
SIAM J. SCI. COMPUT. c© 2012 Society for Industrial and Applied Mathematics
Vol. 34, No. 3, pp. A1380–A1405

HYBRID DETERMINISTIC-STOCHASTIC METHODS
FOR DATA FITTING∗

MICHAEL P. FRIEDLANDER† AND MARK SCHMIDT‡

Abstract. Many structured data-fitting applications require the solution of an optimization
problem involving a sum over a potentially large number of measurements. Incremental gradient
algorithms offer inexpensive iterations by sampling a subset of the terms in the sum; these methods
can make great progress initially, but often slow as they approach a solution. In contrast, full-gradient
methods achieve steady convergence at the expense of evaluating the full objective and gradient on
each iteration. We explore hybrid methods that exhibit the benefits of both approaches. Rate-of-
convergence analysis shows that by controlling the sample size in an incremental-gradient algorithm,
it is possible to maintain the steady convergence rates of full-gradient methods. We detail a practical
quasi-Newton implementation based on this approach. Numerical experiments illustrate its potential
benefits.

Key words. optimization, data fitting, incremental gradient, gradient descent

AMS subject classifications. 47N10, 90C06, 90C25, 94A20

DOI. 10.1137/110830629

1. Introduction. Data-fitting applications are often typified by optimization
problems of the form

(1.1) minimize
x∈Rn

f(x) :=
1

M

M∑
i=1

fi(x),

where each function fi corresponds to a single observation (or measurement) and
models the misfit for a given choice of parameters x. The aim is to choose parameters
that minimize the misfit (or loss) across all measurements. The canonical example is
least squares, and in that case,

fi(x) =
1
2 (a

T
i x− bi)

2 for all i = 1, . . . ,M.

This misfit model corresponds to a linear model with Gaussian errors on the measure-
ments b. For applications where the measurements b are binary, a more appropriate
model is logistic regression, described by the choice

fi(x) = log(1 + exp[−bia
T
i x]) for all i = 1, . . . ,M.

These are both special cases of the more general maximum-likelihood problem. The
maximum-likelihood approach gives rise to separable problems like (1.1) whenever the
measurements (ai, bi) are assumed to be independent and identically distributed.

∗Submitted to the journal’s Methods and Algorithms for Scientific Computing section April 13,
2011; accepted for publication (in revised form) April 6, 2012; published electronically May 29, 2012.

http://www.siam.org/journals/sisc/34-3/83062.html
†Department of Computer Science, University of British Columbia, Vancouver V6T 1Z4, B.C.,

Canada (mpf@cs.ubc.ca). The work of this author was supported by NSERC Discovery Grant 312104.
‡INRIA–SIERRA team, Laboratoire d’Informatique de l’Ecole Normale Superieure

(INRIA/ENS/CNRS UMR 8548), 23 avenue d’Italie, 75214 Paris CEDEX 13, France
(mark.schmidt@inria.fr). The work of this author was supported by the CRD DNOISE II NSERC
grant, and the SIERRA grant from the European Research Council (SIERRA-ERC-239993).

A1380

HYBRID DETERMINISTIC-STOCHASTIC METHODS A1381

If the number of measurements M is very large, or if the individual fi are com-
plicated functions (e.g., each fi evaluation may require the solution of a partial differ-
ential equation), then evaluating f(x) and ∇f(x) can be computationally expensive.
However, there is often a large amount of uniformity in the measurements, which
means that a full evaluation of f(x) and ∇f(x) may be unnecessary to make progress
in solving (1.1). This motivates incremental-gradient methods, in which each iteration
only evaluates the gradient with respect to a single fi [3, section 3.2].

Incremental-gradient methods enjoy an iteration cost that is M times faster than
full-gradient methods because the iterations are independent of M . Thus, in the
time it takes to make one full-gradient iteration, the incremental-gradient method
can achieve M iterations, which often results in rapid initial progress. However, the
number of iterations needed to reach the same level of accuracy may be much higher.
Indeed, because of their faster convergence rate, full-gradient methods must eventually
dominate incremental-gradient methods.

Our aim is to develop a method that exhibits the benefits of these two extremes.
The approach is based on starting with iterations that resemble an incremental-
gradient approach and use relatively few measurements to approximate the gradi-
ent; as the iterations proceed, the algorithm gradually increases the number of mea-
surements. This preserves the rapid initial progress of incremental-gradient methods
without sacrificing the convergence rate of full-gradient methods.

1.1. Gradient descent with error. In the most basic version of the algorithm
that we consider, each iterate is computed via the update

(1.2) xk+1 = xk − αkgk

for some step size αk; the search direction

(1.3) gk := ∇f(xk) + ek

is an approximation of the gradient, and ek is the residual in its computation. This
framework is the point of departure in the analysis of sections 2–3. Evidently, the
full-gradient method (i.e., steepest descent) corresponds to the case where ek ≡ 0,
which means that the gradient is exactly computed at each iteration.

The stochastic approximation method deals with the case where the residual ek
is a random variable; see [3]. In this context we typically assume that E[ek] = 0
and E[‖ek‖2] ≤ B for some constant B, which are sufficient to guarantee that the
iterates converge in a probabilistic sense (for a suitable choice of decreasing step
sizes). Incremental-gradient methods are a special case of stochastic approximation.
Here, rather than computing the full gradient ∇f(xk) on each iteration, a function fi
is randomly selected among i ∈ {1, . . . ,M}, and the gradient estimate is constructed
as gk = ∇fi(xk).

In this work we consider scenarios in which the gradient residual can be controlled
on each iteration by specifying a per-iteration bound Bk on the norm of the residual.
In particular, we characterize convergence of the gradient-with-error algorithm (1.2)–
(1.3) under two different conditions:

(1.4) deterministic: ‖ek‖2 ≤ Bk; or stochastic: E[‖ek‖2] ≤ Bk.

Our analysis applies whether the noise is deterministic or stochastic, and we do not
assume that the noise has zero mean. In the context of problem (1.1), the error in
the gradient is a result of using a sample of the fi functions (sometimes referred to

A1382 MICHAEL P. FRIEDLANDER AND MARK SCHMIDT

as a batch). In section 3 we show how the sample size (or batch size) influences the
bound Bk.

We also consider in section 4 the case in which the approximate gradient gk is
scaled to account for curvature information in f . In this case, the iteration update is

(1.5) xk+1 = xk − αkdk,

where dk solves the system

(1.6) Hkd = −gk,

and Hk is a positive-definite approximation (e.g., a quasi-Newton Hessian) to ∇2f .

1.2. Assumptions and notation. We make the blanket assumptions through-
out that a minimizer x∗ of f always exists, that the functions fi : R

n → R are
continuously differentiable, and that the overall gradient of f is uniformly Lipschitz
continuous, i.e., for some positive L,

(1.7a) ‖∇f(x)−∇f(y)‖ ≤ L‖x− y‖ for all x, y ∈ R
n.

We also assume that f is strongly convex with (positive) parameter μ:

(1.7b) f(y) ≥ f(x) + (y − x)T∇f(x) + 1
2μ‖y − x‖2 for all x, y ∈ R

n.

If f is twice-continuously differentiable, then these assumptions are equivalent to the
condition that the eigenvalues of the Hessian are uniformly bounded above and below:

μI 	 ∇2f(x) 	 LI.

The ratio L/μ ≥ 1 is known as the condition number of f [26, section 2.1.3].
We make the assumption—standard in the stochastic optimization literature [3,

section 4.2]—that

(1.8) ‖∇fi(x)‖2 ≤ β1 + β2‖∇f(x)‖2 for all x and i = 1, . . . ,M,

for some constants β1 ≥ 0 and β2 ≥ 1. This implies that ‖ek‖ is bounded as a function
of the true gradient of the objective.

We describe two versions of linear convergence of function values. The first is
denoted as weak linear convergence and is characterized by a bounding sequence on
the function value at every iteration k:

(1.9) f(xk)− f(x∗) = O(σk) for some σ < 1.

This is a nonasymptotic version of R-linear convergence. (See, for example, [28,
section A.2].) The second is denoted as strong linear convergence and characterizes
the decrease of the function value at every iteration k:

(1.10) f(xk+1)− f(x∗) ≤ σ[f(xk)− f(x∗)] for some σ < 1.

We emphasize that this inequality applies to all iterations of the algorithm and is a
nonasymptotic version of Q-linear convergence. Note that (1.10) implies (1.9), though
the converse is not implied.

All of the convergence results that we analyze are described only in terms of
convergence of the objective function values and not the iterates xk. This is sufficient,

HYBRID DETERMINISTIC-STOCHASTIC METHODS A1383

however, because the strong convexity assumption allows us to directly deduce a
convergence rate of xk to x∗ via the corresponding function values. In particular,
strong convexity of f implies

(1.11)
μ

2
‖xk − x∗‖2 ≤ f(xk)− f(x∗).

Thus, the rate at which the squared error ‖xk − x∗‖2 converges is at least as fast as
the rate at which f(xk) converges to the optimal value f(x∗).

