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Recovering Compressively Sampled Signals
Using Partial Support Information

Michael P. Friedlander, Hassan Mansour, Member, IEEE, Rayan Saab, Member, IEEE, and Özgür Yilmaz

Abstract—We study recovery conditions of weighted mini-
mization for signal reconstruction from compressed sensing mea-
surements when partial support information is available. We show
that if at least 50% of the (partial) support information is accurate,
then weighted minimization is stable and robust under weaker
sufficient conditions than the analogous conditions for standard
minimization.Moreover, weighted minimization provides better
upper bounds on the reconstruction error in terms of the measure-
ment noise and the compressibility of the signal to be recovered.
We illustrate our results with extensive numerical experiments on
synthetic data and real audio and video signals.

Index Terms—Adaptive recovery, compressed sensing, weighted
minimization.

I. INTRODUCTION

C OMPRESSED sensing (see, e.g., [1]–[3]) is a paradigm
for effective acquisition of signals that admit sparse (or

approximately sparse) representations in some transform do-
main. The approach can be used to reliably recover such sig-
nals from significantly fewer linear measurements than their
ambient dimension. Because a wide range of natural and man-
made signals—e.g., audio, natural and seismic images, video,
and wideband radio frequency signals—are sparse or approx-
imately sparse in appropriate transform domains, the potential
applications of compressed sensing can be immense. Let

be the set of all -sparse signals in ,
and let

(1)

be a vector of measurements where is a known
measurement matrix, and denotes additive noise that satisfies
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for some known . Compressed sensing theory
states that it is possible to recover from (given )
even when , i.e., using very few measurements. For
example, when , one may recover an estimate of the
signal as the solution of the constrained minimization
problem

(2)

In fact, using (2), any can be recovered perfectly using
measurements when and is in general position (see,

e.g., [4]). However, minimization is a combinatorial problem
and quickly becomes intractable as the dimensions increase. In-
stead, the convex relaxation

(3)

can be used to recover the estimate . Candés, Romberg and
Tao [2] and Donoho [1] show that if , then
minimization (3) can stably and robustly recover from “in-
complete” and inaccurate measurements , where
is an appropriately chosen measurement matrix and

. Note that compressed sensing is a nonadaptive data
acquisition technique because the measurement matrix does
not depend on , the signal being measured. Furthermore, the
recovery method that we just described is itself nonadaptive be-
cause no information on is used in (3). Our goal in this paper
is to examine a recovery method that is adaptive in the sense
that it exploits prior support information on ; the measurement
process, however, remains nonadaptive.

A. Compressed Sensing With Prior Support Information

The minimization problem (3) does not incorporate any
prior information about the support of . However, in many ap-
plications it may be possible to draw an estimate of the support
of the signal or an estimate of its largest coefficients. For ex-
ample, signals such as video and audio exhibit correlation over
temporal frames that can be exploited to estimate a portion of
the support using previously decoded frames.
Consider the example where is a compressible

signal, i.e., it can be well-approximated by its largest-in-mag-
nitude entries, where . If represents the discrete cosine
transform (DCT) or wavelet coefficients of an image, then the
entries of that correspond to the low frequency subbands
are most likely to be nonzero and carry most of the energy of
the signal [5]. In such cases, it is beneficial to incorporate this
information in the recovery algorithm when is compressively
sampled.
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B. Previous Work

We are especially interested in methods that incorporate prior
support information by replacing the minimization in (3) with
weighted minimization

