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ew insights into one-norm solvers from the Pareto curve
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ABSTRACT

Geophysical inverse problems typically involve a trade-
off between data misfit and some prior model. Pareto curves
trace the optimal trade-off between these two competing
aims. These curves are used commonly in problems with
two-norm priors in which they are plotted on a log-log scale
and are known as L-curves. For other priors, such as the spar-
sity-promoting one-norm prior, Pareto curves remain rela-
tively unexplored. We show how these curves lead to new in-
sights into one-norm regularization. First, we confirm theo-
retical properties of smoothness and convexity of these
curves from a stylized and a geophysical example. Second,
we exploit these crucial properties to approximate the Pareto
curve for a large-scale problem. Third, we show how Pareto
curves provide an objective criterion to gauge how different
one-norm solvers advance toward the solution.

INTRODUCTION

Many geophysical inverse problems are ill posed �Parker, 1994�
ecause their solutions are not unique or are acutely sensitive to
hanges in data. To solve this kind of problem stably, additional in-
ormation must be introduced. This technique is called regulariza-
ion �see, e.g., Phillips, 1962; Tikhonov, 1963�.

Specifically, when the solution of an ill-posed problem is known
o be �almost� sparse, Oldenburg et al. �1983� and others have ob-
erved that a good approximation to the solution can be obtained by
sing one-norm regularization to promote sparsity. More recently,
esults in information theory have breathed new life into the idea of
romoting sparsity to regularize ill-posed inverse problems. These
esults establish that under certain conditions, the sparsest solution
f a �severely� underdetermined linear system can be recovered ex-
ctly by seeking the minimum one-norm solution �Candès et al.,
006; Donoho, 2006; Rauhut, 2007�. This has led to tremendous ac-
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ivity in the newly established field of compressed sensing. Several
ew one-norm solvers have appeared in response �see, e.g.,
aubechies et al., 2004; van den Berg and Friedlander, 2008�. In the

ontext of geophysical applications, it is a challenge to evaluate and
ompare these solvers against more standard approaches such as it-
ratively reweighted least-squares �IRLS� �Gersztenkorn et al.,
986�, which uses a quadratic approximation to the one-norm regu-
arization function.

In this paper, we propose an approach to understand the behavior
f algorithms for solving one-norm regularized problems. The ap-
roach consists of tracking on a graph the data misfit versus the one
orm of successive iterates. The Pareto curve traces the optimal
rade-off in the space spanned by these two axes and gives a rigorous
ardstick for measuring the quality of the solution path generated by
n algorithm. In the context of the two-norm �i.e., Tikhonov� regu-
arization, the Pareto curve often is plotted on a log-log scale and is
alled the L-curve �Lawson and Hanson, 1974�. We draw on the
ork of van den Berg and Friedlander �2008�, who examine the the-
retical properties of the one-norm Pareto curve. Our goal is to un-
erstand the compromises accepted implicitly when an algorithm is
iven a limited number of iterations.

PROBLEM STATEMENT

Consider the following underdetermined system of linear equa-
ions

y � Ax0 � n , �1�

here the n�vectors y and n represent observations and additive
oise, respectively. The n-by-N matrix A is the modeling operator
hat links the model x0 to the noise-free data given by y � n. We as-
ume that N�n and x0 have few nonzero or significant entries. We
se the terms model and observations in a broad sense so that many
inear geophysical problems can be cast in the form shown in equa-
ion 1. In the case of wavefield reconstruction, for example, y is the
cquired seismic data with missing traces, and A can be the restric-
ion operator combined with the curvelet synthesis operator so that
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A24 Hennenfent et al.
0 is the curvelet representation of the fully sampled wavefield �Hen-
enfent and Herrmann, 2008; Herrmann and Hennenfent, 2008�.

Because x0 is assumed to be �almost� sparse, one can promote
parsity as a prior via one-norm regularization to overcome the sin-
ular nature of A when estimating x0 from y. A common approach is
o solve the convex optimization problem

QP�: min
x

1
2 �y � Ax�2

2 � ��x�1, �2�

hich is related closely to quadratic programming �QP�. The posi-
ive parameter � is the Lagrange multiplier, which balances the
rade-off between the two norm of the data misfit and the one norm of
he solution. Many algorithms are available for solving QP�, includ-
ng IRLS; iterative soft thresholding �IST�, introduced by
aubechies et al. �2004�; and the IST extension to include cooling

ISTc� �Figueiredo and Nowak, 2003�, which was tailored to geo-
hysical applications by Herrmann and Hennenfent �2008�.