If the matrix Hk in the iterations (1.5)–(1.6) is uniformly positive definite and
uniformly bounded in norm (as can be enforced in practice), then assumptions (1.7a)–
(1.7b) can be replaced by the following conditions: there exist positive constants L′

and μ′ such that for all x, y ∈ R
n and for all k = 0, 1, . . . ,

‖∇f(x)−∇f(y)‖H−1
k

≤ L′‖x− y‖Hk
,(1.12a)

f(y) ≥ f(x) + (y − x)T∇f(x) + 1
2μ

′‖x− y‖2Hk
,(1.12b)

where the quadratic norm ‖x‖Hk
=
√
xTHkx and its dual ‖x‖H−1

k
are used instead

of the Euclidean norm. It can then be verified that all of the results in Sections 2–3
apply to the Newton-like algorithm (1.5)–(1.6), where the parameters L and μ in those
results are replaced by the parameters L′ and μ′ found in (1.12). The benefit of this
approach is that a judicious choice of the scaling Hk can lead to a scaled condition
number L′/μ′ that can be smaller than the condition number L/μ of the unscaled
objective f , effectively improving on the error constants found in the convergence
results.

1.3. Contributions. This paper is divided into six components.

Weak linear convergence with generic bounds (section 2.1). We analyze the con-
vergence rate under a generic sequence {Bk}. Our results imply that for any
(sub)linearly decreasing sequence {Bk}, the algorithm has a weak (sub)linear conver-
gence rate. In the expected-error version of (1.4), the convergence rate is described
in terms of the expected function value.

Strong linear convergence with particular bounds (section 2.2). We describe a par-
ticular construction of the sequence {Bk} that ensures that the algorithm has a strong
linear convergence rate. The rate achieved under this sequence can be arbitrarily close
to the rate of the standard gradient method without error, without requiring an exact
gradient calculation on any iteration.

Sublinear convergence without strong convexity (section 2.3). Without the strong
convexity assumption on f , the convergence rate for the deterministic gradient method
is sublinear. We show that a summable sequence {Bk} is sufficient to maintain the
same sublinear rate.

Application to sample-average gradients (section 3). For data-fitting problems
of the form (1.1), we show that a growing sample-size strategy can be used as a
mechanism for controlling the error in the estimated gradient and achieving a linear
rate. In effect, choosing the sample size allows us to control the error, as in (1.4). By
growing the sample size sufficiently fast, we implicitly set the rate at which Bk → 0,
and hence set the overall rate of the algorithm.

A practical quasi-Newton implementation (section 4). We describe a practical
implementation of the ideas based on a limited-memory quasi-Newton approximation
and a heuristic line search.

A1384 MICHAEL P. FRIEDLANDER AND MARK SCHMIDT

Numerical results (section 5). We evaluate the implementation on a variety of
data-fitting applications (comparing it to incremental-gradient methods and a deter-
ministic quasi-Newton method).

1.4. Related work. Our approach is based on bridging the gap between two
ends of a spectrum, where incremental gradient methods are at the end of “cheap
iterations with slow convergence,” and full-gradient methods are “expensive itera-
tions with fast convergence.” In particular, incremental-gradient methods achieve an
expected sublinear convergence rate on the expected value of f(xk), i.e.,

E[f(xk)− f(x∗)] = O(1/k),

where the iterations are described by (1.2) for αk = O(1/k) [25, section 2.1]. In fact,
among all first-order methods, this is the best possible dependency on k given only a
first-order stochastic oracle; thus a linear rate is not possible [24, section 14.1].

In contrast, consider the basic gradient-descent iteration (1.2) with a fixed step
size αk = 1/L and gk = ∇f(xk). It is well known that this algorithm has a strong
linear convergence rate and satisfies the per-iteration decrease in (1.10) with σ =
1− μ/L; see [17, section 8.6].

Some authors have analyzed incremental-gradient methods with a constant step
size [23]. Although this strategy does not converge to the optimal solution, it does
converge at a linear rate to a neighborhood of the solution (where the size of the
neighborhood increases with the step size).

In the context of incremental-gradient methods, several other hybrid methods
have been proposed that achieve a linear convergence rate. The works of Bertsekas [2]
and Blatt, Hero, and Gauchman [6] are the closest in spirit to our proposed approach.
However, the convergence rates for these methods treat full passes through the data as
iterations, similar to the full-gradient method. Further, there are numerical difficulties
in evaluating certain sequences associated with the method of Bertsekas, while the
method of Blatt, Hero, and Gauchman may require an excessive amount of memory.

This is not the first work to examine a growing sample-size strategy. This type of
strategy appears to be a “folk” algorithm used by practitioners in several application
domains, and it is explicitly mentioned in an informal context by some authors such
as Bertsekas and Tsitsiklis [3, page 113], who refer to growing sample-size techniques
as “batching” strategies. This is the first work, that we are aware of, that presents a
theoretical analysis of the technique and that proposes a practical large-scale quasi-
Newton implementation along with an experimental evaluation.

Gradient descent with a decreasing sequence of errors in the gradient measurement
was previously analyzed by Luo and Tseng [18], and they present analogous weak and
strong linear convergence results depending on the sequence of bounds on the noise.
Our analysis extends this previous work in several ways:

• The weak linear convergence rate described in [18] requires a per-iteration
strict decrease in the objective. In contrast, our analysis in section 2.1 does
not require this assumption and allows for the (realistic) possibility that the
noisy gradient can lead to an increase in the objective function on some
iterations.

• The strong linear convergence rate shown in [18] holds only asymptotically,
while the construction we give (see section 2.2) leads to a nonasymptotic rate
of the form (1.10) that applies to all iterations of the algorithm.

HYBRID DETERMINISTIC-STOCHASTIC METHODS A1385

• Luo and Tseng [18] consider deterministic errors in the gradient measurement
that can be bounded in an absolute sense; we also consider the more general
scenario where the error is stochastic and can only be bounded in expectation.

1.5. Reproducible research. Following the discipline of reproducible research,
the source code and data files required to reproduce the experimental results of this pa-
per can be downloaded from http://www.cs.ubc.ca/labs/scl/FriedlanderSchmidt2011.

2. Convergence analysis. Our convergence analysis first considers a basic first-
order method with the constant step size αk = 1/L. The following intermediate result
establishes an upper bound on the objective value at each iteration in terms of the
residual in the computed gradient.

Lemma 2.1. At each iteration k of algorithm (1.2), with αk ≡ 1/L,

(2.1) f(xk+1)− f(x∗) ≤ (1− μ/L)[f(xk)− f(x∗)] +
1

2L
‖ek‖2.

Proof. It follows from assumptions (1.7) that the following inequalities hold:

f(y) ≤ f(x) + (y − x)T∇f(x) +
L

2
‖y − x‖2,(2.2a)

f(y) ≥ f(x) + (y − x)T∇f(x) +
μ

2
‖y − x‖2.(2.2b)

Use x = xk and y = xk − (1/L)gk in (2.2a) and simplify to obtain

f(xk − (1/L)g(xk)) ≤ f(xk)− 1

L
g(xk)

T∇f(xk) +
1

2L
‖g(xk)‖2.

Next, use the definitions of xk+1 and gk (cf. (1.2)–(1.3)) in this expression to
obtain

(2.3)

f(xk+1) ≤ f(xk)− 1

L
(∇f(xk) + ek)

T∇f(xk) +
1

2L
‖∇f(xk) + ek‖2

= f(xk)− 1

L
‖∇f(xk)‖2 − 1

L
∇f(xk)

T ek

+
1

2L
‖∇f(xk)‖2 + 1

L
∇f(xk)

T ek +
1

2L
‖ek‖2

= f(xk)− 1

2L
‖∇f(xk)‖2 + 1

2L
‖ek‖2.

We now use (2.2b) to derive a lower bound on the norm of ∇f(xk) in terms of
the optimality of f(xk). Do this by minimizing both sides of (2.2b) with respect to y:
by definition, the minimum of the left-hand side is achieved by y = x∗; the minimizer
of the right-hand side is given by y = x− (1/μ)∇f(x). Thus,

f(x∗) ≥ f(x)− 1

μ
∇f(x)T∇f(x) +

1

2μ
∇f(x)T∇f(x) = f(x)− 1

2μ
‖∇f(x)‖2

for any x. Rearranging and specializing to the case where x = xk,

(2.4) ‖∇f(xk)‖2 ≥ 2μ[f(xk)− f(x∗)].

Subtract f(x∗) from both sides of (2.3) and use (2.4) to get

f(xk+1)− f(x∗) ≤ f(xk)− f(x∗)− μ

L
[f(xk)− f(x∗)] +

1

2L
‖ek‖2

= (1 − μ/L)[f(xk)− f(x∗)] +
1

2L
‖ek‖2,

which gives the required result.

A1386 MICHAEL P. FRIEDLANDER AND MARK SCHMIDT

As an aside, note that (2.3) shows that the objective decreases monotonically,
i.e., f(xk+1) < f(xk) if ‖ek‖ < ‖∇f(xk)‖. In general, however, we do not require this
condition.

2.1. Weak linear convergence. In this section we show that if {Bk} is any
(sub)linearly convergent sequence, then algorithm (1.2) has a (sub)linear convergence
rate. This result reflects that the convergence rate of the approximate gradient algo-
rithm is not better than the rate at which the noise goes to zero, and of course is also
not better than the rate of the noiseless algorithm.

Theorem 2.2 (weak convergence rate under absolute error bounds). Suppose
that ‖ek‖2 ≤ Bk, where

(2.5) lim
k→∞

Bk+1/Bk ≤ 1.