(4)

where and is the weighted
norm. In particular, in the methods that we describe here (in-

cluding our own proposed method), the main idea is to choose
such that the entries of that are “expected” to be large are

penalized less in this weighted objective function.
The recovery of compressively sampled signals using prior

support information has been previously studied in the litera-
ture; see, e.g., [6]–[11]. In fact, the problem of sparse recovery
with partially known support was independently introduced in
three works—in von Borries et al. [6], in Vaswani and Lu [8];
and in Khajehnejad et al. [11].
The work by Borries et al. [6] demonstrated empirically that

incorporating support information of a signal with a sparse dis-
crete Fourier transform (DFT) allows for the number of com-
pressed sensing measurements to be reduced by exactly the size
of the known part of the support. Borries et al. achieve this by
using a weighted minimization approach with zero weights
on the known support.
More recently, Vaswani and Lu [7]–[9] proposed a modified

compressed sensing approach that again incorporates known
support elements using a weighted minimization approach
with zero weights on the known support. Their work derives
sufficient recovery conditions for the noise free case (i.e., set

in (1) and in (4)) that are weaker than the anal-
ogous minimization conditions of [2] in the case where a
large proportion of the support is known. This work is supple-
mented by a regularized modified compressed sensing approach
that deals with noisy measurements [9]. The work of Vaswani
and Lu was also extended by Jacques in [10] to the cases of
compressible signals and noisy measurements. The approach of
Jacques is based on studying the innovative basis pursuit de-
noising ( BPDN) problem, which minimizes weighted -norm
of the solution with with zero weights applied to the support es-
timate; Jacques and shows that ( BPDN) has a similar stability
behavior to the unweighted problem.
A similar method is proposed by Khajehnejad et al. [11] for

the recovery of compressively sampled signals with support in-
formation. The performance of this method is analyzed using a
Grassman angle approach. Prior information is defined in terms
of two disjoint sets that partition . The elements in
the first set have a probability of being nonzero, and the ele-
ments in the second set have a probability of being nonzero,
where . The authors propose weighted minimiza-
tion to recover the unknown vector where different weights
and are assigned to the elements in the two sets. In par-
ticular, they find the class of signals , depending on and

, which can be recovered with high probability
using weighted .

Finally, the weighted minimization problem is related
to the “adaptive lasso” described the statistics literature and
studied by Zou in [12]; it is defined by

where varies with the sample size such that
and for some , and the weights

, where is given signal estimate that is root- con-
sistent.1 However, the problem studied by Zou addresses the
overdetermined scenario where the ambient dimension of the
signal is fixed and the number of measurements . In this
case, Zou shows that the adaptive lasso enjoys the oracle prop-
erties but acknowledges that when it is nontrivial
to find a consistent estimate for constructing the weights in the
adaptive lasso.

C. Contributions

In this paper we adopt the weighted minimization approach
described by (4). Given a support estimate
for , we set whenever , and
otherwise. Unlike Borries et al. or Vaswani et al., in our results
we allow to be nonzero. We derive stability and robustness
guarantees for weighted minimization that generalize the re-
sults of [2]. Our results take into consideration the accuracy of
the support estimate. In particular, we prove that if the (par-
tial) support estimate is at least 50% accurate, then weighted
minimization outperforms standard minimization in terms

of accuracy, stability, and robustness. Finally, we note that when
, our results hold under weaker sufficient conditions than

those in [7].
In Section II, we review the recovery guarantees of [2]. In

Section III, we state our main result and compare our theoretical
results with standard recovery as well as the results of [7],
[8]. In Sections IV and V, we present the outcome of numerical
experiments on synthetic and on audio and video signals. We
conclude with the proof of our main theorem in Section VI.

II. COMPRESSED SENSING OVERVIEW

Consider an arbitrary signal and let be its
best -term approximation. Let , where

and . We wish to reconstruct the signal
from , where is a known measurement

matrix with , and denotes the (unknown) measurement
error that satisfies for some known margin .
As we mentioned in the introduction, it was shown in [2] that
can be stably and robustly recovered from the measurements
by solving the optimization problem (2) if the measurement

matrix has the restricted isometry property (RIP), also defined
by [2].

1Root- consistency means that if is the solution to the adaptive lasso
problem, then in distribution, where depends on
the noise variance and the covariance of the measurement matrix .
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Definition 1: The restricted isometry constant of a matrix
is the smallest number such that for all -sparse vectors
,

(5)

Candès et al. [2] use the RIP to provide conditions and bounds
for stable and robust recovery of by solving (3).

