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Abstract. Gauge functions significantly generalize the notion of a norm, and gauge optimization,
as defined by [R. M. Freund, Math. Programming, 38 (1987), pp. 47–67], seeks the element of a
convex set that is minimal with respect to a gauge function. This conceptually simple problem can be
used to model a remarkable array of useful problems, including a special case of conic optimization,
and related problems that arise in machine learning and signal processing. The gauge structure
of these problems allows for a special kind of duality framework. This paper explores the duality
framework proposed by Freund, and proposes a particular form of the problem that exposes some
useful properties of the gauge optimization framework (such as the variational properties of its value
function), and yet maintains most of the generality of the abstract form of gauge optimization.
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1. Introduction. One approach to solving linear inverse problems is to optimize
a regularization function over the set of admissible deviations between the observations
and the forward model. Although regularization functions come in a wide range
of forms depending on the particular application, they often share some common
properties. The aim of this paper is to describe the class of gauge optimization
problems, which neatly captures a wide variety of regularization formulations that
arise in fields such as machine learning and signal processing. We explore the duality
and variational properties particular to this family of problems.

All of the problems that we consider can be expressed as

(P) minimize
x∈X

κ(x) subject to x ∈ C,

where X is a finite-dimensional Euclidean space, C ⊆ X is a closed convex set, and
κ : X → R ∪ {+∞} is a gauge function, i.e., a nonnegative, positively homogeneous
convex function that vanishes at the origin. (We assume that 0 /∈ C, since otherwise
the origin is trivially a solution of the problem.) This class of problems admits a
duality relationship that is different from Lagrange duality, and is founded on the
gauge structure of its objective. Indeed, Freund (1987) defines the dual counterpart

(D) minimize
y∈X

κ◦(y) subject to y ∈ C′,
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where the set

(1.1) C′ = { y | 〈y, x〉 ≥ 1 ∀x ∈ C }
is the antipolar of C (in contrast to the better-known polar of a convex set), and
the polar κ◦ (also a gauge) is the function that satisfies the Cauchy–Schwarz-like
inequality most tightly:

(1.2) 〈x, y〉 ≤ κ(x)κ◦(y) ∀x ∈ domκ, ∀y ∈ domκ◦;

see (2.3) for the precise definition. It follows directly from this inequality and the
definition of C′ that all primal-dual feasible pairs (x, y) satisfy the weak-duality rela-
tionship

(1.3) 1 ≤ κ(x)κ◦(y) ∀x ∈ C ∩ domκ, ∀y ∈ C′ ∩ domκ◦.

This duality relationship stands in contrast to the more usual Lagrange framework,
where the primal and dual objective values bound each other in an additive sense.

1.1. A roadmap. Freund’s analysis of gauge duality is mainly concerned with
specialized linear and quadratic problems that fit into the gauge framework, and with
the pair of abstract problems (P) and (D). Our treatment in this paper considers the
particular formulation of (P) given by

(Pρ) minimize
x∈X

κ(x) subject to ρ(b−Ax) ≤ σ,

where ρ is also a gauge. Typical applications might use ρ to measure the mismatch
between the model Ax and the measurements b, and in that case, it is natural to
assume that ρ vanishes only at the origin, so that the constraint reduces to Ax = b
when σ = 0. This formulation is only very slightly less general than (P) because
any closed convex set can be represented as { x | ρ(b− x) ≤ 1 } for some vector b and
gauge ρ; cf. section 2.3. However, it is sufficiently concrete that it allows us to develop
a calculus for computing gauge duals for a wide range of existing problems. (Conic
side constraints and a linear map in the objective are easily accommodated, and this
is covered in section 7.)

The special structure of the functions in the gauge program (Pρ) leads to a duality
framework that is analogous to the classical Lagrange-duality framework. The gauge
dual program of (Pρ) is

(Dρ) minimize
y∈X

κ◦(A∗y) subject to 〈y, b〉 − σρ◦(y) ≥ 1,

which bears a striking similarity to the Lagrange dual problem

(D�) maximize
y∈X

〈y, b〉 − σρ◦(y) subject to κ◦(A∗y) ≤ 1.