Then at each iteration of algorithm (1.2) with αk ≡ 1/L, for any ε > 0 we have

f(xk)− f(x∗) ≤ (1− μ/L)k[f(x0)− f(x∗)] +O(Ck),

where Ck = max{Bk, (1− μ/L+ ε)k}.
Proof. Let ρ := 1− μ/L. Because ‖ek‖2 ≤ Bk, Lemma 2.1 implies

f(xk+1)− f(x∗) ≤ [f(xk)− f(x∗)]ρ+
1

2L
Bk.

Applying this recursively,

f(xk)− f(x∗) = [f(x0)− f(x∗)]ρk +O(μk),

where μk :=
∑k−1

i=0 ρk−i−1Bi. Observe that μk+1 = Bk + ρμk.
We now show that μk ≤ ξCk for all k for some ξ > 0. It follows from (2.5) and

the definition of Ck that limk→∞ Ck+1/Ck ≥ ρ+ ε and thus that there exists some N
such that Ck+1/Ck − ρ ≥ ε/2 for all k ≥ N . We now choose ξ such that

μk ≤ ξCk for all k ≤ N , and ξε/2 ≥ 1.

This is always possible because the μk are finite and ε > 0. We now show by induction
that μk ≤ ξCk for all k. This trivially holds for all k ≤ N by the definition of ξ.
Assuming this holds for some arbitrary k ≥ N , we have

μk+1 = Bk + ρμk ≤ Ck + ρξCk

≤ ξ(ε/2)Ck + ρξCk ≤ ξ(Ck+1/Ck − ρ)Ck + ρξCk = ξCk+1.

Thus, μk = O(Ck) for all k, as required.
An implication of this result is that the algorithm has a linear convergence rate

if Bk converges linearly to zero. For example, if Bk = O(γk) with γ < 1, then

f(xk)− f(x∗) = O(σk),

where σ = max{γ, (1− μ/L+ ε)} for any positive ε < μ/L.
Theorem 2.2 also yields a convergence rate in scenarios where the high cost of

computing an accurate gradient might make it appealing to allow the error in the
gradient measurement to decrease sublinearly. For example, if Bk = O(1/k2), then
f(xk)−f(x∗) = O(1/k2), which is the rate achieved by Nesterov’s optimal method for

HYBRID DETERMINISTIC-STOCHASTIC METHODS A1387

general smooth convex (but not necessarily strongly convex) functions in the noiseless
setting [26, section 2.1]. Theorem 2.2 also allows for the possibility that the bound Bk

does not converge to zero (necessarily implying the limit of Bk+1/Bk is one). In this
case, the result simply states that the distance to optimality is eventually bounded
by a constant times Bk.

The above analysis allows for the possibility that the approximate gradient is
computed by a stochastic algorithm where the error made by the algorithm can be
bounded in an absolute sense. We now consider the more general case where the
error can only be bounded in expectation. The following result is the counterpart to
Theorem 2.2, where we instead have a bound on the expected value of ‖ek‖2.

Theorem 2.3 (weak expected convergence rate under expected error bounds).
Suppose that E[‖ek‖2] ≤ Bk, where

lim
k→∞

Bk+1/Bk ≤ 1.

Then at each iteration of algorithm (1.2) with αk ≡ 1/L, for any ε > 0 we have

E[f(xk)− f(x∗)] ≤ (1 − μ/L)k[f(x0)− f(x∗)] +O(Ck),

where Ck = max{Bk, (1− μ/L+ ε)k}.
Proof. We use Lemma 2.1 and take expectations of (2.1) to obtain

E[f(xk+1)− f(x∗)] ≤ (1− μ/L)E[f(xk)− f(x∗)] +
1

2L
E[‖ek‖2].

Proceeding as in the proof of Theorem 2.2, we obtain a similar result, but based on
the expected value of the objective.

2.2. Strong linear convergence. We now describe a particular construction
of the sequence {Bk} that allows us to achieve a linear decrease of the function values
that applies to every iteration k. This strong guarantee, however, comes at the price
of requiring bounds on three quantities that are unknowable for general problems:
the strong convexity constant μ, the gradient’s Lipschitz constant L, and a nontrivial
lower bound on the current iterate’s distance to optimality f(xk)− f(x∗).

In particular, we consider any sequence {Bk} that satisfies

(2.6) 0 ≤ Bk ≤ 2L(μ/L− ρ)πk, k = 0, 1, . . . ,

where ρ ≤ μ/L is a positive constant, which controls the convergence rate, and πk is
a nonnegative lower bound on the distance to optimality, i.e.,

(2.7) 0 ≤ πk ≤ f(xk)− f(x∗).

Theorem 2.4 (strong linear rate under absolute error bounds). Suppose that
‖ek‖2 ≤ Bk where Bk is given by (2.6). Then at each iteration of algorithm (1.2)
with αk ≡ 1/L,

f(xk+1)− f(x∗) ≤ (1− ρ)[f(xk)− f(x∗)].

Proof. Because ‖ek‖2 ≤ Bk, Lemma 2.1 and (2.7) imply that

f(xk+1)− f(x∗) ≤ (1− μ/L)[f(xk)− f(x∗)] +
1

2L
Bk

≤ (1− μ/L)[f(xk)− f(x∗)] + (μ/L− ρ)πk

≤ (1− μ/L)[f(xk)− f(x∗)] + (μ/L− ρ)[f(xk)− f(x∗)]
= (1− ρ)[f(xk)− f(x∗)],

as required.

A1388 MICHAEL P. FRIEDLANDER AND MARK SCHMIDT

As we did with Theorem 2.3, we consider the case where the approximate gra-
dient is computed by a stochastic algorithm, and the error can only be bounded in
expectation. Provided we now have a lower bound πk on the expected suboptimality,
i.e.,

0 ≤ πk ≤ E[f(xk)− f(x∗)],

it is possible to show an expected linear convergence rate that parallels Theorem 2.4.
The proof follows that of Theorem 2.4, where we instead begin by taking the expec-
tation of both sides of (2.1).

Theorem 2.5 (strong expected linear rate under expected error bounds). Sup-
pose that E[‖ek‖2] ≤ Bk, where Bk is given by (2.6). Then at each iteration of
algorithm (1.2) with αk ≡ 1/L,

E[f(xk+1)− f(x∗)] ≤ (1− ρ)E[f(xk)− f(x∗)].

In both scenarios, we obtain the fastest convergence rate in the extreme case
where ρ = μ/L. From (2.6), this means that Bk must be zero, i.e., the gradient is
exact, and we obtain the classic strong linear convergence result with error constant
σ = 1− μ/L stated in section 1.4. However, if we take any positive ρ less than μ/L,
then we obtain a slower linear convergence rate, but (2.6) allows Bk to be nonzero
(as long as πk > 0).

The bound (2.6) on the error depends on both the conditioning of the problem (as
determined by the parameter μ and L), and the lower bound on the distance to the
optimal function value πk. This seems intuitive. For example, we can allow a larger
error in the gradient calculation the further the current iterate is from the optimal
function value, but a more accurate calculation is needed to maintain the strong linear
convergence rate as the iterates approach the solution. Similarly, if the problem is
well conditioned so that the ratio μ/L is close to 1, a larger error in the gradient
calculation is permitted, but for ill-conditioned problems where μ/L is very small, we
require a more accurate gradient calculation.

Note that the analysis of this section holds even if the bounds μ, L, and πk are
not the tightest possible. Unsurprisingly, we obtain the fastest convergence rate when
μ is as large and L is as small as possible, while the largest error in the gradient
calculation is allowed if πk is similarly as large as possible. Note that with πk = 0,
which is a trivial bound that is valid by definition, we require an exact gradient.

Although it is difficult in general to obtain a bound πk that satisfies (2.7), there
are at least two possible heuristics that could be used in practice to approximate
this quantity. The first heuristic is possible if we have bounds on the Lipschitz and
strong-convexity constants (L and μ), as well as the norm of the gradient at xk. In
that case, we use the stationarity of x∗, (1.7a), and (1.11) to deduce that

μ

2L2
‖∇f(xk)‖2 ≤ μ

2
‖xk − x∗‖2 ≤ f(xk)− f(x∗).

Although we typically do not have access to ‖∇f(xk)‖, the norm of its approximation
‖gk‖ is a reasonable proxy, which will improve as the magnitude of the gradient
residual decreases.

The second heuristic is based on the assumption that the distance of consecutive
iterates xk to the solution x∗ decreases monotonically. In that case,

‖xk − xk+1‖2 = ‖(xk − x∗)− (xk+1 − x∗)‖2 ≤ 4‖xk − x∗‖2.

HYBRID DETERMINISTIC-STOCHASTIC METHODS A1389

Coupling this with (1.11) and premultiplying by μ/8, we obtain the bound

μ

8
‖xk − xk+1‖2 ≤ f(xk)− f(x∗).

This option may give a reasonable heuristic in the context of the increasing sample-size
strategy even if the distance to the optimal solution does increase on some iterations,
because as the sample size increases it becomes less likely that the distance will in-
crease.

