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Abstract—Many seismic exploration techniques rely on the
collection of massive data volumes that are mined for infor-
mation during processing. This approach has been extremely
successful, but current efforts toward higher-resolution images in
increasingly complicated regions of the Earth continue to reveal
fundamental shortcomings in our typical workflows. The “curse
of dimensionality” is the main roadblock, and is exemplified by
Nyquist’s sampling criterion, which disproportionately strains
current acquisition and processing systems as the size and desired
resolution of our survey areas continues to increase.

We offer an alternative sampling strategy that leverages recent
insights from compressive sensing towards seismic acquisition
and processing for data that are traditionally considered to be
undersampled. The main outcome of this approach is a new
technology where acquisition and processing related costs are no
longer determined by overly stringent sampling criteria.

Compressive sensing is a novel nonlinear sampling paradigm,
effective for acquiring signals that have a sparse representation
in some transform domain. We review basic facts about this new
sampling paradigm that revolutionized various areas of signal
processing, and illustrate how it can be successfully exploited in
various problems in seismic exploration to effectively fight the
curse of dimensionality.

Index Terms—Compressive sensing, curvelet transform, spar-
sity promotion, exploration seismology, seismic acqusition, seis-
mic imaging, seismic inversion, and convex optimization

I. THE CURSE OF DIMENSIONALITY IN SEISMIC
EXPLORATION

Modern-day seismic-data processing, imaging, and inver-
sion rely increasingly on computationally and data-intensive
techniques to meet society’s continued demand for hydro-
carbons. This approach is problematic because it leads to
exponentially increasing costs as the size of the area of interest
increases. Motivated by recent findings from compressive
sensing (CS) and earlier work in seismic data regularization
[1] and phase encoding [2], we confront the challenge of the
“curse of dimensionality” with a randomized dimensionality-
reduction approach that decreases the cost of acquisition
and subsequent processing significantly. Before we discuss
possible solutions to the curse of dimensionality in exploration
seismology, we first discuss how sampling is typically con-
ducted in exploration seismology.
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Özgür Yılmaz is with the Department of Mathematics, The University of
British Columbia, Vancouver, Canada.

A. Classical approaches

During seismic data acquisition, data volumes are collected
that represent dicretizations of analog finite-energy wavefields
in up to five dimensions including time. So, we are concerned
with the acquisition of an analog spatio-temporal wavefield
f̄(t, x) ∈ L2((0, T ] × [−X, X]) with time T in the order of
seconds and length X in the order of kilometers. The sampling
intervals are of the order of milliseconds and of meters.

After proper discretization and analog-to-digital conversion,
it is convenient to organize these high-resolution samples into
a vector f :=

{
f [q]

}
q=0,...,N−1

∈ RN . Note that in practice
often we have missing samples, i.e., instead of f , the acquired
data is b = Rf where R is a n × N restriction matrix that
consists of n rows of the N ×N identity matrix.

B. Bottlenecks and compromises

Unfortunately, pressures for increased resolution make com-
plete sampling (n = N ) economically and physically in-
feasible and therefore the data is sampled at a rate below
Nyquist, i.e., n � N . For the spatial coordinates, this typically
corresponds to periodic subsampling of the sources/receivers
while the total acquisition time is reduced by reducing the time
between sequential single-source experiments. Unfortunately,
these subsamplings can lead to serious artifacts and a lot of
research has recently been devoted to come up with improved
sampling schemes that randomize spatial locations of sources
and receivers or that randomize the sources, e.g., by random
dithering of marine sources or by source encodings on land.

C. Dimensionality reduction by Compressive Sensing

While recent proposals to expedite seismic acquisition or
computations through simultaneous sourcing have proven suc-
cessful, the proposed methods miss a rigorous framework
that would allow for the design of rigorous workflows. By
recognizing these clever new sampling schemes as instances
of CS, we are able to make a start towards sampling and
computation strategies that employ structure in seismic data,
which translates into transform-domain sparsity. This attribute
allows us to come up with sub-Nyquist sampling schemes
whose sampling is proportional to the sparsity rather than
to the dimensionality of the problem. The success of these
techniques hinges on subsamplings that break periodicity of
conventional samplings. To demonstrate how this works, we
first give a brief introduction to the theory CS, followed by its
application to problems in exploration seismology. Recovery
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from the subsamplings depends on solving large-scale convex
optimization problems, described in §III.

II. COMPRESSIVE SAMPLING AS A DIMENSION REDUCTION
METHOD

Various classes of signals such us audio, images, and
seismic signals admit sparse approximations, i.e., they can be
well-approximated by a linear superposition of a few atoms
of an appropriate basis. Compressed sensing (or compressive
sampling)—championed by Candès, Romberg, and Tao [3] and
Donoho [4]—has emerged as a novel paradigm for sensing
such signals more efficiently as compared to the classical
approach based on Shannon-Nyquist sampling theory. Signals
that admit sparse approximations can be acquired from sig-
nificantly fewer measurements than their ambient dimension
using nonlinear recovery algorithms, e.g., `1 minimization or
greedy algorithms However, these greedy algorithms are not
suitable for large-scale problems because they only bring a
single component into the solution per iteration.