Theorem 2 (Candès, Romberg, Tao [2]): Suppose that is an
arbitrary vector in , and let be the best -term approxi-
mation of . Suppose that there exists an with
and

(6)

Then the solution to (3) obeys

(7)

Remark 2.1: The constants in Theorem 2 are explicitly given
by

(8)

From Theorem 2, one can see that if satisfies (the slightly
stronger condition)

(9)

then the constrained minimization problem in (3) recovers
with an approximation error that scales well with measurement
noise and the “compressibility” of . Moreover, if is suffi-
ciently sparse (i.e., ), and the measurement process is
noise-free, then Theorem 2 guarantees exact recovery of from
.

III. COMPRESSED SENSING WITH PARTIAL
SUPPORT ESTIMATION

In this section, we present our main result showing that
weighted minimization can be used to stably and robustly
recover sparse and compressible signals from noisy measure-
ments when there is partial (and possibly partly inaccurate)
prior support information. Our result holds under weaker suffi-
cient conditions than its counterpart for minimization when
the support estimate is more than 50% accurate. Moreover, it
results in smaller error bounds. We also compare our results
with the modified compressed sensing approach proposed in
[7].

A. Weighted Minimization With Estimated Support

Let be the support of , and let , the support estimate,
be a subset of with cardinality ,
where for some . As before, we wish to
recover an arbitrary vector from noisy compressive
measurements , where satisfies . To

recover , we now consider the weighted minimization
problem with the following choice of weights:

.
(10)

Here, and is as defined in (4). Our main
result follows.

Theorem 3: Let be in and let be its best -term
approximation, supported on . Let be an
arbitrary set and define and as before such that
and . Suppose that there exists an , with

, , and the measurement matrix has RIP
with

(11)

where for some given
. Then the solution to (10) obeys

(12)

where and are well-behaved constants that depend on the
measurement matrix , the weight , and the parameters and
.
The proof of the theorem is presented in Section VI.

Remark 3.1: Note that the parameters in Theorem 3 specify
two important ratios: determines the ratio of the size of the
estimated support to the size of the actual support of (or the
support of if is -sparse). On the other hand, determines
the ratio of the number of indices in that were accu-

rately estimated in to the size of . Specifically, .

Remark 3.2: The constants and are explicitly given by
the expressions

(13)

Consequently, Theorem 3, with , reduces to the stable
and robust recovery theorem of [2], which we stated above—see
Theorem 2.

Remark 3.3: It is sufficient that satisfies

(14)

for Theorem 3 to hold, i.e., to guarantee stable and robust re-
covery of the signal from measurements [with
constants and given in (13) and (14)].
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Fig. 1. Comparison of the sufficient conditions for recovery and stability constants for weighted reconstruction with various of . In all the figures, we set
and (a) versus . (b) versus . (c) versus . In (b) and (c), we fix .

Remark 3.4: Theorems 2 and 3 guarantee stable and robust
recovery for matrices satisfying a condition on with

. A slightly different approach was used by Candès [13] to
handle the case . Candès proved that if ,
then minimization (3) achieves stable and robust recovery.
Following the same technique, with appropriate modifications
to handle the weighted objective, we can derive the analogous
alternative sufficient condition

(15)

which guarantees stable and robust recovery using weighted
minimization (10). We omit the details of this calculation.

B. Comparison to Standard Recovery

In this section, we compare the sufficient conditions for The-
orem 3 and Theorem 2 as well as the associated constants of
these two theorems. The following observation is easy to verify.

Proposition 4: Let , and be as above. Then:
(i) If , then , , and the sufficient
conditions for Theorem 3, given in (11), are identical to
those of Theorem 2, given in (6).

(ii) If , then, again , , and the suffi-
cient conditions for Theorem 3, given in (11), are identical
to those of Theorem 2, given in (6).

(iii) Suppose . Then and if and
only if .