2.3. Relaxing strong convexity. If we remove the strong-convexity assump-
tion, the deterministic gradient method has a sublinear convergence rate ofO(1/k) [26,
Section 2.1.5] while the stochastic gradient method under standard assumptions has a
slower sublinear convergence rate of O(1/

√
k) [24, Section 14.1]. Using an argument

that does not rely on strong convexity, we show that the O(1/k) convergence rate of
the deterministic gradient method is preserved for the average of the iterates if the
residuals of the computed gradients are summable.

Theorem 2.6 (sublinear rate under summable error bounds). Suppose that∑∞
i=0 ‖ek‖ < ∞. Then at each iteration of algorithm (1.2) with αk ≡ 1/L,

f(x̄k)− f(x∗) = O(1/k),

where x̄k := (1/k)
∑k

i=1 xi.
Proof. As in (2.3), Lipschitz continuity of the gradient implies that

f(xk+1) ≤ f(xk)− 1

2L
‖∇f(xk)‖2 + 1

2L
‖ek‖2.

We use convexity of f to bound f(xk) and obtain

f(xk+1) ≤ f(x∗) + (xk − x∗)T∇f(xk)− 1

2L
‖∇f(xk)‖2 + 1

2L
‖ek‖2.

Combine (1.2) and (1.3) to deduce that −∇f(xk) = ek + L(xk+1 − xk), and move
f(x∗) to the left-hand side to get, after simplifying,

f(xk+1)− f(x∗) = −(xk − x∗)T (ek + L[xk+1 − xk])

− L

2
‖xk+1 − xk‖2 − (xk+1 − xk)

T ek

=
L

2
‖xk − x∗‖2 − (xk − x∗)T ek − (xk+1 − xk)

T ek

− L

2
‖xk − x∗‖2 − L(xk − x∗)T (xk+1 − xk)− L

2
‖xk+1 − xk‖2

≤ L

2

[‖xk − x∗‖2 − ‖xk+1 − x∗‖2
]
+ ‖ek‖ · ‖xk+1 − x∗‖.

Summing both sides up to iteration k, we get

(2.8)

k∑
i=1

[
f(xi)− f(x∗)

] ≤ L

2
‖x0 − x∗‖2 − L

2
‖xk − x∗‖2 +

k∑
i=1

‖ei−1‖ · ‖xi − x∗‖.

We will first use (2.8) to show that the sequence {‖xk − x∗‖} is bounded and then
use it to obtain the final result.

A1390 MICHAEL P. FRIEDLANDER AND MARK SCHMIDT

Because the left-hand side of (2.8) is nonnegative,

L

2
‖xk − x∗‖2 ≤ L

2
‖x0 − x∗‖2 +

k∑
i=1

‖ei−1‖ · ‖xi − x∗‖.

We now prove that the sequence {‖xk−x∗‖} is bounded by showing that the auxiliary
sequence {dk}, with dk := max{1, ‖xk − x∗‖}, is bounded. Because dk ≥ 1,

dk ≤ d2k ≤ max

{
1, ‖x0 − x∗‖2 + 2

L

k∑
i=1

‖ei−1‖ · ‖xi − x∗‖
}

≤ d20 +
2

L

k∑
i=1

‖ei−1‖ · ‖xi − x∗‖

≤ d20 + C1

k∑
i=1

‖ei−1‖ · di,

where C1 := 2/L. Because the sequence {‖ek‖} is summable, it holds that ‖ek‖ → 0
and thus that there exists some N large enough that C1‖ek−1‖ < 1 for all k ≥ N .
Partition the sum at N :

dk ≤ C0 + C1

k∑
i=N

‖ei−1‖ · di for all k > N,

where C0 := d20 + C1

∑N−1
i=1 ‖ei−1‖ · di. Rearrange terms to get

(1− C1‖ek−1‖)dk ≤ C0 + C1

k−1∑
i=N

‖ei−1‖ · di for all k > N,

and because C1‖ek−1‖ < 1 for all k > N ,

dk ≤ 1

1− C1‖ek−1‖

[
C0 + C1

k−1∑
i=N

‖ei−1‖di
]

for all k > N.

If we apply this bound recursively to dk−1, we obtain

dk ≤ 1

1− C1‖ek−1‖

[
C0 + C1

k−2∑
i=N

‖ei−1‖di + C1‖ek−2‖
1− C1‖ek−2‖

(
C0 + C1

k−2∑
i=N

‖ei−1‖di
)]

=
1

(1− C1‖ek−1‖)(1− C1‖ek−2‖)

[
C0 + C1

k−2∑
i=N

‖ei−1‖di
]

for all k > N,

and if we apply it recursively from k down to N , we obtain

(2.9) dk ≤ 2C0∏k
i=N (1− C1‖ei−1‖)

≤ 2C0∏∞
i=N (1− C1‖ei−1‖) .

To see that the right-hand side term is bounded, take logarithms of both sides to get

log dk ≤ log(2C0)−
∞∑

i=N

log(1− C1‖ei−1‖).

HYBRID DETERMINISTIC-STOCHASTIC METHODS A1391

We now use the limit-comparison test, which asserts that for nonnegative sequences
{ai} and {bi}, if 0 < limi→∞ ai/bi < ∞, then

∑
i bi < ∞ implies

∑
i ai < ∞. We

thus compare the sequence {− log(1−C1‖ei−1‖)} to the summable sequence {‖ei−1‖}
using l’Hôpital’s rule to get

lim
i→∞

− log(1− C1‖ei−1‖)
‖ei−1‖ = lim

i→∞

C1

1−C1‖ei−1‖
1

= C1.

Thus, the sequence {− log(1 − C1‖ei−1‖)} is summable, which implies, via (2.9) and
the definition of dk, that the sequence {‖xk − x∗‖} is bounded.

We now use convexity of f and (2.8) to bound the function value of the average
iterate:

f

(
1

k

k∑
i=1

xi

)
− f(x∗) ≤ 1

k

k∑
i=1

[
f(xi)− f(x∗)

]

≤ L

2k
‖x0 − x∗‖2 + 1

k

k∑
i=1

‖ei−1‖ · ‖xi − x∗‖.

Because the sequence {‖ek‖} is summable (by assumption), and the sequence {‖xk −
x∗‖} is bounded, this last inequality implies the conclusion of the theorem.

Note that the convergence rate also holds for the iterate that achieves the lowest
function value, but, unlike the deterministic case, this is not guaranteed to be the last
iterate.

3. Application to sample-average gradients. Incremental-gradient methods
for (1.1) are based on the iteration scheme (1.2) with the gradient approximation

gk :=
1

|Bk|
∑
i∈Bk

∇fi(xk),

where the set Bk ⊆ {1, . . . ,M} represents a sample of the measurements that consti-
tute the full data set. Typically, Bk contains a single element that is either chosen
in a cyclic fashion or sampled at random, and, as discussed in section 1.4, the con-
vergence rate of the method is sublinear. As the sample size increases, however, the
error in the sampled gradient gk decreases, and so the sample size can be used to
implicitly control the error in the gradient. We use the results of section 2 to develop
an increasing sample-size strategy that improves on this sublinear rate.

Let Nk denote the complement of Bk, so that Bk ∪ Nk = {1, . . . ,M}. Then the
gradient residual, defined by (1.3), satisfies

(3.1) ek =
M − |Bk|
M |Bk|

∑
i∈Bk

∇fi(xk)− 1

M

∑
i∈Nk

∇fi(xk),

The first term is a reweighting of the gradient approximation, and the second term
is the portion of ∇f(xk) that is not sampled. Assumption (1.8) allows us to bound
the norm of this residual in terms of the full gradient and thus leverage the results
of section 2.

A1392 MICHAEL P. FRIEDLANDER AND MARK SCHMIDT

3.1. Deterministic sampling. It follows from assumption (1.8) that the gra-
dient residual in (3.1) satisifies

‖ek‖2 =
∥∥∥∥∥
(
M − |Bk|
M |Bk|

) ∑
i∈Bk

∇fi(xk)− 1

M

∑
i∈Nk

∇fi(xk)

∥∥∥∥∥
2

≤
[(

M − |Bk|
M |Bk|

)∥∥∥ ∑
i∈Bk

∇fi(xk)
∥∥∥+ 1

M

∥∥∥ ∑
i∈Nk

∇fi(xk)
∥∥∥
]2

≤
[(

M − |Bk|
M |Bk|

) ∑
i∈Bk

‖∇fi(xk)‖+ 1

M

∑
i∈Nk

‖∇fi(xk)‖
]2

≤ 4

(
M − |Bk|

M

)2

(β1 + β2‖∇f(xk)‖2),

where the triangle-inequality is applied repeatedly and the resulting terms are simpli-
fied. Next, in the same way that (2.4) was derived, we use (2.2a) to derive the upper
bound

‖∇f(xk)‖2 ≤ 2L[f(xk)− f(x∗)].

Thus the bound on ‖ek‖2 can be expressed in terms of the sample-size ratio and the
distance to optimality:

(3.2) ‖ek‖2 ≤ 4

[
M − |Bk|

M

]2 (
β1 + 2β2L[f(xk)− f(x∗)]

)
.

The following result parallels Theorem 2.2 and asserts that a linearly increasing
sample size is sufficient to induce a weak linear convergence rate of the algorithm.