(These two duals are derived in section 4 under suitable assumptions.) Note that
the objective and constraints between the two duals play different roles. A signifi-
cant practical difference between these two formulations occurs when ρ is simply the
Euclidean norm and κ is a more complicated function (such as one described by Exam-
ple 1.2). The result is that the Lagrange dual optimizes a “simple” objective function
over a potentially “complicated” constraint; in contrast, the situation is reversed in
the gauge optimization formulation.
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In section 3 we develop an antipolar calculus for computing the antipolars of sets
such as { x | ρ(b −Ax) ≤ σ }, which corresponds to the constraint in our canonical
formulation (Pρ). This calculus is applied in section 4 to derive the gauge dual (Dρ).

The formal properties of the polar and antipolar operations are described in sec-
tions 2–3. In section 5 we develop conditions sufficient for strong duality, i.e., for
there to exist a primal-dual pair that satisfies (1.3) with equality. Our derivation
parts with the “ray-like” assumption used by Freund, and in certain cases further
relaxes the required assumptions by leveraging connections with established results
from Fenchel duality.

1.2. Examples. The following examples illustrate the versatility of the gauge
optimization formulation.

Example 1.1 (norms and minimum-length solutions). Norms are special cases of
gauge functions that are finite everywhere, symmetric, and zero only at the origin.
(Seminorms drop the last requirement, and allow the function to be zero at other
points.) Let κ(x) = ‖x‖ be any norm, and let C = { x | Ax = b } describe the solutions
to an underdetermined linear system. Then (P) yields a minimum-length solution to
the linear system Ax = b. This problem can be modeled as an instance of (Pρ) by
letting ρ be any gauge function for which ρ−1(0) = { 0 } and setting σ = 0. The polar
κ◦ = ‖ · ‖D is the norm dual to ‖ · ‖, and C′ = {A∗y | 〈b, y〉 ≥ 1 }; cf. Corollary 4.2.
The corresponding gauge dual (D) is then

minimize
y∈X

‖A∗y‖D subject to 〈b, y〉 ≥ 1.

Example 1.2 (sparse optimization and atomic norms). In his thesis, van den Berg
(2009) describes a framework for sparse optimization based on the formulation where
κ is a gauge, and the function ρ is differentiable away from the origin. The nonnega-
tive regularization parameter σ influences the degree to which the linear model Ax fits
the observations b. This formulation is specialized by van den Berg and Friedlander
(2011) to the particular case in which ρ is the 2-norm. In that case, C
= { x | ‖Ax− b‖2 ≤ σ } and

C′ = {A∗y | 〈b, y〉 − σ‖y‖2 ≥ 1 } ;
cf. Corollary 4.1. Teuber, Steidl, and Chan (2013) consider a related case where the
misfit between the model and the observations is measured by the Kullback–Leibler
divergence.

Chandrasekaran et al. (2012) describe how to construct regularizers that gener-
alize the notion of sparsity in linear inverse problems. In particular, they define the
gauge

(1.4) ‖x‖A := inf {λ ≥ 0 | x ∈ λ convA}
over the convex hull of the set of canonical atoms given by the set A. If 0 ∈ int convA
and A is bounded and symmetric, i.e., A = −A, then the definition (1.4) yields a
norm. For example, if A consists of the set of unit n-vectors that contain a single
nonzero element, then (1.4) is the 1-norm; if A consists of the set of rank-1 matrices
with unit spectral norm, then (1.4) is the Schatten 1-norm. The polar κ◦(y) =
sup { 〈y, a〉 | a ∈ conv({0} ∪ A) } is the support function of the closure of conv({0} ∪
A). Jaggi (2013) catalogs various sets of atoms that yield commonly used gauges in
machine learning.

Example 1.3 (conic gauge optimization). In this example we demonstrate that
it is possible to cast any convex conic optimization problem in the gauge framework.
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Let K be a closed convex cone, and let K∗ denote its dual. Consider the primal-dual
pair of feasible conic problems:

minimize
x

〈c, x〉 subject to Ax = b, x ∈ K,(1.5a)

maximize
y

〈b, y〉 subject to c−A∗y ∈ K∗.(1.5b)

Suppose that ŷ is a dual-feasible point, and define ĉ = c − A∗ŷ. Because ĉ ∈ K∗,
it follows that 〈ĉ, x〉 ≥ 0 for all x ∈ K. In particular, the primal problem can be
equivalently formulated as a gauge optimization problem by defining

(1.6) κ(x) = 〈ĉ, x〉+ δK(x) and C = { x | Ax = b } ,
where δK is the indicator function on the set K. (More generally, it is evident that
any function of the form γ + δK is a gauge if γ is a gauge.) This formulation is a
generalization of the nonnegative linear program discussed by Freund, and we refer to
it as conic gauge optimization. The generalization captures some important problem
classes, such as trace minimization of positive semidefinite (PSD) matrices, which
arises in the phase-retrieval problem Candès, Strohmer, and Voroninski (2012). This
is an example where c ∈ K∗, in which case the dual-feasible point ŷ = 0 is trivially
available for the gauge reformulation; cf. section 7.2.1.