Generally it is not clear; however, how to choose the parameter �
o that the solution of QP� is optimal in some sense.Adirectly related
ptimization problem, the basis-pursuit �BP� denoise problem
Chen et al., 1998�, minimizes the one norm of the solution given a
aximum misfit and is given by

BP� : min
x

�x�1 s.t. �y � Ax�2 � � . �3�

his formulation often is preferred when an estimate of the noise
evel � �0 in the data is available. BP� can be solved using ISTc or
he spectral projected-gradient algorithm �SPG�1� introduced by
an den Berg and Friedlander �2008�.

For interest, a third optimization problem, connected to QP� and
P�, minimizes the misfit given a maximum one norm of the solu-

ion and is given by the lasso �LS� problem �Tibshirani, 1996�

LS� : min
x

1
2 �y � Ax�2

2 s.t. �x�1 � � . �4�

ecause an estimate of the one norm of the solution � �0 is not typi-
ally available for geophysical problems, this formulation seldom is
sed directly. However, it is a key internal problem used by SPG�1 to
olve BP�.

igure 1. Schematic illustration of a Pareto curve. Point 1 exposes
he connection among parameters QP�, BP�, and LS� . Point 3 corre-
ponds to a solution of BP with � � 0.
�
To understand the connection between these approaches and to
ompare their related solvers in different scenarios, we propose to
ollow Daubechies et al. �2007� and van den Berg and Friedlander
2008� and look at the Pareto curve.

PARETO CURVE

Figure 1 gives a schematic illustration of a Pareto curve. The
urve traces the optimal trade-off between �y � Ax�2 and �x�1 for a
pecific pair of A and y in equation 1. Point 1 clarifies the connection
mong the three parameters of QP�, BP�, and LS� . Coordinates of a
oint on the Pareto curve are �� ,� �, and the slope of the tangent at
his point is ��. End points of the curve, points 2 and 3, are two spe-
ial cases. When � � 0, the solution of LS� is x � 0 �point 2�. It co-
ncides with the solutions of BP� with � � �y�2 and QP� with �

�AHy��/�y�2. �The infinity norm � · �� is given by max�� · ��.� When
� 0, the solution of BP� �point 3� coincides with the solutions of

S� , where � is the one norm of the solution, and QP�, where �
0�, i.e., � infinitely close to zero from above.
These relations are formalized as follows in van den Berg and

riedlander �2008�:
Result 1. The Pareto curve �1� is convex and decreasing, �2� is

ontinuously differentiable, and �3� has a negative slope �
�AHr��/�r�2 with the residual r given by y � Ax.
For large-scale geophysical applications, it is not practical or even

easible to sample the entire Pareto curve. However, its regularity, as
mplied by this result, means it is possible to obtain a good approxi-

ation to the curve with very few interpolating points, as illustrated
ater in this paper.

COMPARISON OF ONE-NORM SOLVERS

To illustrate the usefulness of the Pareto curve, we compare IST,
STc, SPG�1, and IRLS on a noise-free problem and compute a solu-
ion of BP� for � � 0, i.e., BP0. This case is especially challenging
or solvers that attack QP�, e.g., IST, ISTc, and IRLS, because the
orresponding solution can be attained only in the limit as �→0.

We construct a benchmark problem that typically is used in the
ompressed-sensing literature �Donoho et al., 2006�. The matrix A is
aken to have Gaussian-independent and identically distributed en-
ries. A sparse solution x0 is generated randomly, and the observa-
ions y are computed according to equation 1.

olution paths

Figure 2 shows the solution paths of the four solvers as they con-
erge to the BP0 solution. The starting vector provided to each solver
s the zero vector; hence, the paths start at �0,�y�2�, point 2 in Figure
. The number of iterations are large enough for each solver to
onverge; therefore, the solution paths end at �� BP0

,0�, point 3 in
igure 1.
The two solvers SPG�1 and ISTc approach the BP0 solution from

he left and remain close to the Pareto curve. In contrast, IST and
RLS aim at a least-squares solution before turning back toward the
P0 solution. ISTc solves QP� for a decreasing sequence �i→0. The

tarting vector for QP�i
is the solution of QP�i�1

, which by definition
s on the Pareto curve. This explains why ISTc follows the curve so
losely. SPG�1 solves a sequence of LS� problems for an increasing
equence of � i→� BP0

, hence the vertical segments along the SPG�1

olution path. IST solves QP �. Because there is hardly any regular-
0
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Pareto curve and one-norm solvers A25
zation, IST first works toward minimizing the data misfit. When the
isfit is sufficiently small, the effect of the one-norm penalization

tarts, yielding a change of direction toward the BP0 solution. IRLS
olves a sequence of weighted, damped least-squares problems. Be-
ause the weights are initialized to ones, IRLS first reaches the stan-
ard least-squares solution. The estimates obtained from subsequent
eweightings have a smaller one norm while maintaining the residu-
l �close� to zero. Eventually, IRLS gets to the BP0 solution.

ractical considerations

In geophysical applications, problem sizes are large, and there is a
evere computational constraint. We can use the technique outlined
bove to understand the robustness of a given solver that is limited
y a maximum number of iterations or matrix-vector products that
an be performed.