Theorem 3.1 (weak linear rate with deterministic sampling). Suppose that (1.8)
holds and that the sample size |Bk| increases geometrically toward M , i.e.,

M − |Bk|
M

= O(γk/2)

for some γ < 1. Then at each iteration of algorithm (1.2) with αk ≡ 1/L, for any
ε > 0 we have

f(xk)− f(x∗) = [f(x0)− f(x∗)]O([1 − μ/L+ ε]k) +O(σk),

where σ = max{γ, 1− μ/L}+ ε.
Proof. Let ρk = (M −|Bk|)/M . Using (3.2) and Lemma 2.1, we obtain the bound

f(xk+1)− f(x∗) ≤ (1 − μ/L)[f(xk)− f(x∗)] +
2ρk
L

(β1 + 2β2L[f(xk)− f(x∗)])

= (1 − μ/L+ 4β2ρk)[f(xk)− f(x∗)] +
2β1

L
ρk

= ωk[f(xk)− f(x∗)] +
2β1

L
ρk,

where ωk := 1− μ/L+ 4β2ρk. Applying this recursively, we obtain

f(xk)− f(x∗) ≤ [f(x0)− f(x∗)][wk]
k +

k−1∑
i=0

O([ωk]
k−i−1γi).

HYBRID DETERMINISTIC-STOCHASTIC METHODS A1393

We now take δk := max{γ, ωk} and obtain

f(xk)− f(x∗) ≤ [f(x0)− f(x∗)][wk]
k +O(k[δk]

k−1).

Because ρk → 0, it follows that ωk → 1−μ/L and δk → δ̄ := max{γ, 1−μ/L}. Thus
[ωk]

k = O(1 − μ/L+ ε) for any ε > 0, which bounds the first term in the right-hand
side above. To construct the bounding sequence {ξσk} for the second term in the
right-hand side, Choose any σ ∈ (δ̄, 1). Thus, σ > δk for all k large enough and we
subsequently choose ξ ≥ (k/δk)(δk/σ)

k, which is possible because the maximum of
the right-hand side exists.

An interesting difference with Theorem 2.2, which considers a generic error in the
gradient, is that the error in the objective function decreases at twice the rate that
the sample size increases.

It is possible to get a strong linear rate of convergence by increasing the sample
size in a more controlled way. Theorem 2.4 guides the choice of the sample size, and
gives the following corollary. The proof follows by simply ensuring that the right-hand
side of (3.2) is bounded as required by Theorem 2.4.

Corollary 3.2 (strong linear rate with deterministic sampling). Suppose that
(1.8) holds, and that the sample size |Bk| is increased so that at each iteration k =
0, 1, . . .,

4

(
M − |Bk|

M

)2 (
β1 + 2β2L[f(xk)− f(x∗)]

) ≤ L(μ/L− ρ)[f(xk)− f(x∗)]

for some positive ρ ≤ μ/L. Then at each iteration of algorithm (1.2) with αk ≡ 1/L,

f(xk+1)− f(x∗) ≤ (1− ρ)[f(xk)− f(x∗)].

We see that if the individual functions fi are very similar (so that β1 and β2 are
small), then we can choose a fairly small sample size. In contrast, if the fi are very
dissimilar, then we must use a larger sample size.

3.2. Stochastic sampling. Theorem 3.1 and Corollary 3.2 are based on the
deterministic bound (3.2) on the gradient error and hold irrespective of the manner
in which the elements of the samples Bk are chosen; e.g., the samples do not need
to be chosen cyclically or sampled uniformly. We can obtain a strictly tighter bound
in expectation, however, if we choose the sample by uniform sampling without re-
placement. In particular, by suitably modifying the derivation of a well-known result
in statistical sampling, we can obtain a bound in terms of a quantity related to the
sample variance of the gradients:

Sk =
1

M − 1

M∑
i=1

||∇fi(xk)−∇f(xk)||2.

Using an argument similar to [16, section 2.7], uniform sampling without replacement
yields

E[‖ek‖2] =
(
M − |Bk|

M

)
Sk

|Bk| .

By using (1.8), we obtain the bound

E[‖ek‖2] ≤
[
M − |Bk|

M
· 1

|Bk|
]

M

M − 1
(β1 + 2(β2 − 1)L[f(xk)− f(x∗)]).

A1394 MICHAEL P. FRIEDLANDER AND MARK SCHMIDT

0 5000 10000
10

−8

10
−4

10
0

Sample size

E
rr

or
 b

ou
nd

Deterministic
Stochastic

1 100 1000
10

0

10
1

10
2

10
3

10
4

Iteration (k)

S
am

pl
e

si
ze

Deterministic
Stochastic

Fig. 3.1. (a) Bounding factors in the error of the sampled gradient. The error bound for
stochastic sampling is uniformly better than that for deterministic sampling. (b) Minimum sample-
size schedule required to achieve a linear rate with error constant 0.9. In both figures, M = 104.

An expected convergence result parallel to Theorem 3.1 can then be obtained with
only minor changes to the proof.

Theorem 3.3 (weak linear rate with stochastic sampling). Suppose that (1.8)
holds and that

M − |Bk|
M

· 1

|Bk| = O(γk)

for some γ < 1. Then at each iteration of algorithm (1.2) with αk ≡ 1/L, for any
ε > 0 we have

E[f(xk)− f(x∗)] = [f(x0)− f(x∗)]O([1 − μ/L+ ε]k) +O(σk),

where σ = max{γ, 1− μ/L}+ ε.
Note that the right-hand side of the bound on E[‖ek‖2] is uniformly better than

the bound shown in (3.2). Importantly, it initially decreases to zero at a faster rate
as the size of the sample increases. Figure 3.1(a) illustrates the difference in the
sample-size requirements between Theorems 3.1 and 3.3, i.e.,[

M − |Bk|
M

]2
(deterministic) versus

[
M − |Bk|

M
· 1

|Bk|
]

(stochastic),

as the sample size |Bk| → M := 104. Figure 3.1(b) illustrates the sample-size schedule
needed to realize a linear convergence rate in the deterministic and stochastic cases.

4. Practical implementation. The analysis so far has focused on the approxi-
mate gradient descent iterations given by (1.2)–(1.3). In practice, it is useful to make
two modifications to this basic algorithm. The first, described by (1.5)–(1.6), is based
on scaling the search directions to account for curvature information in f . The sec-
ond allows for a varying step size. For this section, we define the sampled objective
function and its gradient by

(4.1) f̄k(x) =
1

|Bk|
∑
i∈Bk

fi(x) and gk(x) =
1

|Bk|
∑
i∈Bk

∇fi(x).

HYBRID DETERMINISTIC-STOCHASTIC METHODS A1395

4.1. Scaled direction. Our implementation attempts to gather useful curvature
information on the function f by maintaining a quasi-Newton approximation to the
HessianHk. The search directions dk are then taken as the solution of the system (1.6).
The approximate Hessian is maintained via the recursive application of the update

Hk+1 = U(Hk, yk, sk),

where U represents an update formula on the kth iteration, while

sk := xk+1 − xk and yk := gk(xk+1)− gk(xk)

measure the change in x and the sampled gradient. In our experiments (see section
5) we use a limited-memory quasi-Newton update, which maintains a history of the
previous � = 10 pairs (sk, yk) and recursively applies the formula Hi+1 = U(Hi, si, yi)
for i = k − �, . . . , k. Nocedal and Wright [28, section 7.2] describe the recursive
procedure for the limited-memory BFGS update that we use. Updates are skipped
if necessary in order to ensure that the approximation Hk remains positive definite
and has a bounded condition number. To ensure that dk is well scaled, we use the
Shanno and Phua [33] scaling of the initial Hessian approximation on each iteration
as described by Nocedal and Wright [28, p. 178].

Another approach, not considered here, is to base the Hessian approximation on
a set of sampled gradients [7].

4.2. Varying stepsize. A weakness of our convergence analysis is the require-
ment for a fixed steplength αk ≡ L, in part because the Lipschitz constant is not
usually known, and in part because a dynamic steplength is typically more effective
in practice. But a linesearch procedure that ensures a sufficient decrease condition in
the true function f runs contrary to a sampling scheme specifically designed to avoid
expensive evaluations with f .

In our implementation we attempt to strike a balance between a rigorous line-
search and none at all by enforcing an Armijo-type descent condition on the sampled
objective f̄k. In particular, we use a linesearch procedure to select a steplength αk

that satisfies

(4.2) f̄k(xk + αdk) < f̄k(xk) + ηαgk(xk)
Tdk,

where dk is the current search direction and η ∈ (0, 1). While in deterministic quasi-
Newton methods we typically first test whether α = 1 satisfies this condition, in our
implementation we set our initial trial step length to α = |Bk−1|/|Bk|.

In general, Bk represents only a fraction of all observations, and so the above
procedure may not even yield a decrease in the true objective at each iteration. But
because we steadily increase the sample size, the procedure just described eventually
reduces to a conventional linesearch based on the true objective function f . Hence, the
method may initially be nonmonotic but is guaranteed to eventually be monotonic.
Coupled with the choice of search direction described in section 4.1, the overall algo-
rithm reduces to a conventional linesearch method with a quasi-Newton Hessian ap-
proximation and inherits the global and local convergence guarantees of that method.

5. Numerical experiments. This section summarizes a series of numerical ex-
periments in which we apply our incremental-gradient method with a growing sample
size to a series of data-fitting applications. Table 5.1 summarizes the test problems.