A concrete example of the simple case where c ∈ K∗ is the semidefinite program-
ming relaxation of the max-cut problem studied by Goemans and Williamson (1995).
Let G = (V,E) be an undirected graph, and let D = diag

(
(dv)v∈V

)
, where dv denotes

the degree of vertex v ∈ V. The max-cut problem can be formulated as

maximize
x

1
4 〈D −A, xxT 〉 subject to x ∈ {−1, 1}V ,

where A denotes the adjacency matrix associated with G. The semidefinite program-
ming relaxation for this problem is derived by “lifting” xxT into a PSD matrix:

maximize
X

1
4 〈D −A,X〉 subject to diagX = e, X � 0,

where e is the vector of all ones, and X � 0 denotes the the PSD constraint on X .
The constraint diagX = e implies that 〈D,X〉 =∑v∈V dv = 2|E| is constant. Thus,
the optimal value is equal to

(1.7) |E| − 1
4 ·min

X
{ 〈D +A,X〉 | diagX = e, X � 0 } ,

and the solution can be obtained by solving this latter problem. Note that D + A is
PSD because it has nonnegative diagonals and is diagonally dominant. (In fact, it is
possible to reduce the problem in linear time to one where D +A is positive definite
by identifying its bipartite connected components.) Under the trace inner product,
the cone of PSD matrices is self-dual; therefore, the trace inner product between PSD
matrices is nonnegative, and (1.7) falls into the class of conic gauge problems defined
by (1.5a).

Example 1.4 (submodular functions). Let V = { 1, . . . , n }, and consider the set-

function f : 2V → R, where f(∅) = 0. The Lovàsz (1983) extension f̂ : Rn → R of f
is given by

f̂(x) =
n∑

k=1

xjk

[
f({ j1, . . . , jk })− f({ j1, . . . , jk−1 })

]
,
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where xj1
≥ xj2

≥ · · · ≥ xjn
are the sorted elements of x. Clearly, the extension is

positively homogeneous and vanishes at the origin. As shown by Lovász, the extension
is convex if and only if f is submodular, i.e.,

f(A) + f(B) ≥ f(A ∪B) + f(A ∩B) ∀A,B ⊂ V ;

see also (Bach, 2011, Proposition 2.3). If f is additionally nondecreasing, i.e.,

A,B ⊂ V and A ⊂ B =⇒ f(A) ≤ f(B),

then the extension is nonnegative over Rn
+. Thus, when f is a submodular and non-

decreasing set function, that function plus the indicator on the nonnegative orthant,
i.e., f̂ + δRn

+
, is a gauge. Bach (2011) surveys the properties of submodular functions

and their application in machine learning; see Proposition 3.7 therein.

2. Background and notation. In this section we review known facts about
polar sets, gauges and their polars, and introduce results that are useful for our
subsequent analysis. We mainly follow Rockafellar (1970): in that text, see section 14
for a discussion of polarity operations on convex sets, and section 15 for a discussion
of gauge functions and their corresponding polarity operations.

We use the following notation throughout. For a closed convex set D, let D∞
denote the recession cone of D (Auslender and Teboulle, 2003, Definition 2.1.2), and
riD and clD denote, respectively, the relative interior and the closure of D. The
indicator function of the set D is denoted by δD.

For a convex function f : X → R ∪ {∞}, its domain is denoted by dom f =
{ x | f(x) < ∞}, and its epigraph by epi f = { (x, μ) | f(x) ≤ μ }. The function is
proper if dom f �= ∅, and it is closed if its epigraph is closed, which is equivalent to
the function being lower semi-continuous (Rockafellar, 1970, Theorem 7.1). Let cl f
denote the convex function whose epigraph is cl epi f , which is the largest lower semi-
continuous function smaller than f (Rockafellar, 1970, p. 52). Also, for any x ∈ dom f ,
the subdifferential of f at x is denoted ∂f(x) = { y | f(u)− f(x) ≥ 〈y, u− x〉 ∀u }.
Finally, the convex conjugate of a proper convex function f is

(2.1) f∗(y) := sup
x

{ 〈x, y〉 − f(x) } ,

which is a proper closed convex function (Rockafellar, 1970, Theorem 12.2).

