publishers, Dordrecht, The Netherlands, 1998,
pp. 161–173.

[29] Z. Dostál, A. Friedlander, and S. A. Santos, Augmented Lagrangians with adaptive preci-
sion control for quadratic programming with equality constraints, Comput. Optim. Appl.,
14 (1999), pp. 37–53.

[30] Z. Dostál, A. Friedlander, and S. A. Santos, Augmented Lagrangians with adaptive preci-
sion control for quadratic programming with simple bounds and equality constraints, SIAM
J. Optim., 13 (2003), pp. 1120–1140.

[31] I. S. Duff, MA57—A code for the solution of sparse symmetric definite and indefinite systems,
ACM Trans. Math. Software, 30 (2004), pp. 118–144.

[32] K. A. Fegley, S. Blum, J. O. Bergholm, A. J. Calise, J. E. Marowitz, G. Porcelli,

and L. P. Sinha, Stochastic and deterministic design and control via linear and quadratic
programming, IEEE Trans. Automat. Control, 16 (1971), pp. 759–766.

[33] R. Fletcher, A general quadratic programming algorithm, J. Inst. Math. Appl., 7 (1971),
pp. 76–91.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

TWO-PHASE FILTER METHOD FOR QUADRATIC PROGRAMMING 1729

[34] R. Fletcher, Resolving degeneracy in quadratic programming, Ann. Oper. Res., 47 (1993),
pp. 307–334.

[35] R. Fletcher and E. Sainz de la Maza, Nonlinear programming and nonsmooth optimization
by successive linear programming, Math. Programming, 43 (1989), pp. 235–256.

[36] R. Fletcher and S. Leyffer, Nonlinear programming without a penalty function, Math.
Program., 91 (2002), pp. 239–269.

[37] A. Forsgren, Inertia-controlling factorizations for optimization algorithms, Appl. Numer.
Math., 43 (2002), pp. 91–107.

[38] A. Forsgren, P. E. Gill, and M. H. Wright, Interior methods for nonlinear optimization,
SIAM Rev., 44 (2002), pp. 525–597.

[39] A. Friedlander and J. M. Mart́inez, On the maximization of a concave quadratic function
with box constraints, SIAM J. Optim., 4 (1994), pp. 177–192.

[40] M. P. Friedlander and M. A. Saunders, A globally convergent linearly constrained La-
grangian method for nonlinear optimization, SIAM J. Optim., 15 (2005), pp. 863–897.

[41] P. E. Gill, W. Murray, D. B. Ponceleón, and M. A. Saunders, Preconditioners for indefi-
nite systems arising in optimization, SIAM J. Matrix Anal. Appl., 13 (1992), pp. 292–311.

[42] P. E. Gill, W. Murray, and M. A. Saunders, User’s Guide for SQOPT 5.3: A Fortran
Package for Large-scale Linear and Quadratic Programming, Tech. report NA 97-4, De-
partment of Mathematics, University of California, San Diego, 1997.

[43] P. E. Gill, W. Murray, M. A. Saunders, and M. H. Wright, Inertia-controlling methods
for general quadratic programming, SIAM Rev., 33 (1991), pp. 1–36.

[44] G. H. Golub, C. Greif, and J. M. Varah, An algebraic analysis of a block diagonal precon-
ditioner for saddle point systems, SIAM J. Matrix Anal. Appl., 27 (2006), pp. 779–792.

[45] N. I. M. Gould, S. Leyffer, and Ph. L. Toint, A multidimensional filter algorithm for
nonlinear equations and nonlinear least-squares, SIAM J. Optim., 15 (2004), pp. 17–38.

[46] N. I. M. Gould, D. Orban, and Ph. L. Toint, CUTEr and SifDec: A constrained and uncon-
strained testing environment, revisited, ACM Trans. Math. Software, 29 (2003), pp. 373–
394.

[47] N. I. M. Gould and P. L. Toint, SQP methods for large-scale nonlinear programming, in
System Modelling and Optimization. Methods, Theory and Applications, M. J. D. Powell
and S. Scholtes, eds., Kluwer Academic Publishers, Boston, 2000, pp. 149–178.

[48] N. I. M. Gould and Ph. L. Toint, An iterative working-set method for large-scale nonconvex
quadratic programming, Appl. Numer. Math., 43 (2002), pp. 109–128.

[49] N. I. M. Gould and P. L. Toint, Numerical methods for large-scale non-convex quadratic
programming, in Trends in Industrial and Applied Mathematics, A. H. Siddiqi and M. Koc-
vara, eds., Kluwer Academic Publishers, Dordrecht, The Netherlands, 2002, pp. 149–179.

[50] G. D. Hart and M. Anitescu, A hard-constraint time-stepping approach for rigid multibody
dynamics with joints, contact, and friction, in Proceedings of the 2003 ACM Tapia Con-
ference for Diversity in Computing, Atlanta, GA, 2003, pp. 34–40.

[51] R. M. Larsen, Combining Implicit Restart and Partial Reorthogonalization in Lanczos Bidi-
agnalization, http://sun.stanford.edu/∼rmunk/PROPACK/ (2001).

[52] C.-J. Lin and J. J. Moré, Newton’s method for large bound-constrained optimization problems,
SIAM J. Optim., 9 (1999), pp. 1100–1127.

[53] K. Malanowski, On application of a quadratic programming procedure to optimal control
problems in systems described by parabolic equations, Control Cybernet., 1 (1972), pp. 43–
56.

[54] H. M. Markowitz, The optimization of a quadratic function subject to constraints, Naval Res.
Logist. Quart., 3 (1956), pp. 111–133.

[55] J. J. Moré and G. Toraldo, On the solution of quadratic programming problems with bound
constraints, SIAM J. Optim., 1 (1991), pp. 93–113.

[56] Y. Nesterov and A. Nemirovskii, Interior-Point Polynomial Algorithms in Convex Program-
ming, Stud. Appl. Math. 13, SIAM, Philadelphia, 1994.

[57] J. Nocedal and S. Wright, Numerical Optimization, Springer-Verlag, Berlin, 1999.
[58] O. Schenk and K. Gärtner, Solving unsymmetric sparse systems of linear equations with

PARDISO, Future Gen. Comput. Syst., 20 (2004), pp. 475–487.
[59] M. Ulbrich, S. Ulbrich, and L. Vicente, A globally convergent primal-dual interior-point

filter method for nonlinear programming, Math. Program., 100 (2004), pp. 379–410.
[60] R. Vanderbei, Benchmarks for Nonlinear Optimization, http://www.princeton.edu/∼rvdb/

bench.html (December 2002).
[61] R. Vanderbei and D. Shanno, An interior point algorithm for nonconvex nonlinear program-

ming, Comput. Optim. Appl., 13 (1999), pp. 231–252.
[62] R. A. Waltz and T. D. Plantenga, KNITRO 5.0 User’s Manual, Ziena Optimization,

Evanston, IL, 2006.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