The first four experiments are data-fitting applications of logistic regression of
varying complexity: binary, multinomial, chain-structured conditional random fields

A1396 MICHAEL P. FRIEDLANDER AND MARK SCHMIDT

Table 5.1

The test problems.

Problem M n Description

binary logistic regression 92,189 823,470 spam identification (section 5.1)
multinormal logistic regression 70,000 785 digit identification (section 5.2)
chain-structured CRF 8,936 1,643,004 noun-phrase chunking (section 5.3)
general CRF 50 4 image denoising (section 5.4)
nonlinear least squares 101 10,201 seismic inversion (section 5.5)

(CRFs) and general CRFs. These logistic-regression applications follow a standard
pattern. We first model the probability of an outcome bi by some log-concave function
p(bi | ai, x), where ai is data; the goal is to choose the parameters x so that the
likelihood function

L(x) =
M∏
i=1

p(bi | ai, x)

is maximized. We then approximate x by minimizing the 2-norm-regularized negative
log-likelihood function

(5.1) f(x) =

M∑
i=1

fi(x) +
1
2λ‖x‖2 with fi(x) = − log p(bi | ai, x)

for some positive regularization parameter λ. These objectives are all strongly con-
vex (with μ ≥ λ) and satisfy our assumptions in section 1.2. For some functions p
the Lipschitz constant of ∇f , or upper bounds on it, are available. We discuss the
particular case of the binary model in section 5.1.

The last experiment is a more general application of nonlinear least-squares to
seismic inversion. This last data-fitting application does not satisfy our central con-
vexity assumption but nonetheless illustrates the practical relevance of our approach
to difficult problems.

Our numerical experiments compare the following three methods.
Deterministic. A conventional quasi-Newton linesearch method that uses the true

function f and gradient ∇f at every iteration. The method is based on a limited-
memory BFGS Hessian approximation and a linesearch based on Hermite cubic-
polynomial interpolation and the strong Wolfe conditions. Several comparison studies
indicate that these type of limited-memory quasi-Newton methods are among the most
efficient deterministic methods available for solving large-scale logistic-regression and
CRF problems [19, 36, 21, 32].

Stochastic. An incremental-gradient method based on the iteration (1.2) with
gk = ∇fi(xk) and a constant αk, where the index i ∈ {1, . . . ,M} is randomly se-
lected. This corresponds to a constant sample size of one, and this simple method has
proved competitive with more advanced deterministic methods like the one above for
estimation in CRF models [35].

Hybrid. This is the proposed method described in section 4, which uses search
directions computed from (1.6) and a linesearch based on satisfying condition (4.2). As
with the deterministic method described above, the Hessian approximations are based
on limited-memory BFGS, and the linesearch uses polynomial interpolation. The
objective and gradient approximations are based on (4.1), where Bk ⊆ {1, . . . ,M},

HYBRID DETERMINISTIC-STOCHASTIC METHODS A1397

and the number of elements in the current sample is initially 1 and grows linearly as
per the formula

|Bk+1| = �min{1.1 · |Bk|+ 1, M}�.
The hybrid nature of this approach should now be clear: the very first iteration is sim-
ilar to the stochastic method; when the sample size grows to include all observations,
the algorithm morphs into the deterministic method.

All experiments are carried out using MATLAB R2010b on a 64-bit Athlon ma-
chine. Two plots are shown for each experiment. The first shows the progress of the
objective value against the index p = 1

M

∑p
k=0 |Bk| for p = 1, 2, . . ., which measures

the effective number of passes through the entire data set. The second plot shows the
cumulative number of fi functions evaluated, i.e.,

∑k
i=0 |Bi|, against the iterations k.

5.1. Binary logistic regression. Logistic regression models [5, section 4.3.2]
are used in an enormous number of applications for the problem of binary classifica-
tion. We are given data with M examples of input-output pairs (ai, bi), where ai ∈ R

n

is a vector of n features, and bi ∈ {−1, 1} is a corresponding binary outcome. The
goal is to build a linear classifier that, given the features ai and a vector of parameters
x, the sign of the inner-product aTi x gives bi. The logistic model gives the probability
that bi takes the value 1:

p1(bi = 1 | ai, x) = exp(aTi x)

exp(aTi x) + 1
=

1

1 + exp(−aTi x)
.

(Typically a bias variable is added, but we equivalently assume that the first element of
x is set to one.) Thus, the probability that bi takes the value−1 is [1−p(bi = 1 | ai, x)].
We can write these two cases compactly as

p1(bi | ai, x) = 1

1 + exp(−biaTi x)
.

This is the probability function p used in (5.1).
The dominant cost in computing f and its gradient is the cost of forming the

matrix-vector products Ax and ATy (for some y), where the M rows of the matrix
A are formed from the vectors ai. The Hessian is ∇2f(x) = ATDA, where D is a
diagonal with elements p1(bi | ai, x) · [1−p1(bi | ai, x)], which lie in the range (0, 0.25].
The (nonnegative) eigenvalues of the Hessian are thus bounded above by 0.25‖A‖2
and are strictly positive if A has full rank. Combined with 2-norm regularization, the
resulting function f satisfies the assumptions of section 1.2.

Our experiments for binary logistic regression are based on the TREC 2005 data
set, which contains 823,470 binary variables describing the presence of word tokens in
92,189 email messages involved in the legal investigations of the Enron corporation [9].
The target variable indicates whether the email was spam or not. The data set was
prepared by Carbonetto [8, section 2.6.5], and we set the regularization parameter
λ = 0.01.

The results of this experiment are plotted in Figure 5.1, where we define the
optimal value as the best value found across the methods after 150 effective passes
through the data, and where for the stochastic method we plot the three step sizes
(among powers of 10) that gave the best performance over the allotted iterations. Of
course, in practice we will not know what step size optimizes the performance of the
stochastic method, and the lack of sensitivity of the result to the initial step size is

A1398 MICHAEL P. FRIEDLANDER AND MARK SCHMIDT

0 20 40 60 80 100

10
0

10
1

10
2

10
3

10
4

Passes through data

O
bj

ec
tiv

e
m

in
us

 O
pt

im
al

Stochastic1(1e+01)
Stochastic1(1e+00)
Stochastic1(1e−01)
Hybrid
Deterministic

0 50 100 150 200
0

2

4

6

8

10

12

x 10
6

Iterations

C
um

ul
at

iv
e

sa
m

pl
es

 e
va

lu
at

ed

Hybrid
Deterministic

Fig. 5.1. Binary logistic regression experiments for different optimization strategies for spam
classification. The stochastic method is run with 3 different fixed steplengths.

an advantage of the deterministic and hybrid methods. In the plot we see that, like
the stochastic methods, the hybrid method makes rapid initial progress. Unlike the
stochastic method, however, the hybrid method continues to make steady progress
similar to the deterministic method. This behavior agrees with the theory.

5.2. Multinomial logistic regression. Multinomial logistic regression relaxes
the binary requirement and allows each outcome bi to take any value from a set of
classes C [5, section 4.3.4]. In this model there is a separate parameter vector xj for
each class j ∈ C. We model the probability that bi is assigned a particular class j as

(5.2) p2(bi = j | ai, {xj}j∈C) =
exp(xT

jai)∑
j′∈C exp(x

T
j′ai)

.

This model is equivalent to binary logistic regression in the special case where the
parameters xj of one class are fixed at zero and there are only two classes, i.e.,
C = {−1, 1}. As with binary logistic regression, the function p2 is log-concave and
− log p2 has a Hessian whose eigenvalues are bounded above. Hence, the resulting
function f in (5.1) satisfies the assumptions of section 1.2.

Our experiments for multinomial logistic regression are based on the well-known
MNIST data set [15], containing 70,000 examples of 28-by-28 images of digits, where
each digit is classified as one of the numbers 0 through 9. The results are plotted
in Figure 5.2, with λ = 1. The trends are similar to the binary logistic-regression
experiments.

5.3. Chain-structured CRFs. The binary and multinomial logistic-regression
models consider the case where a particular outcome bi is associated with a particular
feature vector ai. The CRF model takes multinomial logistic regression a step further
by considering a set of feature vectors aki with which to predict corresponding values
for discrete variables bki ∈ C, where k takes values in a discrete ordered set Ω.

We can naturally extend the multinomial logistic model to this scenario by defin-
ing the probability of a joint assignment bi as

p({bki = jk}k∈Ω | {aki }k∈Ω, {xj}j∈C) =
1

Zi

∏
k∈Ω

exp(xT
jka

k
i).

HYBRID DETERMINISTIC-STOCHASTIC METHODS A1399

0 20 40 60 80 100

10
3

10
4

10
5

Passes through data

O
bj

ec
tiv

e
m

in
us

 O
pt

im
al

Stochastic1(1e−02)
Stochastic1(1e−03)
Stochastic1(1e−04)
Hybrid
Deterministic

0 50 100 150 200

0

1

2

3

4

5

6

7

8

9

10

x 10
6

Iterations

C
um

ul
at

iv
e

sa
m

pl
es

 e
va

lu
at

ed

Hybrid
Deterministic

Fig. 5.2. Multinomial logistic regression experiments for different optimization strategies for
digit classification.