In CS is the number of samples required to achieve a certain
accuracy scales logarithmically with the ambient dimension,
which, in the case of spatial sampling, is the sampling grid
size. Thus, in problems where the sheer number of the
measurements to be obtained is prohibitively large, CS is
invaluable.

Next, we introduce the mathematical framework of CS and
discuss the challenges we face in exploration seismology.

A. Compressive acquisition of sparse signals

The main signal model of CS is nonlinear: the signals are
sparse (only a few of the entries are non-zero) or compressible
(can be well-approximated by a sparse signal), either in
the canonical basis or in some transform domain. Formally,
consider a high-dimensional signal x ∈ RN . We first make
the naive assumption that x is k-sparse, i.e., ‖x‖0 ≤ k, where
‖x‖0 denotes the number of non-zero entries of the vector x.
(We later relax the sparsity assumption to make way for more
realistic signal ensembles including seismic.) The goal in CS
is to obtain x (or an approximation) from non-adaptive linear
measurements y = Ψx, where Ψ is an appropriate full rank
n×N measurement matrix with n � N .

Note that since n < N , i.e., the number of measurements
is less than the ambient dimension, the system Ψz = b has
infinitely many solutions, rendering it generally impossible to
recover x from y. In CS, we aim to recover x by utilizing
the prior information that x is sparse (or compressible):
find the solution x∗ of Ψz = b with the smallest number
of non-zero entries. This is the sparse recovery problem.
Unfortunately, this problem is NP-hard [5] and sensitive to
the sparsity assumption and additive noise, thus not useful in
practice. The major breakthrough in CS has been to specify
explicit conditions under which the sparse recovery problem
is equivalent to

minimize
z

‖z‖1 subject to Ψz = b, (II.1)

which is computationally tractable. Specifically, these condi-
tions [3], [4] determine what measurement matrices Ψ can

be used so that (II.1) is guaranteed to recover all k-sparse x
in RN from n measurements given by b. In words, the main
requirement is that Ψ nearly preserves the length of all sparse
vectors.

Various random matrix ensembles have been shown to be
effective compressive measurement matrices, e.g., Gaussian
and Bernoulli matrices, and Fourier matrices with randomly
selected rows. An important question is how the number of
measurements required for exact recovery scales with the
sparsity level k, the number of measurements n, and the
ambient dimension N . (In the classical sampling theory, k
is analogous to “bandwidth”, n is analogous to sampling
frequency, and N is analogous to the size of the sampling
grid.) The following theorem, adapted from [3], summarizes
one answer to this question.

Theorem 1. Suppose Ψ is an n × N Gaussian random
matrix. If n & k log(N/n), with overwhelming probability
(II.1) recovers all k-sparse x from the measurements y = Ψx.

In words, if the measurement matrix is chosen appropriately,
the number of measurements scales only logarithmically with
the ambient dimension N—a tremendous improvement over
linear scaling of the classical sampling theory. While one-
norm minimization is most commonly used, recent work by
[6] generalizes to p-norm minizimation with 0 < p < 1.

B. Compressible signals and robustness to noise

For CS to be practicable, two major modifications to the
setting described in § II-A need to be considered. First, it is
naive to expect signals in practice to be exactly sparse, and a
more realistic model is that the magnitude-sorted coefficients
decay rapidly, leaving us with a vector with few large entries
and many small ones. Such signals can be well approximated
by sparse signals and are said to be compressible. Second,
practical applications typically have measurements contami-
nated by noise, and it is again crucial that the CS approach is
robust in this regard [3].

Theorem 2. Let x ∈ RN be arbitrary, and let Ψ be an
appropriate n × N measurement matrix (e.g., a Gaussian
matrix). Suppose that the noisy measurements are given by
b = Ψx + e where e is additive noise with ‖e‖2 ≤ ε. Denote
by x∗ the solution of the following convex program:

minimize
z

‖z‖1 subject to ‖Ψz − b‖ ≤ ε. (II.2)

Then for absolute constants C1 and C2,

‖x− x∗‖2 ≤ C1ε + C2k
−1/2σk(x)`1 ,

whenever n = O(k log[N/n]) and where σk(x)`1 is the best
k-term approximation error.

In words, the recovered approximation is within the noise
level and nearly as accurate as the approximation we would
obtain by measuring directly the largest k entries of x.

This theorem can play a pivotal role in exploration seis-
mology. Its first main consequence is that sparse recovery
from noise-free compressively sampled data gives an error
that has, up to a logarithmic factor, the same decay as the
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best nonlinear approximation error. This represents a major
improvement over linear approximations that may have a
much slower decay and hence a much lower quality for the
recovery. Second, empirical evidence report by [7] shows that
compressive sensing yields small recovery errors, even with
low “oversampling ratios”. This is underpinned by Theorem 2,
which establishes that the recovery error is proportional to that
of the best k-term nonlinear approximation error. It also shows
that the recovered approximation is within the noise level.