Next, we illustrate how the slightly stronger sufficient con-
ditions given in (14) and the respective stability constants vary
with and . Recall that when , (14) reduces to (9). In
Fig. 1(a), we plot, for different values of , as defined in
(14), versus , where we set the parameter . We observe
that as increases the sufficient condition on the RIP constant
becomes weaker, allowing for a wider class of measurement ma-
trices . For example, with , when of the support es-
timate is accurate, with it suffices to have ,
compared with for minimization. Figs. 1(b) and
1(c) illustrate that for a fixed matrix , the constants and
decrease as increases. Note that compared to setting ,
assigning nonzero weights adds robustness to the weighted
problem in the case when , i.e., when we have an

inaccurate support estimate with more than half the entries
falling outside the support of the best -term approximation of
. This could be beneficial in applications where the accuracy of
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Fig. 2. Comparison between the values of that satisfy each of the sufficient
conditions (16) and (17). The measurement matrix has Gaussian entries with

.

TABLE I
MAXIMUM UNKNOWN SUPPORT SIZE FOR WHICH (17) HOLDS WHILE
(16) FAILS TO HOLD. FOR A GIVEN ASPECT RATIO , WE COMPUTE THE
VALUE OF FOR WHICH . THIS VALUE, USING (17), YIELDS

THE CORRESPONDING BOUND ON

the support estimates vary significantly from one signal to the
next. Furthermore, in numerical experiments (see Section IV)
we observe that using nonzero weights improves the quality of
the reconstruction, especially in the noisy and compressible set-
tings, not only when but also in some cases where

. A mathematical understanding of this behavior and of
how to optimally choose the weight is beyond the scope of
this paper.

C. Zero Weight Case:

One special case of the weighted problem that is of interest
is the zero weight case, i.e., set in (10). It can be seen
from Fig. 1 that recovery using weighted minimization (10)
achieves the smallest error bound constants at when

. On the other hand, the recovery performance is worst
when and , i.e., when the support estimate is
highly inaccurate.
Several contributions in the literature adopt the zero-weight

approach, mainly in applications where prior support informa-
tion is assumed to be highly accurate, i.e., is close to 1, e.g.,
see [6], [7], [14]. The most recent study to address this problem
is the work by Vaswani and Lu [7] where a sufficient condition
in terms of the RIP of the matrix is derived for exact recovery
in the noise free case. Another work by the same authors [14]
addresses the noisy case, however, the recovery algorithm in
this case is different from (10) in that the objective function is

Fig. 3. Comparison between the phase diagrams of measurement matrices with
Gaussian entries satisfying the sufficient recovery conditions of standard
minimization and weighted minimization with and 0.3, 0.6,
and 0.8. The plots are calculated using the upper bounds on the restricted isom-
etry constants derived in [15].

modified to include a regularization term. The sufficient condi-
tion derived in Corollary 1 of [7] is expressed as

(16)

where is the size of the unkown support. Recall
that is such that is the size of the known support.
Below we compare our condition (15) with that of [7] given

in (16) for different values of the unknown support size . We
consider the case , , and . Thus, (15)
reduces to

(17)

Since the two sufficient conditions, i.e., (17) and (16), are ex-
pressed in terms of RIP constants of different-sized submatrices
of , a simple comparison of the upper bounds is not informa-
tive. For this reeason, we restrict our attention to measurement
matrices drawn from the Gaussian ensemble andwe estimate the
associated RIP constants (i.e., ) for such matrices
using the bounds derived in [15]. In particular, we calculate the
ratios that satisfy the conditions (16) and (17), respectively,
and plot the results in Fig. 2. Observe that for the same measure-
ment matrix and sparsity level , our sufficient condition
guarantees the recovery of -sparse signals with significantly
less accurate prior support information compared to the condi-
tion of Vaswani et al. [7].
It is clear in Fig. 2 that our recovery guarantees are superior

to those of [7] at least when the aspect ratio of the measurement
matrix is . Next, we shall focus on cases where
we have a highly accurate estimate of the full support of the
-sparse vector . In other words, we set as above and
consider values of that are close to 1. For these cases, we will
compare our theoretical guarantees to those of [7] for various
values of the measurement matrix aspect ratio. To that end, we
observe that the left-hand side of (16) is increasing in . Thus,
for any , (16) can hold only if
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Fig. 4. Performance of weighted recovery in terms of SNR averaged over 20 experiments for sparse signals with , , while varying the
number of measurements . From left to right, , , and . (a) Noise Free. (b) 5% Noise Variance.