Figure 3 shows the Pareto curve and the solution paths of various
olvers in which the maximum number of iterations is fixed. This

igure 2. Pareto curve and solution paths �large enough number of it-
rations� of four solvers for a BP0 problem. The symbols � repre-
ent a sampling of the Pareto curve. The solid line �—�, obscured by
he Pareto curve, is the solution path of ISTc; the chain line �—·—�
s the path of SPGL�1; the dashed line �� � � is the path of IST;
nd the dotted line �¯� is the path of IRLS.

igure 3. Pareto curve and optimization paths �same, limited number
f iterations� of four solvers for a BP0 problem �see Figure 2 for leg-
nd�.
oughly equates to using the same number of matrix-vector products
or each solver. Whereas, SPG�1 continues to provide a fairly accu-
ate approximation to the BP0 solution, those computed by IST,
STc, and IRLS suffer from larger errors. IST stops before the one-
orm regularization goes into effect; hence, the data misfit at the can-
idate solution is small, but the one norm is completely incorrect.
STc and IRLS accumulate small errors along their paths because
here are not enough iterations to solve each subproblem to sufficient
ccuracy. Note that both solvers accumulate errors along both axes.

GEOPHYSICAL EXAMPLE

As a concrete example of the use of the Pareto curve in the geo-
hysical context, we study the problem of wavefield reconstruction
ith sparsity-promoting inversion in the curvelet domain �CRSI�

Herrmann and Hennenfent, 2008�. The simulated acquired data,
hown in Figure 4a, corresponds to a shot record with 35% of traces
issing. The interpolated result, shown in Figure 4b, is obtained by

olving BP0 using SPG�1. This problem has more than half a million
nknowns and 42,000 data points.

Points in Figure 5 are samples of the corresponding Pareto curve.
he regularity of these points strongly indicates that the underlying
urve, which we know to be convex, is smooth and well behaved and
mpirically supports our earlier claim. However, problems of practi-

igure 4. CRSI on synthetic data. �a� Input and �b� interpolated data
sing CRSI with SPG�1.

igure 5. Pareto curve and SPG�1 solution path for a CRSI problem.
he symbols � represent a fine accurate sampling of the Pareto
urve. The solid line �—� is an approximation to the Pareto curve us-
ng the few circled points, and the chain line �—·—� is the solution
ath of SPG� .
1
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al interest are often significantly larger, and it can be prohibitively
xpensive to compute a similarly fine sampling of the curve.

Because the curve is well behaved, we can leverage its smooth-
ess and use a small set of samples to obtain a good interpolation.
he solid line in Figure 5 shows an interpolation based only on infor-
ation from the circled samples. The interpolated curve closely
atches samples that were not included in the interpolation. Figure 5

lso plots the iterates taken by SPG�1 to obtain the reconstruction
hown in Figure 4b. The plot shows that the iterates remain close to
he Pareto curve and converge toward the BP0 solution.

CONCLUSIONS

The sheer size of seismic problems makes it a certainty that there
ill be significant constraints on the amount of computation that can
e done when solving an inverse problem. Hence, it is especially im-
ortant to explore the nature of a solver’s iterations to make an in-
ormed decision on how best to truncate the solution process. The
areto curve serves as the optimal reference, which makes an unbi-
sed comparison among different one-norm solvers possible.

Of course, it is prohibitively expensive in practice to compute the
ntire Pareto curve exactly. However, we observe that the Pareto
urves for many of the one-norm regularized problems are regular,
s confirmed by the theoretical result 1. This suggests that it is possi-
le to approximate the Pareto curve by fitting a curve to a small set of
ample points, taking into account derivative information at these
oints. As such, insights from the Pareto curve can be leveraged to
arge-scale one-norm regularized problems, as we illustrate in a geo-
hysical example. This prospect is particularly exciting given the
urrent resurgence of this type of regularization in many areas of re-
earch.
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