Of course, many of these ideas are related to pioneering
work. For example, Claerbout [8] explored sparsity promoting
norms; “spiky deconvolution’ ’has been analyzed by mathe-
maticians, and randomized acquisition [9] is a precursor. Com-
pressive sensing can be considered as a unifying framework—
and more—for all of these approaches. We are motivated by
these findings to apply and adapt this framework to solve
problems in exploration seismology. See [10], [11] for other
applications of compressive sensing in the geosciences.

C. Extensions
So far, the signals of interest were simply sparse in the

canonical basis, which, of course, is rarely the case in practice.
Images, for example, are sparse with respect to wavelet bases,
and seismic signals admit sparse approximations in terms of
curvelets [12]–[14]. Formally, consider signals f ∈ RN that
are sparse with respect to a basis or frame S, i.e., f = SHx,
x sparse. Here, S is a P ×N matrix, with P ≥ N , that admits
a left-inverse; the superscript H denotes the adjoint.

In the next sections we discuss how and to what extent the
CS paradigm can be used when S is either an orthonormal
basis or a redundant frame.

1) S is an orthonormal basis: In the case when S is
an orthonormal basis (i.e., S−1 = SH ), CS theory applies
essentially unchanged. Specifically, the compressive samples
of the signal f is given by b = Ψf = ΨSHx where x is
sparse (or compressible). In turn, the effective measurement
matrix is ΨSH and if this matrix satisfies the requirements of
Theorems 1 and 2, the conclusions of these theorems remain
valid.

The main challenge is choosing Ψ for a given S so that
ΨSH is still a good measurement matrix. One possible way
of constructing a good Ψ tailored to a given sparsity basis S
is to first choose an appropriate measurement basis M that
is incoherent with S. The coherence of two bases S and M
is reflected by the largest-in-magnitude entry of the matrix
MSH . Once we choose an incoherent M , we discard all but
n rows from M and use the resulting n × N matrix as our
measurement matrix. More precisely, we set Ψ = RM where
R is an n × N restriction matrix (consisting of n rows of
the N × N identity matrix). It can be shown that such a Ψ
can be used for CS. For example, if the signal u is sparse in
Fourier domain, i.e., S is the DFT matrix, then an optimally
incoherent measurement basis is given by the N ×N identity
basis M = IN . This leads to the following convex program:

minimize
z

‖z‖1 subject to ‖RMSHz − y‖ ≤ ε.

Note that there is a universal strategy for choosing Ψ that
does not require prior knowledge of the sparsity basis S: if

we choose Ψ to be an appropriate random measurement matrix
then ΨSH is guaranteed to be also a good measurement matrix
independent of the orthonormal basis S.

2) S is a redundant: The problem becomes significantly
more challenging if the sparsifying dictionary is overcomplete.
This means that the signal f can be decomposed as f = SHx,
where S is P ×N with P > N and S admits a left inverse.
For example, seismic signals are compressible with respect to
curvelets, which are overcomplete. There are some differences
in this setup, as compared to the orthonormal bases: (i) the
expansion coefficients are not unique, and there are (infinitely)
many x that explain the same signal f , and (ii) the columns
of SH must be correlated. Accordingly, the approaches used
in the orthonormal case do not readily generalize immediately
to this case. Empirically, the CS paradigm has been observed
to be effective for acquisition of signals that are compressible
with respect to redundant transforms. —see Section IV-A for
an empirical study of compressive seismic-data acquisition
using curvelet frames as the sparsifying transform.

D. Challenges in seismic

According to CS, successful dimensionality reduction
hinges on an incoherent sampling strategy where coherent
aliases are turned into relatively harmless white Gaussian
noise. The challenges of adapting this approach to exploration
seismology are twofold. First, seismic data acquisition is
subject to physical constraints on the placement, type, and
number of (possibly simultaneous) sources, and numbers of
receivers. These constraints in conjunction with the extreme
large size of seismic data call for seismic problem-specific
solutions. Second, while CS offers significant opportunities
for dimensionality reduction, there remain still challenges
in adapting the scientific-computing workflow to this new
approach, and again, CS offers an opportunity to make com-
putation more efficient.

III. SOLVING THE SPARSE-OPTIMIZATION PROBLEM

The main computational challenge in the dimensionality-
reduction techniques that we describe can be ascribed to
solving the convex optimization problem

BPσ : minimize
x

‖x‖1 subject to ‖Ax− b‖2 ≤ σ,

where σ is an estimate of the required data misfit, often related
to the noise level and model mismatch. (The value σ = 0
yields the basis pursuit problem [15].) The nonsmoothness
of the objective is the essential difficulty. If these problems
were relatively small, then many of the current workhorse
algorithms for convex optimization (e.g., simplex and interior-
methods) could be used off-the-shelf. However, these methods
typically rely on explicit matrix representations of A. Thus
there is now significant effort devoted to developing matrix-
free algorithms tailored to these problems, which are typically
characterized by large dense matrices. The terrific problem
sizes in the seismic context is yet a further challenge: a “small”
seismic problem can easily have 221 variables.