(We assume that the parameter vectors xjk are tied, so that xjk is constant for all k;
this assumption is not required in general.) The normalizing constant

Zi =
∑
j1∈C

∑
j2∈C

· · ·
∑
jk∈C

∏
k∈Ω

exp(xT
jk
aki)

is chosen so that the distribution sums to one over all possible configurations of the bki
variables. As written, computing Zi involves a very large number of terms, |C||Ω|; still,
the sum can be computed efficiently by exchanging the order of operations. While
this model is a straightforward generalization of multinomial logistic regression, it
assumes that the labels in Ω that we are simultaneously predicting are independent.
This might be unrealistic if, for example, the variables come from time-series data
where bki and bk+1

i are likely to be correlated.
A chain-structured CRF [14] augments the model with additional terms that take

into account sequential dependencies in the labels. It allows pairwise features akk
′

i

and associated parameters xkk′ and defines the probability of a configuration as

p3({bki = j}k∈Ω | {aki }k∈Ω, {akk′
i }k,k′∈Ω,k′=k+1, {xj}j∈C , {xj,j′}j,j′∈C)

=
1

Zi

⎡
⎢⎣∏
k∈Ω

exp(xT
jk
aki)

⎤
⎥⎦ ·

⎡
⎢⎣ ∏

k,k′∈Ω

k′=k+1

exp(xT
jkjk′ a

kk′
i)

⎤
⎥⎦ .

The normalizing constant Zi is again set so that the distribution sums to one, and
it can be computed using a variant on the forward-backward algorithm used in hid-
den Markov models [30, section III]. Because we need to run the forward-backward
algorithm for each i, the probability function p3 is significantly more expensive to
evaluate than the corresponding multinomial probability function p2; see (5.2).

For our chain-structured CRF experiments, we use the noun-phrase chunking
problem from the CoNLL-2000 Shared Task [31], where the goal is to assign each word
in a sentence to one of 22 possible states, and we use approximately 1.6 million features
to represent the presence of words and word combinations [31, 32]. The CoNLL-2000
data set contains 211,727 words grouped into 8,936 sentences. The results of this
experiment are plotted in Figure 5.3, where the regularization parameter is λ = 1.

A1400 MICHAEL P. FRIEDLANDER AND MARK SCHMIDT

0 20 40 60 80 100

10
2

10
3

10
4

10
5

Passes through data

O
bj

ec
tiv

e
m

in
us

 O
pt

im
al

Stochastic1(1e−01)
Stochastic1(1e−02)
Stochastic1(1e−03)
Hybrid
Deterministic

0 50 100 150 200
0

2

4

6

8

10

12

x 10
5

Iterations

C
um

ul
at

iv
e

sa
m

pl
es

 e
va

lu
at

ed

Hybrid
Deterministic

Fig. 5.3. Chain-structured CRF experiments for different optimization strategies on the noun-
phrase chunking task.

5.4. General CRFs. While chain structures can model sequential dependencies
in the labels, we might be interested in other structures, such as lattice structures for
modeling image data. In order to use general CRFs [12, sections 4.6.1 and 20.3.2], we
define a graph G where the nodes are the labels {1, 2, . . . , w} and the edges are the
variable dependencies that we wish to consider. We then define the probability of bi
taking a configuration bki = jk, for k ∈ Ω, as

p4({bki = jk}k∈Ω | {ak′
i }k′∈Ω, {akk′

i }(k,k′)∈E , {xj}j∈C , {xjj′}(j,j′)∈C)

=
1

Zi

⎡
⎣∏
k∈Ω

exp(xT
jka

k
i)

⎤
⎦ ·
⎡
⎣ ∏
(k,k′)∈E

exp(xT
jkjk′ a

kk′
i)

⎤
⎦ .

In this general case, computing Zi is in the complexity class �P , and the best-
known algorithms have a runtime that is exponential in the tree-width of the graph
G [12, sections 9–10]. For a two-dimensional lattice structure, the tree-width is the
minimum between the two dimensions of the structure, so computing Zi is only fea-
sible if one of the dimensions is very small (in the degenerate one-dimensional chain-
structured case, the tree-width is one).

Because of the intractability of computing Zi, we consider optimizing a pseudo-
likelihood approximation [4] based on the probability model

p4({bki = jk}k∈Ω | {aki }k∈Ω, {akk′
i }(k,k′)∈E , {xj}j∈C , {xjj′}(j,j′)∈C)

≈
∏
k∈Ω

p(bki = jk | {ak′
i }k′∈Ω, {akk′

i }(k,k′)∈E , {xj}j∈C , {xjj′}(j,j′)∈C , {bk
′

i }k′∈Ω,k′ 	=k).

The individual terms in this product of conditionals have the form of a multinomial
logistic regression probability and are straightforward to compute. This is the function
p used to define the objective function f in (5.1).

Our experiments on general CRFs are based on the image-denoising experiments
described by Kumar and Hebert [13]. We use their set of 50 synthetic 64-by-64 im-
ages. Figure 5.4 shows the performance of the different methods with a regularization
parameter of λ = 1. Figure 5.5 illustrates the marginal probabilities for the different
methods at various points in the optimization for a randomly chosen image in the

HYBRID DETERMINISTIC-STOCHASTIC METHODS A1401

0 20 40 60 80 100

10
−6

10
−4

10
−2

10
0

10
2

10
4

Passes through data

O
bj

ec
tiv

e
m

in
us

 O
pt

im
al

Stochastic1(1e−03)
Stochastic1(1e−04)
Stochastic1(1e−05)
Hybrid
Deterministic

0 5 10 15 20

0

100

200

300

400

500

600

700

800

900

Iterations

C
um

ul
at

iv
e

sa
m

pl
es

 e
va

lu
at

ed

Hybrid
Deterministic

Fig. 5.4. Lattice-structured CRF experiments for different optimization strategies for an image
denoising task.

Fig. 5.5. Top row: Original (a) and noisy (b) image. Second row: Marginals after two passes
through the data for deterministic (c), stochastic (d), and hybrid (e). Third row: Marginals after
five passes through the data for deterministic (f), stochastic (g), and hybrid (h).

A1402 MICHAEL P. FRIEDLANDER AND MARK SCHMIDT

data set. (For the stochastic method, we plot the result with a step size of α = 10−4.)
To approximate these marginals, we use the loopy belief propagation message-passing
algorithm [5, section 8.4.7]. In these plots we see that the deterministic method does
poorly even after two full passes through the data set, while the stochastic and hybrid
methods do much better. After five passes through the data set, the hybrid method
has found a solution that is visually nearly indistinguishable from the true solution,
while it is still possible to see obvious differences in the deterministic and stochastic
methods.

5.5. Seismic inversion. This last numerical experiment is a seismic inversion
problem described by Van Leeuwen, Friedlander, and Herrmann [34]. The aim here is
to recover an image of underground geological structures using only data collected by
geophone receivers placed at the surface of the earth; these geophones record acoustic
“shots” created by sources also at the surface.

The waveform inversion problem attempts to find a model x of the subsurface
structure that minimizes the nonlinear least-squares misfit as measured by the func-
tion

φ(x) =
M∑
i=1

∑
ω∈Ω

‖di − PHω(x)
−1qi‖2.

Each index i corresponds to a particular shot (i.e., an observation) created by the
source qi which creates a measurement di; each experiment samples a set of frequen-
cies ω ∈ Ω. The matrix P samples the wavefield at the receiver locations. The main
cost in evaluating φ is solving the Helmholtz equation Hω[x]u = qi for each i, which
is an expensive partial differential equation. Regularization is typically achieved by
truncating the solution process [34]. Although the function φ is nonconvex and does
not satisfy our standing assumptions, it hints at the applicability of the hybrid ap-
proach for solving difficult problems of important practical interest.

The results shown in Figure 5.6 are based on a relatively small two-dimensional
example that involves M = 101 sources measuring eight frequencies. (Larger ex-
periments, especially in three dimensions, are only feasibly accomplished on a com-
puting cluster.) Because the problem is not strongly convex and hence we do not
expect a fast convergence rate when far from this solution, for this problem the hy-
brid method increases the sample size by only one sample at each iteration, i.e.,

0 20 40 60 80 100

10
4

10
5

10
6

10
7

Passes through data

O
bj

ec
tiv

e
m

in
us

 O
pt

im
al

Stochastic1(1e−08)
Stochastic1(1e−09)
Stochastic1(1e−10)
Hybrid
Deterministic

0 20 40 60 80 100 120
0

5000

10000

15000

Iterations

C
um

ul
at

iv
e

sa
m

pl
es

 e
va

lu
at

ed

Hybrid
Deterministic

Fig. 5.6. Nonlinear least-squares experiments for different optimization strategies on a seismic
inversion problem.

HYBRID DETERMINISTIC-STOCHASTIC METHODS A1403

|Bk+1| = min{|Bk| + 1, M}. After 20 passes through the data, the hybrid method
clearly outperforms the deterministic method. The best stochastic method performs
nearly as well as the deterministic and hybrid methods for the first 60 iterations,
though with other step sizes it performs poorly. Although the figure shows the best
methods all achieving similar residuals after 60 passes through the data, in practice
that involves a prohibitive number of Helmholtz solves; practitioners are interested in
making quick progress with as few solves as possible (and without needing to test a
variety of step sizes to achieve good performance).