2.1. Assumptions. We make the following blanket assumptions throughout.
The set C is a nonempty closed convex set that does not contain the origin; the set D
is a nonempty convex set that may or may not contain the origin, depending on the
context. The gauge function ρ : X → R ∪ {∞}, used in (Pρ), is closed; when σ = 0,
we additionally assume that ρ−1(0) = { 0 }.

2.2. Polar sets. The polar of a nonempty convex set D is defined as

D◦ := { y | 〈x, y〉 ≤ 1 ∀x ∈ D } ,
which is necessarily closed convex, and contains the origin. The bipolar theorem states
that if D is closed, then it contains the origin if and only if D = D◦◦ (Rockafellar,
1970, Theorem 14.5).

When D = K is a closed convex cone, the polar is equivalently given by

K◦ := { y | 〈x, y〉 ≤ 0 ∀x ∈ K } .
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The positive polar cone (also known as the dual cone) of D is given by

D∗ := { y | 〈x, y〉 ≥ 0 ∀x ∈ D } .
The polar and positive polar are related via the closure of the conic hull, i.e.,

D∗ = (cl coneD)∗ = −(cl coneD)◦, where coneD :=
⋃
λ≥0

λD.

2.3. Gauge functions. All gauges can be represented as the Minkowski function
γD of some nonempty convex set D, i.e.,

(2.2) κ(x) = γD(x) := inf {λ ≥ 0 | x ∈ λD } .
In particular, one can always choose D = { x | κ(x) ≤ 1 }, and the above representa-
tion holds. The polar of the gauge κ is defined by

(2.3) κ◦(y) := inf {μ > 0 | 〈x, y〉 ≤ μκ(x) ∀x } ,
which explains the inequality (1.2). The following proposition collects properties that
relate the polar and conjugate of a gauge.

Proposition 2.1. For the gauge κ : X → R ∪ {∞}, it holds that
(i) κ◦ is a closed gauge function;
(ii) κ◦◦ = clκ = κ∗∗;
(iii) κ◦(y) = supx { 〈x, y〉 | κ(x) ≤ 1 } for all y;
(iv) κ∗(y) = δκ◦

(·)≤1(y) for all y;

(v) domκ◦ = X if κ is closed and κ−1(0) = { 0 };
(vi) epiκ◦ = { (y, λ) | (y,−λ) ∈ (epi κ)◦ }.

Proof. The first two items are proved in Theorems 15.1 and 12.2 of Rockafellar
(1970). Item (iii) follows directly from the definition (2.3) of the polar gauge. To
prove item (iv), we note that if g(t) = t, t ∈ R, then the so-called monotone conjugate
g+ is

g+(s) = sup
t≥0

{ st− t } = δ[0,1](s),

where s ≥ 0. Now, apply Rockafellar (1970, Theorem 15.3) with g(t) = t, and κ∗∗ in
place of f in that theorem to obtain that κ∗∗∗(y) = δ[0,1](κ

∗∗◦(y)). The conclusion
in item (iv) now follows by noting that κ∗∗∗ = κ∗ and κ∗∗◦ = κ◦◦◦ = κ◦. To prove
item (v), note that the assumptions together with Auslender and Teboulle (2003,
Proposition 3.1.3) show that 0 ∈ int domκ∗. This together with item (iv) and the
positive homogeneity of κ◦ shows that domκ◦ = X . Finally, item (vi) is stated on
Rockafellar (1970, p. 137) and can also be verified directly from the definition.

In many interesting applications, the objective in (P) is the composition κ ◦ A,
where κ is a gauge and A is a linear map. Clearly, κ ◦ A is also a gauge. The next
result gives the polar of this composition.

Proposition 2.2. Let A be a linear map. Suppose that either
(i) epiκ is polyhedral; or
(ii) ri domκ ∩ rangeA �= ∅.