One of our aims here is to give a broad view of the
main approaches, and to describe the approach used by the
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SPGL1 software package [16], [17], which we use routinely
for tackling seismic sparse recovery problems.

A. Main approaches

Most approaches for solving BPσ are based on its “La-
grangian” reformulation

QPλ : minimize
x

1
2‖Ax− b‖22 + λ‖x‖1.

The positive parameter λ is related to the Lagrange multiplier
of the constraint in BPσ , and it balances the tradeoff between
the two norm of the data misfit and the one norm of the
solution, which promotes sparsity. For an appropriate choice
of λ, this formulation has the same solution to BPσ , and thus
in some sense these two problems are equivalent. However,
except for very special cases, the value of λ that induces the
equivalence cannot be determined without first solving BPσ .
The typical approach is thus based on solving a sequence of
problems QPλ defined by a decreasing sequence of parameters
λ [18]. This gradually decreases the data misfit, which usually
allows more nonzeroes into the solution. The overall process
terminates when the data mismatch reaches a prescribed accu-
racy. As we illustrate later, this can be an inefficient approach
that requires the solution of too many subproblems.

Many algorithms are available for solving QPλ or closely
related variations, including the Lasso [19] variation

LSτ : minimize
x

1
2‖Ax− b‖2 subject to ‖x‖1 ≤ τ.

B. Pareto curve

While great progress has been made addressing the non-
smoothness component and selection of appropriate sequences
of step lengths, a fundamental problem remains: even if we
do have an effective algorithm for QPλ (or LSτ ), how do we
best choose a parameter λ (or τ ) that yields a required data
misfit? The Pareto curve, which traces the optimal trade-off
between the two-norm of the residual r = b − Ax and the
one-norm of the solution x, is a helpful tool for visualizing
the effect of regularization. Fig. 1 gives a schematic illustration
of a the curve and some of its features. Points below the curve
are not attainable. Any point on the curve, which is uniquely
defined by a given A and b, gives the corresponding values σ
(vertical axis) and τ (horizontal axis) that cause BPσ and LSτ

to have the same solution. The negative of the slope at that
point gives the corresponding value of λ that causes QPλ to
have the same solution; e.g., see point 1©. Point 2© coincides
with the solution of BPσ with σ = ‖b‖2 and of LSτ with
τ = 0; point 3© coincides with the solution of BPσ with σ = 0
and of LSτ with τ = 0. Left- and right-hand limits can be used
to define the value of λ at points 2© and 3©. The relevance of
this curve in the seismic context is discussed by [20].

The Pareto curve can be interpreted as the graph of the value
function

φ(τ) = inf
‖x‖1≤τ

{‖Ax− b‖2}.

Let xτ be the optimal solution of LSτ , and let rτ = b−Axτ

be the corresponding residual. Let τ̄ be the smallest value of
τ at which the graph first touches the horizontal axis. (This is
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Fig. 1: (Adapted from [20].) Schematic illustration of a Pareto
curve. Point 1© exposes the connection between the three
parameters of QPλ, BPσ , and LSτ . Point 3© corresponds to
a solution of BPσ with σ = 0.
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Fig. 2: (Adapted from [16].) (a) A typical Pareto curve, and
the path taken by the SPGL1 algorithm; (b) approximating the
Pareto curve from a few samples.

guaranteed if A has full rank.) The function φ and the Pareto
curve is characterized by the following theorem, due to van
den Berg and Friedlander [16].

Theorem 3. Suppose that A is full rank. Then
1) The function φ is convex and nonincreasing.
2) For all τ ∈ (0, τ̄), φ is continuously differentiable,

φ′(τ) = −λτ , where λτ = ‖AHyτ‖∞ and yτ =
rτ/‖rτ‖2.

3) For τ ∈ [0, τ̄ ], ‖xτ‖1 = τ , and φ is strictly decreasing.

The solid curve in Fig. 2(a) graphs the Pareto curve for a
seismic interpolation problem similar to that shown in Fig. 6.

Although QPλ has proven to be the most used approach, it
is generally not clear how to choose the parameter λ such its
solution gives a desired misfit. This difficulty is illustrated by
Fig. 2(b). The solid (black) curve is the true Pareto curve; the
three solid (red) dots are solution/residual pairs of QPλ that
correspond to equally spaced values of λ between ‖AHb‖∞
and 0. This is typical behavior: even though the values of
λ are equally spaced, the resulting samples are not equally
spaced, and a quadratic interpolation/extrapolation (dotted red
line) based on these samples severly underestimates the curve.
On the other hand, the solution/residual pairs of BPσ (blue
circles) for equally spaced samples of σ between ‖b‖2 and 0
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Fig. 3: (Adapted from [20].) Pareto curve and solution paths of
four solvers for a BPσ , with σ = 0. The symbols + represent
a sampling of the Pareto curve. The solid (—) line, obscured
by the Pareto curve, is the solution path of IST with cooling,
the chain (– · –) line the path of SPGL1, the dashed (– –) line
the path of IST, and the dotted (· · · ) line the path of IRLS.

yield good coverage, and an estimate of the curve based on
these samples (blue solid line) closely approximates the true
curve.