which is obtained by setting in (16) and observing that
by definition. On the other hand, using the bounds from

[15], we can estimate and find the corresponding range of
for (17) to hold in the case when is a Gaussian randommatrix.
The upper bound on the range of for various aspect ratios
of the measurement matrix is reported in Table I. We conclude
that in various cases with different measurement matrix aspect
ratios our theoretical results guarantee recovery while the results
of [7] fail to provide any recovery guarantee.
We finish this section by comparing the recovery guarantees

we obtain in the zero-weight case with conditions that guarantee
recovery via minimization without using any prior support in-
formation. To this end, we present the phase diagrams of mea-
surement matrices with Gaussian entries that satisfy the con-
ditions on the restricted isometry constants given in (9)
and (14) with , respectively. We use the bounds derived
in [15] and plot the curves in Fig. 3 for matrices satisfying the
sufficient conditions on with and 0.3, 0.6, and
0.8.

IV. NUMERICAL EXAMPLES

In this section, we present numerical experiments that illus-
trate the benefits of using weighted minimization to recover

sparse and compressible signals when partial prior support in-
formation (which is possibly inaccurate) is available. To that
end, we compare the recovery capabilities of standard and
weighted minimization for a suite of synthetically generated
sparse and compressible signals. In all of our experiments, we
use SPGL1 [16], [17] to solve the standard and weighted min-
imization problems.

A. Sparse Case

We first generate signals with an ambient dimension
and fixed sparsity . We compute the (noisy) com-

pressed measurements of using a Gaussian random measure-
ment matrix with dimensions where we vary between
80 and 200 with an increment of 20. In the experiments where
the measurements are noisy, we set .
Fig. 4 shows the average reconstruction signal to noise ratio

(SNR) over 20 experiments when using weighted minimiza-
tion depending on the number of measurements, both in the
noise-free and noisy cases. The SNR is measured in dB and is
given by

(18)

where is the true signal and is the recovered signal. The
recovery is done via (10) using a support estimate of size
(i.e., ) where:
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Fig. 5. Performance of weighted recovery in terms of SNR averaged over 20 experiments for sparse signals with , , while varying
the size of the support estimate as a proportion of . From left to right, , , and . (a) Noise Free. (b) 5% Noise Variance.

• the accuracy of the support estimate ranges between zero
and 1;

• the constant weight ranges between zero and 1 (recall
that when (10) is equivalent to standard mini-
mization).

Fig. 4(a) illustrates that in the noise free case, the experi-
mental results are consistent with the theoretical bounds de-
rived in Theorem 3. More specifically, it can be seen that when

the best recovery is achieved for a weight
whereas a results in the worst SNR. On the other hand,
when the performance of the recovery algorithms is
shifted towards larger values of in the severely underdeter-
mined cases (small ). Fig. 5 shows the average recovered SNR
using weighted minimization for different values of the pa-
rameter . It is evident from the figure that using a larger support
estimate favours better reconstruction, However, it can be seen
in both the noise free and noisy measurement vector cases that
the recovery is more sensitive to the accuracy of the support
estimate than its size relative to .

Remark 4.1: Recall from Section III-B—see Fig. 1—that
when is sparse and , results in the smallest
error bound constants. Otherwise, i.e., when ,
minimizes the error constants. However, this does not match en-

tirely with our experimental observations. It can be seen from
Fig. 4(b) that, in general, the best recovery is obtained for inter-
mediate values of .
To explain this behaviour, consider the case where the mea-

surement matrix does not satisfy the RIP conditions for the full
recovery of a -sparse via weighted minimization. In such
cases, can be regarded as compressible: Fix be such that
Theorem 3 holds for all -sparse signals and for all .
Suppose is the support of the best term approximation of
. Then Theorem 3 guarantees stable and robust recovery of
where the recovery error is bounded by

where is the prior support estimate. Denote by and

note that since , then . Focusing our attention on
the case when (where it is observed that re-
sults in the best recovery), we make the following observations:
(i) The constant in the error bound above increases as
goes to zero (see Fig. 1).