Then

(κ ◦A)◦(y) = inf
u

{ κ◦(u) | A∗u = y } .
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Moreover, the infimum is attained when the value is finite.
Proof. Since κ ◦A is a gauge, we have from Proposition 2.1(iii) that

(κ ◦A)◦(y) = sup
x

{ 〈y, x〉 | κ(Ax) ≤ 1 } = − inf
x
{ 〈−y, x〉+ δD(Ax) } ,

where D = { x | κ(x) ≤ 1 }. Since κ is positively homogeneous, we have domκ =⋃
λ≥0 λD. Hence, ri domκ =

⋃
λ>0 λ riD from Rockafellar (1970, p. 50). Thus, as-

sumption (ii) implies that riD ∩ rangeA �= ∅. On the other hand, assumption (i)
implies that D is polyhedral; and D ∩ rangeA �= ∅ because they both contain the
origin. Use these conclusions and apply Rockafellar (1970, Corollary 31.2.1(a)), with
f(x) := 〈−y, x〉 and g(Ax) := −δD(Ax) (see also Rockafellar’s remark right after that
corollary for the case when D is polyhedral), to conclude that

(κ ◦A)◦(y) = − sup
u

{−(〈−y, ·〉)∗(−A∗u)− (δD)
∗(u) }

= − sup
u

{−κ◦(u) | A∗u = y } ,

where the second equality follows from the definition of conjugate functions and
Proposition 2.1(iii). Moreover, from that same corollary, the supremum is attained
when finite. (Note that Rockafeller’s statement of that corollary is formulated for the
difference between convex and concave function, and must be appropriately adapted
to our case.) This completes the proof.

Suppose that a gauge is given as the Minkowski function of a nonempty convex
set that may not necessarily contain the origin. The following proposition summarizes
some properties concerning this representation.

Proposition 2.3. Suppose that D is a nonempty convex set. Then
(i) (γD)

◦ = γD◦;
(ii) γD = γconv({0}∪D);
(iii) γD is closed if conv({0} ∪ D) is closed.
(iv) If κ = γD, D is closed, and 0 ∈ D, then D is the unique closed convex set

containing the origin such that κ = γD; indeed, D = { x | κ(x) ≤ 1 }.
Proof. Item (i) is proved in Rockafellar (1970, Theorem 15.1). Item (ii) follows

directly from the definition. To prove (iii), we first notice from item (ii) that we
may assume without loss of generality that D contains the origin. Notice also that
γD is closed if and only if γD = γ∗∗

D . Moreover, γ∗∗
D = γD◦◦ = γclD, where the first

equality follows from Proposition 2.1(ii) and item (i), while the second equality follows
from the bipolar theorem. Thus, γD is closed if and only if γD = γclD. The latter
holds when D = clD. Finally, the conclusion in item (iv) was stated on Rockafellar
(1970, p. 128); indeed, the relation D = { x | κ(x) ≤ 1 } can be verified directly from
definition.

From Proposition 2.1(iv) and Proposition 2.3(iv), it is not hard to prove the
following formula on the polar of the sum of two gauges of independent variables.

Proposition 2.4. Let κ1 and κ2 be gauges. Then κ(x1, x2) := κ1(x1) + κ2(x2)
is a gauge, and its polar is given by

κ◦(y1, y2) = max { κ◦
1(y1), κ◦

2(y2) } .

Proof. It is clear that κ is a gauge. Moreover,

κ∗(y1, y2) = κ∗
1(y1) + κ∗

2(y2) = δD1×D2
(y1, y2),
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where Di = { x | κ◦
i (x) ≤ 1 } for i = 1, 2; the first equality follows from the definition

of the convex conjugate and the fact that y1 and y2 are decoupled, and the second
equality follows from Proposition 2.1(iv). This together with Proposition 2.3(iv) im-
plies that

κ◦(y1, y2) = inf {λ ≥ 0 | y1 ∈ λD1, y2 ∈ λD2 }
= max { inf {λ ≥ 0 | y1 ∈ λD1 } , inf {λ ≥ 0 | y2 ∈ λD2 } }
= max { γD1

(y1), γD2
(y2) } = max { κ◦

1(y1), κ◦
2(y2) } .

This completes the proof.
The following corollary is immediate from Propositions 2.2 and 2.4.
Corollary 2.5. Let κ1 and κ2 be gauges. Suppose that either

(i) epiκ1 and epiκ2 are polyhedral; or
(ii) ri domκ1 ∩ ri domκ2 �= ∅.