C. Pareto root-finding

The SPGL1 approach for BPσ is based on approximately
solving a sequence of subproblems LSτ , using a spectral
projected-gradient method;at each iteration k it refines the
estimate τk such that τk → τσ , which causes LSτ and BPσ

to share a solution. The sequence of estimates τk is derived
by simply applying Newton’s method to find a root of the
nonlinear equation

φ(τ) = σ.

Theorem 3 is central to this approach because it describes how
the gradient of φ, needed for Newton’s method, is related to
the solutions of the LSτ subproblems. Practical refinements are
needed that allow for LSτ to be solved only approximately [16,
§3], [21, §3]. Fig. 3 shows how SPGL1 and IST (with cooling)
closely follow the Pareto curve; however, SPGL1 requires
significantly fewer matrix multiplies.

IV. COMPRESSIVE SEISMIC-DATA ACQUISITION

Perhaps it is too early to claim that CS will constitute a
paradigm shift in seismic acquisition. The first breakthrough
was the identification of seismic data regularization and simul-
taneous/continuous acquisition as instances of CS [22]. Further
encouraging progress has been made in the selection of the
sparsifying transform and the design of randomized sampling
schemes that are realizable in the field.

We discuss progress in each of these areas by means of
carefully designed examples that include real field data.

A. Selection of the sparsifying transform

CS leverages structure within signals to reduce the required
sampling rates. Typically, this structure translates into com-
pressible representations, using an appropriate transform, that

concentrate the signal’s energy into a small percentage of large
coefficients. The size of seismic data volumes, along with
the complexity of its high-dimensional and highly directional
wavefront-like features, makes it difficult to find a transform
that accomplishes this task.

We thus only consider transforms that are fast
(O(N log N)), multiscale (split the Fourier spectrum
into dyadic frequency bands), and multidirectional (split
the Fourier spectrum into second dyadic angular wedges).
For completeness, we also include separable 2-D wavelets
in our study. Unlike wavelets, which compose curved
wavefronts into a superposition of multiscale “fat dots” with
limited directionality, curvelets [13] and wave atoms [14]
compose wavefields as a superposition of highly anisotropic,
localized, and multiscale waveforms, which obey the so-
called parabolic-scaling principle. For curvelets, this principle
translates into a support where length is proportional to the
square of the width. At fine scales, this leads to needle-like
curvelets. Curvelets, with their near invariance under wave
propagation, are thus highly suitable for compressing seismic
data. Wave atoms share with curvelets this invariance, and
they are also anisotropic because their wavelength depends
quadratically on their width. While curvelets are optimal
for data with delta-like wavefronts, wave atoms are more
appropriate for compressing data with oscillatory wavefronts.
Seismic data sits somewhere between these two extremes,
and we include both transforms in our study. Since no other
tilings of phase space share the hyperbolic scaling principle,
we will aside from wavelets not consider other candidates for
non-adaptive sparsifying transforms.

1) Approximation error: For an appropriately chosen repre-
sentation magnitude-sorted transform-domain coefficients of-
ten decay rapidly. For orthonormal bases, the decay rate
is directly linked to the decay of the nonlinear approxi-
mation error. This error can be expressed by σk(f)`2 :=
minx∈ΣN

k
‖f −SHx‖2, where fk is optimal argument, which

gives the best k-term approximation in the `2 sense.When
S is orthonormal, fk is uniquely determined by taking the
largest-in-magnitude k-entries of Sx. Unfortunately, such a
direct way of finding fk is not available when S is redundant,
because redundant expansions are not unique: there are many
coefficient sequences that explain the discrete data f , and these
different sequences may have varying decay rates.

To address this issue, we use an alternative definition for
the nonlinear approximation error, which is based on the
solution of a sparsity-promoting program. With this defini-
tion, the k-term sparse approximation error is computed by
taking the k-largest coefficients from the vector that solves
minimizex ‖x‖1 subject to SHx = f , where the P × N
matrix S is the redundant (P > N ) curvelet analysis operator.
This solution is typically sparser than the vector obtained
by applying the analysis operator S directly. To be able to
compare various redundant transforms with different degrees
of redundancy, we study the signal-to-noise ratio SNR(ρ) =
−20 log ‖f−fρP ‖

‖f‖ , where ρ = k/P is a compression ratio. A
smaller ratio implies a larger fraction of ignored coefficients
and sparser transform-coefficient vector, which leads to a
smaller SNR. In our study, we include fρP that are derived
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Fig. 4: (Adapted from [7]) Signal-to-noise ratios (SNRs)
for the nonlinear approximation errors of a common-receiver
gather (a) from a Gulf of Suez data set. The SNRs (b) are
plotted as a function of the sparsity ratio ρ ∈ (0, 0.02]. The
plots include curves for the errors obtained from the analysis
and one-norm minimized synthesis coefficients. Notice the
significant improvement in SNRs for the synthesis coefficients
obtained by sparsity promotion.

from either the analysis coefficients, i.e., the largest ρP
coefficients of Sf , or from the synthesis coefficients that are
solutions of the above sparsity-promoting program.