(ii) Since , the term
decreases as goes to zero.
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Fig. 6. Performance of weighted recovery in terms of SNR averaged over 10 experiments for compressible signals with , . The coefficients
decay with a power . The accuracy of the support estimate is calculated with respect to the best term approximation. From left to right, ,

, and . (a) Noise Free. (b) 10% Noise Variance.

Therefore, for a fixed , there exists that mini-
mizes the product of the constant and the term

. Consequently, when the algorithm cannot
recover the full support of , an intermediate value of in
may result in the smallest recovery error. A full mathematical
analysis of the above observations needs to take into account all
the interdependencies between , , as well as the parameters
in Theorem 3 and is beyond the scope of this paper.

B. Compressible Case

Next, we generate a signal whose coefficients decay like
where and . In Fig. 6, we illustrate

the recovered signal SNR versus the size of the support estimate
for . To calculate we set , i.e., we are inter-
ested in the best 40-term approximation. Notice that on average,
a weight results in the best recovery. This behavior
is consistent with the explanation provided above where an in-
termediate value of balances the tradeoff between the error
bound constants and the norm of the off-support components.
We repeat this experiment with , and ,

. The results are reported in Figs. 7 and 8, and show the
same qualitative behaviour.

V. STYLIZED APPLICATIONS

In this section, we apply standard and weighted minimiza-
tion to recover real video and audio signals that are compres-
sively sampled.

A. Recovery of Video Signals

One natural application for weighted minimization is video
compressed sensing. Traditional video acquisition techniques
capture a full frame (or image) in the pixel domain at a specific
frame rate. The number of pixels acquired per image defines
the spatial sampling rate, while the number of frames acquired
per second defines the temporal sampling rate. Since the tem-
poral sampling rate is usually high, a group of adjacent video
frames are temporally correlated which is reflected in their spa-
tial transform coefficients having nonzero entries in roughly the
same locations.
Our aim here is to reduce the number of samples acquired

for each video frame while keeping the same reconstruction
quality by recovering using weighted minimization. Here,
we assume that for every video frame , the measurements

, are acquired by storing the readings
of a random subset of the CCD array with denoting the total
number of frames in the video sequence. Let be the number
of measurements acquired per frame and be the spatial
resolution (number of pixels) to be recovered per frame. Let
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Fig. 7. Performance of weighted recovery in terms of SNR averaged over 10 experiments for compressible signals with , . The coefficients
decay with a power . The accuracy of the support estimate is calculated with respect to the best term approximation. From left to right, ,

, and . (a) Noise Free. (b) 10% Noise Variance.

be the spatial sparsifying transform. The measurement matrix
can then be written as , where is an

restriction matrix, and is an orthonormal basis. Note that the
restriction matrix randomly selects pixels from the
pixels in the CCD array to store their readings.
For the first frame, , measurements are captured

and the transform coefficients are recovered by solving the
standard minimization problem

For every subsequent frame , a support estimate is
chosen to be the union of the locations of the nonzero entries of

and that contribute a certain percentage of the energy
of and , respectively. Consequently, the coefficients
are recovered from measurements by solving the

following weighted minimization problem

where .
In our experiments, we use the Foreman sequence at QCIF

resolution, i.e., every frame contains 144 176 pixels. We only
consider the luma (grayscale) component of the sequence. Every

frame is split into four blocks, each of size
which are processed independently. We set and

and for . The 2-D discrete
cosine transform (DCT) is used as the spatial sparsifying basis
allowing for the support estimate to include the DC compo-
nent and the union of the AC coefficients that contribute to 97%
of the energy in the AC coefficients of each of and .
The signals are then recovered using weighted minimiza-
tion for equal to 0, 0.1, 0.5, and 1.
Fig. 9 illustrates the recovery of the first 30 frames of the

Foreman sequence using weighted minimization. The recon-
struction quality is reported in terms of the peak signal to noise
ratio (PSNR) given by the expression

(19)

The figure demonstrates that recovery with results in
an improvement in PSNR averaging around 1 dB compared to
standard using the same number of measurements. A striking
observation is that weighted minimization outperforms stan-
dard also with fewer measurements, i.e., in the case where

for standard , whereas for weighted
.