6. Discussion. Our work has focused on inexact-gradient methods for the un-
constrained optimization of differentiable strongly-convex objectives. We anticipate
that a similar convergence analysis with inexact gradients could be applied to other
algorithms, such as Nesterov’s accelerated gradient method [26, section 2.1]. In this
case, it may be possible to relax the strong convexity assumption and obtain the
optimal O(1/k2) rate for an inexact-gradient version of this algorithm. The opti-
mal O(1/k2) rate using a gradient approximation whose error is uniformly bounded
across iterations has been established by several authors, notably d’Aspremont [10].
But allowing a variable error would encourage more flexibility in the early iterations
and would allow for eventually solving the problem to arbitrary accuracy. Although
the O(1/k2) rate is sublinear, it is substantially faster than the optimal O(1/

√
k)

achievable by methods that use noisy gradient information [24, section 14.1].

We might also obtain analogous rates for proximal-gradient methods for opti-
mization with convex constraints or nondifferentiable composite optimization prob-
lems, such as 1-norm regularization [27]. The more general class of mirror-descent
methods [1], which are useful for problems with a certain geometry such as optimiza-
tion with simplex constraints, also seem amenable to analysis in our controlled error
scenario.

We considered the case of bounded noise or noise that can be bounded in expec-
tation and subsequently derived convergence rates and expected convergence rates,
respectively. We might also consider the case where the noise is bounded with a cer-
tain probability. If the individual ∇fi(x) are concentrated around ∇f(x), this might
allow us to use concentration inequalities [20] to show that the convergence rates hold
with high probability. Although we have analyzed an arbitrary strategy for selecting
the elements of the sample and shown that uniform sampling achieves a better bound
in expectation, it is possible that a quasi-random selection of the individual gradients
might further refine the bound [22].

Although our emphasis here is on data-fitting applications where the error is a
byproduct of subsampling the data, our analysis and implementation may be use-
ful for other problems. For example, Gill, Murray, and Wright [11, p. 357] dis-
cuss the case of an objective function that can be evaluated to a prescribed accu-
racy (e.g., it could depend on an iterative process or a discretization level). They
suggest solving the optimization problem over a sequence of tighter function ac-
curacies. Our work provides a formal analysis and practical implementation of a
method where the accuracy might be increased dynamically each iteration rather
than solving a sequence of intermediate optimization problems. As a more recent
example, Poyiadjis, Doucet, and Singh [29] consider approximating gradients in non-
Gaussian state-space models using particle filters. Here, the variance of the approxi-
mation is directly proportional to the number of particles, and thus our work provides
guidelines for selecting the number of particles to use in the approximation on each
iteration.

A1404 MICHAEL P. FRIEDLANDER AND MARK SCHMIDT

Acknowledgments. Thanks to Kevin Swersky for the suggesting the growing
sample-size strategy, and to Sasha Aravkin, Francis Bach, Hoyt Koepke, Pierre Jacob,
Simon Lacoste-Julien, and Nicolas Le Roux for valuable discussions. We are grateful
to two anonymous referees for their thoughtful comments, which led to many detailed
changes, including the addition of section 2.3.

REFERENCES

[1] A. Beck and M. Teboulle, Mirror descent and nonlinear projected subgradient methods for
convex optimization, Oper. Res. Lett., 31 (2003), pp. 167–175.

[2] D. P. Bertsekas, A new class of incremental gradient methods for least squares problems,
SIAM J. Optim., 7 (1997), pp. 913–926.

[3] D. Bertsekas and J. Tsitsiklis, Neuro-Dynamic Programming, Athena Scientific, Nashua,
NH, 1996.

[4] J. Besag, Statistical analysis of non-lattice data, The Statistician, 24 (1975), pp. 179–195.
[5] C. Bishop, Pattern Recognition and Machine Learning, Springer, New York, 2006.
[6] D. Blatt, A. O. Hero, and H. Gauchman, A convergent incremental gradient method with

a constant step size, SIAM J. Optim., 18 (2007), pp. 29–51.
[7] R. H. Byrd, G. M. Chin, W. Neveitt, and J. Nocedal, On the use of stochastic Hessian

information in optimization methods for machine learning, SIAM J. Optim., 21 (2011),
pp. 977–995.

[8] P. Carbonetto, New Probabilistic Inference Algorithms that Harness the Strengths of Varia-
tional and Monte Carlo Methods, Ph.D. thesis, University of British Columbia, Vancouver,
Canada, 2009.

[9] G. V. Cormack and T. R. Lynam, Spam corpus creation for TREC, in Pro-
ceedings of the 2nd Conference on Email and Anti-Spam, available online from
http://plg.uwaterloo.ca/∼gvcormac/treccorpus/, 2005.

[10] A. d’Aspremont, Smooth optimization with approximate gradient, SIAM J. Optim., 19 (2008),
pp. 1171–1183.

[11] P. Gill, W. Murray, and M. Wright, Practical Optimization, Academic Press, New York,
1981.

[12] D. Koller and N. Friedman, Probabilistic Graphical Models: Principles and Techniques,
MIT Press, Cambridge, MA, 2009.

[13] S. Kumar and M. Hebert, Discriminative fields for modeling spatial dependencies in natural
images, in Advances in Neural Information Processing Systems 16, MIT Press, Cambridge,
MA, 2004, pp. 1531–1538.

[14] J. Lafferty, A. McCallum, and F. Pereira, Conditional random fields: Probabilistic mod-
els for segmenting and labeling sequence data, in Proceedings of the 18th International
Conference on Machine Learning, Morgon, Kauffmann, San Francisco, CA, 2001.

[15] Y. LeCun and C. Cortes, The MNIST Database, http://yann.lecun.com/exdb/mnist/, 1998.
[16] S. Lohr, Sampling: Design and Analysis, Duxbury Press, Pacific Grove, CA, 1999.
[17] D. Luenberger and Y. Ye, Linear and nonlinear programming, Springer-Verlag, New York,

2008.
[18] Z. Luo and P. Tseng, Error bounds and convergence analysis of feasible descent methods: A

general approach, Ann. Oper. Res., 46 (1993), pp. 157–178.
[19] R. Malouf, A comparison of algorithms for maximum entropy parameter estimation, in Pro-

ceedings of the International Conference on Computational Linguistics, Taipei, Taiwan,
2002.

[20] P. Massart, Concentration Inequalities and Model Selection, Lecture Notes in Math. 1896,
Springer, New York, 2007.

[21] T. Minka, Algorithms for Maximum-Likelihood Logistic Regression, Tech. rep., CMU, 2003.
[22] W. J. Morokoff and R. E. Caflisch, Quasi-random sequences and their discrepancies, SIAM

J. Sci. Comput., 15 (1994), pp. 1251–1279.
[23] A. Nedic and D. Bertsekas, Convergence rate of incremental subgradient algorithms, in

Stochastic Optimization: Algorithms and Applications, Kluwer, Dordrecht, The Nether-
lands, 2000, pp. 263–304.

[24] A. Nemirovski, Efficient methods in convex programming, Lecture notes, 1994.
[25] A. Nemirovski, A. Juditsky, G. Lan, and A. Shapiro, Robust stochastic approximation

approach to stochastic programming, SIAM J. Optim., 19 (2009), pp. 1574–1609.

HYBRID DETERMINISTIC-STOCHASTIC METHODS A1405

[26] Y. Nesterov, Introductory Lectures on Convex Optimization: A Basic Course, Kluwer, Dor-
drecht, The Netherlands, 2004.

[27] Y. Nesterov, Gradient methods for minimizing composite objective function, CORE Dis-
cussion Paper 76, Université catholique de Louvain, Center for Operations Research and
Econometrics (CORE), 2007.

[28] J. Nocedal and S. J. Wright, Numerical Optimization, 2nd ed., Springer, New York, 2006.
[29] G. Poyiadjis, A. Doucet, and S. Singh, Particle approximations of the score and ob-

served information matrix in state space models with application to parameter estimation,
Biometrika, 98 (2011), pp. 65–80.

[30] L. Rabiner, A tutorial on hidden Markov models and selected applications in speech recogni-
tion, Proc. of the IEEE, 77 (1989), pp. 257–286.

[31] E. Sang and S. Buchholz, Introduction to the CoNLL-2000 Shared Task: Chunking, in Pro-
ceedings of the Conference on Natural Language Learning, Lisbon, Portugal, 2000, pp. 127–
132.

[32] F. Sha and F. Pereira, Shallow parsing with conditional random fields, in Conference of
the North American Chapter of the Association for Computational Linguistics on Human
Language Technology, 2003.

[33] D. F. Shanno and K.-H. Phua, Matrix conditioning and nonlinear optimization, Math. Pro-
gram., 14 (1978), pp. 149–160.

[34] T. van Leeuwen, S. M, M. P. Friedlander, and F. Herrmann, A hybrid stochastic-
deterministic optimization method for waveform inversion, in 73rd EAGE Conference &
Exhibition, 2011.

[35] S. V. N. Vishwanathan, N. Schraudolph, M. Schmidt, and K. Murphy, Accelerated train-
ing of conditional random fields with stochastic gradient methods, in Proceedings of the
International Conference on Machine Learning, Pittsburg, PA, 2006, pp. 969–976.

[36] H. Wallach, Efficient training of conditional random fields, Master’s thesis, University of
Edinburgh, Scotland, UK, 2002.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