2) Empirical approximation errors: Parametrizing the SNR
by ρ allows us to compare the recovery quality of seismic
data using various transforms, such as wavelets, curvelets,
and wave atoms. Figure 4 compares the performance of these
transforms on a common-receiver gather extracted from a Gulf
of Suez dataset. Our results in Figure 4 clearly show that
curvelets and wave atoms benefit significantly from sparsity
promotion, though wave atoms lag behind curvelets. This
effect is most pronounced for synthesis coefficients. Because
wavelets are orthogonal, they can not benefit, as expected.
Note that the observed behavior is consistent with the degree
of redundancy of each transform: the curvelet transform has
the largest redundancy (a factor of about eight in 2-D), wave
atoms have only a redundancy of two, and wavelets are not
redundant. This suggests that seismic data processing [12]
including sparse recovery from subsampling would potentially
benefit most from curvelets. However, this may not be the only
factor that determines the performance of CS.

B. Acquisition schemes

Before discussing the application of CS to realistic data
examples, we briefly discuss differences between recovery
from missing shots, which is an instance of seismic data
regularization, and recovery from simultaneous data. The
seismic data regularization problem can be considered as the
seismic-version of inpainting.

Mathematically, sequential and simultaneous acquisition
only differ in the definition of the measurement basis. For
sequential-source acquisition, this sampling matrix is given
by the Kronecker product of two identity bases—i.e., I

def=
I Ns ⊗ I Nt , which is the N × N identity matrix where
N = NsNt, the product of the number of shots Ns and

the number of time samples Nt. For simultaneous acquisition,
where all sources fire simultaneously, this matrix is given by
M

def= GNs ⊗ I Nt with GNs an Ns × Ns Gaussian matrix
with i.i.d. entries. In both cases, we use a restriction operator
R

def= Rns⊗I Nt to model the collection of incomplete data by
reducing the number of shots to ns � Ns. This restriction acts
on the source coordinate only. For both recovery experiments,
we use 2-D curvelets as the sparsifying transform S (cf. II-C).
Note that these two randomized samplings do not necessarily
reflect practical sampling scenarios but are merely intended
to demonstrate the impact of different randomized sampling
strategies on the recovery performance.

CS predicts superior recovery for compressive-sampling
matrices with smaller coherence. This coherence depends
on the interplay between the restriction, measurement, and
synthesis matrices. To make a fair comparison, we keep the
randomized restriction matrix the same and compare the re-
coveries for measurement matrices given by the identity or by
a random Gaussian matrix. Physically, the first CS experiment
corresponds to surveys with sequential shots missing. The
second CS experiment corresponds to simultaneous-source
experiments with half of the experiments missing. Examples
of both measurements for the real common-receiver gather of
Figure 4 are plotted in Figure 5. Both CS experiments are
using the same amount of data and illustrate the importance
of the choice of the compressive-sensing matrix, which deter-
mines acquisition.

Comparing the recovery quality for data for both experi-
ments confirms the insight from CS that states that incoher-
ent measurement matrices favor sparsity-promoting recovery.
This opens the possibility of designing efficient acquisition
strategies in the field, or of dimensionality reduction in the
computer.

Example: coil sampling. The quality of 3-D seismic
imaging and full-waveform inversion depends largely on az-
imuthal coverage. While full-azimuth acquisition is getting
within reach on land, full-azimuth sampling in marine remains
challenging because of physical constraints on the length,
number, and maneuverability of towed streamer arrays with
hydrophones.

Moldoveanu addresses these physical limitations of marine
acquisition by adopting Hennenfent and Herrmann’s jittered-
sampling approach [23] to devise a full-coverage randomized
coil-sampling strategy where several vessels shoot in tan-
dem while navigating along coils whose centers are random-
ized [24]. This new sampling paradigm not only avoids time
consuming turns at the boundaries of the acquisition area but it
also removes severe sampling issues in the cross-line direction
related to the number of streamers each vessel can tow.