B. Recovery of Audio Signals

For our second stylized application, we examine the perfor-
mance of weighted minimization for the recovery of com-
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Fig. 8. Performance of weighted recovery in terms of SNR averaged over 10 experiments for compressible signals with , . The coefficients
decay with a power . The accuracy of the support estimate is calculated with respect to the best term approximation. From left to right, ,

, and . (a) Noise Free. (b) 10% Noise Variance.

pressed sensing measurements of speech signals. In particular,
the original signals are sampled at 44.1 kHz, but only 1/4th of
the samples are retained (with their indices chosen randomly
from the uniform distribution). This yields the measurements

, where is the speech signal and is a restriction (of
the identity) operator. Consequently, by dividing the measure-
ments into blocks of size , we can write .
Here each is the measurement vector corresponding
to the th block of the signal, and is the associ-
ated restriction matrix. The signals we use in our experiments
consist of 21 such blocks. We make the following assumptions
about speech signals:
1) The signal blocks are compressible in the DCT domain (for
example, the MP3 compression standard uses a version of
the DCT to compress audio signals).

2) The support set corresponding to the largest coefficients in
adjacent blocks does not change much from block to block.

3) Speech signals have large low-frequency coefficients.
Thus, for the reconstruction of the th block, we choose the

support estimate . Here, is the set corresponding
to frequencies up to 4 kHz and is the set corresponding to
the largest recovered coefficients of the previous block
(for the first block is empty). The results of experiments on
two speech signals (one male and one female) with ,
and are illustrated in Fig. 10.

VI. PROOF OF THEOREM 3

Recall that , an arbitrary subset of , is of size
where and is some number larger than 1. Let the

set and , where
and . Fig. 11 illustrates these sets and shows the
relationship to the weight vector .
Let be a minimizer of the weighted problem

(10). Then

Moreover, by the choice of weights in (10), we have

Consequently

Next, we use the forward and reverse triangle inequalities to get
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Fig. 9. Recovery of the first 30 frames of the Foreman sequence at QCIF resolution. The first frame is recovered from measurements, while the
remaining frames are recovered from (a) and (b) measurements. Recovery is performed using weighted minimization with

. The support estimate is derived from the union of the supports of the previous two frames. The black curve corresponds to the recovered PSNR
using standard minimization with a fixed number of measurements , .

Fig. 10. SNRs of two reconstructed signals (male and female voices) from
compressed sensing measurements plotted against . For both speech signals,
an intermediate value of yields the best performance.

Adding and subtracting on the left hand side, and
on the right, we obtain

Since , this easily reduces to

(20)

But, we can also write

Combining the above with (20), we obtain

Since, the set , we can write
and simplify the bound on

to the following expression:

(21)

Next we sort the coefficients of partitioning it into
disjoint sets each of size , where .
That is, indexes the largest in magnitude coefficients of

, indexes the second largest in magnitude coefficients
of , and so on. Note that this gives , with

(22)

Let , then using (22) and the triangle inequality
we have

(23)
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Fig. 11. Illustration of the signal and weight vector emphasizing the relationship between the sets and .

Combining the above expression with (21) we get

(24)

Next, consider the feasibility of and . Both vectors are fea-
sible, so we have and

From (23) and (24) we get

Noting that

Since the set contains the largest coefficients of with
, and , then
. We also have , thus

(25)
Finally, let , and using

, we combine (24) and (25) to get (26)

(26)
with the condition that the denominator is positive, equivalently

(27)
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