To illustrate the performance of sparsity-promoting recovery
for this type of sampling, we consider a binned common-
azimuth/offset volume simulated from a synthetic model with
66% missing data. The recovery results are included in Fig-
ure 6 for a cross section. To limit the memory imprint and
to exploit parellel computer architectures, we use curvelets
in the lateral directions and wavelets along the time axis
to sparsify. The curvelets exploit continuity of the wavefield
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(a) (b)

(c) (d)

Fig. 5: (Adapted from [7]) Recovery from a compressively-
sampled common-receiver gather with 50% of the sources
missing. (a) Receiver gather with sequential shots selected
uniformly at random. (b) The same but for random simul-
taneous shots. (c) Recovery from incomplete data in (a). (d)
The same but now for the data in (b). Notice the remarkable
improvement in the recovery from simultaneous data.

along the source-receiver directions while wavelets capture
the transient nature of the wavefronts. While this approach
does not exploit continuity of the wavefield in all directions, it
leads to a feasible algorithm that recovers vectors with several
billions of transform coefficients with a relatively low number
of iterations of the one-norm solver SPGL1 [16]. The results
show excellent recovery from this sampling even in regions
of large complexity. This example is a good illustration of
the validity of this technology on industry-type data volumes.
However, this approach, which is still expensive, is not the
only possibility offered by compressive sensing. For instance,
compressive sensing also gives unique insights (simultaneous)
random time-dithered acquisition, where acquisition is made
more efficient by compressing the average interleave time be-
tween shots possibly in combination with randomly dispersed
transducers on the sea bottom. Remember, the performance of
these instances of randomized acquisition rely on choices for
the sparsifying transforms and solutions of large-scale sparsity-
promoting programs to recover fully sampled data.

V. COMPRESSIVE SEISMIC COMPUTATION

We have so far concentrated on applying CS to seismic ac-
quisition. While the invocation of CS in acquisition potentially
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Fig. 6: Synthetic common-azimuth/offset example of coil
sampling. The data is simulated with finite-differences on
the SEAM model. Cross-section with 66% missing traces
and recovered section. Notice the excellent recovery even in
regions with strong complexity.

reaps major increases in efficiency, CS can also be applied to
increase the efficiency of wavefield simulations, imaging, and
inversion.

A. Compressive simulation

To simulate seismic surveys, one needs for each source
experiment to solve a large linear system that discretizes the
underlying wave equation. Because seismic surveys consist
of many source experiments, we must reduce the number of
PDE solves by exploiting linearity of the wave equation in
the sources. This linearity allows us to combine sequential
sources into a smaller number of “supershots”, each consisting
of a random superposition of all sequential shots. Neelamani
et al. [25] and Herrmann et al. [22] identify this principle,
also known as “phase encoding” [2], as an instance of CS,
and demonstrate that it can be used to make wave simulations
more efficient by reducing the number of sources.

This technique allowed us to significantly speedup sim-
ulations with the time-harmonic Helmholtz equation. Used
in combination with randomized importance sampling in the
temporal frequency band, we achieved speedups proportional
to the subsampling ratio. As shown in Figure 7, sequential
simulations can be recovered from a 4-times reduced data
volume by solving a sparsity-promoting program with a cost
of O(n3 log n), where n the number of sources, receivers,
depth levels, and frequencies. This additional cost is very small
compared to the cost of solving the Helmholtz system, which
is O(n4).

B. Compressive imaging

Even though useful for wavefield simulations, compres-
sive simulation is not particularly suitable for making wave-
equation based seismic imaging more efficient because we
would have to solve a sparsity-promoting program for each
PDE solve. To overcome this problem, [26] proposes to image
directly with simultaneous data, making the least-squares
migration problem

minimize
∆x

1
2K

K∑
i=1

‖∆bi −Ai∆x‖22 =
1

2K
‖∆b−A∆x‖22

(V.1)
more efficient. Here, ∆bi are the vectorized monochromatic
shot records with linearized data (residue), Ai is the linearized
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Fig. 7: (Adapted from [22]) Recovery from compressive sim-
ulations for simple and complex velocity models. (a) Seismic
line for the simple model (with a SNR of 28.1 dB) from 25 %
of the samples with the `1-solver running to convergence. (b)
The same for the complex model but now with a SNR of
18.2 dB.

Born scattering matrix, and ∆x the unknown seismic image
with the medium perturbations. (The quantities ∆b and A
aggregate the data across experiments.) In certain cases, the
residual ∆bi − Ai∆x can be interpreted as a linearization of
the forward map defined by the wave equation; see (V.2).

This is a difficult problem because each iteration requires a
large number of PDE solves, in particular, 4K solves, where
K = Nf ·Ns, and Nf and Ns are the number of frequencies
and sources. In order to do the inversion, we must be careful
to limit the cost of each matrix-vector multiply, which we
accomplish by dimensionality reduction. In particular, we use
the same supershots as defined in section V-A.

The optimization problem defined by (V.1), however, differs
fundamentally from the standard CS problem because now
the system is overdetermined—there are more equations then
unknowns. As before, we turn this expensive to evaluate
overdetermined problem into an underdetermined problem
by replacing sequential sources by a reduced number of
simultaneous sources. Again, curvelets are used to mitigate
the source crosstalk related to this dimensionality reduction.

Unfortunately, the degree of randomized dimensionality
reduction determines the amount of cross-talk that results from
the inversion, and hence we can not reduce the problem size
too much. To increase the convergence of SPGL1 for these
expensive iterations, we use recent insights from approximate-
message passing [27], which are aimed at removing correla-
tions that develop between the model iterate and the random-
ized Born-scattering operator. Inspired by [28], we remove
these correlations by selecting different subsets of random
source-encoded supershots [29] after each time SPGL1 reaches
the Pareto curve, see Figure 2(a).

To demonstrate the uplift from drawing renewals for the
randomized subsets, we include imaging results for the BG
Compass model in Figure 8. The experiments are carried out
with only 17 simultaneous shots (opposed to 350 sequential
shots) with 10 frequencies selected from the interval 20 −
50 Hz. The results after solving 10 subproblems of SPGL1
clearly indicate that renewals lead to superior image quality
and improved convergence as reported by [26].

(a)

(b)

(c)

Fig. 8: (Adapted from [26]) Dimensionality-reduced sparsity-
promoting imaging from random subsets of 17 simultaneous
shots and 10 frequencies. We used the background velocity-
model plotted in Figure 9(c) (a) True perturbation given by
the difference between the true velocity model and the FWI
result plotted in Figure 9(c). (b) Imaging result with redraws
for the supershots. (c) The same but without renewals.

We obtained this remarkably good result with a significantly
reduced computational cost. We attribute this performance to
curvelet-domain compressibility, which serves as a strong prior
that mitigates source crosstalk and regularizes the inversion.

C. Compressive inversion

As we reported in earlier work (e.g., see [30]), the cost
of computing gradient and Newton updates in full-waveform
inversion (FWI) is one of the major impediments that prevents
successful adaptation of this industry-size problems. FWI
involves the solution of an multi-experiment unconstrained
optimization problem (cf. (V.1) for the linearized case):

minimize
m

1
2K

K∑
i=1

‖bi −Fi[m, qi]‖22, (V.2)

with bi monochromatic shot records with the Earth re-
sponse to monochromatic sources qi, and Fi[m, qi] represents
monochromatic nonlinear forward operators. This operator is
parameterized by the velocity m.

To overcome the computational burden of solving (V.2), we
follow a similar procedure as outlined in Section V-B but with
the difference that we do a new linearization after each of the
SPGL1 subproblems.

We test our algorithm on the synthetic model plotted in
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Fig. 9: Full-waveform inversion result. (a) Initial model. (b)
True model. (c) Inverted result starting from 2.9Hz with 7
simultaneous shots and 10 frequencies.

Fig. 9(a), which we use to generate data with a source
signature given by a 12 Hz Ricker wavelet. To mimic practice,
we use a smooth starting model without lateral information
(Fig. 9(b)) and we start the inversion at 2.9 Hz. This means
that the seismic data carries relatively little low-frequency
information. All simulations are carried out with 350 shot
positions sampled at a 20m interval and 701 receiver positions
sampled at a 10m interval, yielding an maximum offset of
7km. To improve convergence, the inversions are carried out
sequentially in 10 overlapping frequency bands on the interval
2.9−22.5Hz, each using 7 different simultaneous shots and 10
selected frequencies. For each subproblem, we use roughly 20
iterations of SPGL1 at a cost roughly equivalent to one tenth
of the cost of a gradient calculation using all sources. The
result for each frequency band after 10 SPGL1 subproblems
is depicted in Fig. 9(c). We can see from this result that
our inversion captures more or less all discontinuities with
a resolution commensurate with the frequency range over
which we carry out the inversion. This remarkable result
combines the randomized-dimensionality and CS approaches
with recent insights from stochastic optimization. As before,
drawing independent supershots after solving each SPGL1
subproblem benefited our results [29].

As before, we reduce the computation costs of minimizing
or of solving problem (V.2) by randomizing source superpo-
sition. Choosing a different collection of supershots for each
subproblem gives superior results.

VI. DISCUSSION AND CONCLUSIONS

We discussed possible adaptations of CS to solve outstand-
ing problems in exploration seismology including measures to
make acquisition and computations more efficient. The pre-
sented results illustrate that we are at the cusp of exciting new
developments where acquisition and processing workflows are
not hampered by the fear of creating coherent artifacts related
to periodic subsampling. Instead, we arrive at a workflow
with control over these artifacts. This is accomplished by
the following three new design principles, and the slogan
“randomize, sparsify, and convexify”:
• randomize—break coherent aliases by introducing ran-

domness, e.g., by designing randomly perturbed acqui-
sition grids, or by designing randomized simultaneous
sources;

• sparsify—use sparsifying transforms in conjunction with
sparsity-promoting programs that separate signal from
subsampling artifacts, and that restore amplitudes;

• convexify—relax difficult combinatorial problems into
tractable convex optimization problems.

The potential benefits of CS are real and significant. But
to realize them, several obstacles need to be surmounted,
including the need to overcome the inertia of entrenched
engineering practices, and adapting the theoretical framework
to practical acquisition schemes and workflows for imaging
and inversion.

The seismic application of CS and its extensions rely on
solving extremely large system of equations that arise from the
physical setting of exploration seismology. This puts pressures
on developing large-scale solvers that can handle massive data
volumes.
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