Then

(2.4) (κ1 + κ2)
◦(y) = inf

u1,u2

{max { κ◦
1(u1), κ◦

2(u2) } | u1 + u2 = y } .

Moreover, the infimum is attained when finite.
Proof. Apply Proposition 2.2 with Ax = (x, x) and the gauge κ1(x1) + κ2(x2),

whose polar is given by Proposition 2.4.
The support function for a nonempty convex set D is defined as

σD(y) = sup
x∈D

〈x, y〉;

see Rockafellar (1970, section 13) for properties of support functions. It is immediate
from the definition of the convex conjugate that σD = δ∗D. It is also straightforward
to verify that if D contains the origin, then the corresponding support function σD
is a (closed) gauge function. Moreover, we have the following relationship between
support and Minkowski functions (Rockafellar, 1970, Corollary 15.1.2).

Proposition 2.6. Let D be a closed convex set that contains the origin. Then

γ◦
D = σD and σ◦

D = γD.

2.4. Antipolar sets. The antipolar C′, defined by (1.1), is nonempty as a con-
sequence of the separation theorem. Freund’s 1987 derivations are largely based on
the following definition of a ray-like set. (As Freund mentions, the terms antipolar
and ray-like are not universally used.)

Definition 2.7. A set D is ray-like if for any x, y ∈ D,

x+ αy ∈ D ∀α ≥ 0.

Note that the antipolar C′ of a (not necessarily ray-like) set C must be ray-like.
The following result is analogous to the bipolar theorem for antipolar operations;

see McLinden (1978, p. 176) and Freund (1987, Lemma 3).
Theorem 2.8 (bi-antipolar theorem). C = C′′ if and only if C is ray-like.
The following proposition, stated by McLinden (1978, p. 176), follows from the

bi-antipolar theorem.
Proposition 2.9. C′′ =

⋃
λ≥1 λC.

The next lemma relates the positive polar of a convex set, its antipolar, and the
recession cone of its antipolar.

Lemma 2.10. cl cone(C′) = C∗ = (C′)∞.
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Table 1

The main rules of the antipolar calculus; the required assumptions are made explicit in the
specific references.

Result Reference

(AC)′ = (A
∗
)
−1C′

Proposition 3.3

(A
−1C)′ = cl(A

∗C′
) Propositions 3.4 and 3.5

(C1 ∪ C2)′ = C′
1 ∩ C′

2 Proposition 3.6

(C1 ∩ C2)′ = cl conv(C′
1 ∪ C′

2) Proposition 3.7

Proof. It is evident that cl cone(C′) ⊆ C∗. To show the converse inclusion, take
any x ∈ C∗ and fix an x0 ∈ C′. Then for any τ > 0, we have

〈c, x+ τx0〉 ≥ τ〈c, x0〉 ≥ τ ∀ c ∈ C,
which shows that x + τx0 ∈ cone C′. Taking the limit as τ goes to 0 shows that
x ∈ cl cone(C′). This proves the first equality.

Next we show the second equality, and begin with the observation that C∗ ⊆
(C′)∞. Conversely, suppose that x ∈ (C′)∞ and fix any x0 ∈ C′. Then x0 + τx ∈ C′

for all τ > 0 (see, e.g., Auslender and Teboulle (2003, Proposition 2.1.5)). Hence, for
any c ∈ C,

1

τ
〈c, x0〉+ 〈c, x〉 = 1

τ
〈c, x0 + τx〉 ≥ 1

τ
.

Since this is true for all τ > 0, we must have 〈c, x〉 ≥ 0. Since c ∈ C is arbitrary, we
conclude that x ∈ C∗.

3. Antipolar calculus. In general, it may not always be easy to obtain an
explicit formula for the Minkowski function of a given closed convex set D. Hence, we
derive some elements of an antipolar calculus that allows us to express the antipolar
of a more complicated set in terms of the antipolars of its constituents. These rules
are useful for writing down the explicit gauge duals of problems such as (Pρ). Table 1
summarizes the main elements of the calculus.

As a first step, the following formula gives an expression for the antipolar of a
set defined via a gauge. The formula follows directly from the definition of polar
functions.

Proposition 3.1. Let C = { x | ρ(b − x) ≤ σ } with 0 < σ < ρ(b). Then

C′ = { y | 〈b, y〉 − σρ◦(y) ≥ 1 } .
Proof. Note that y ∈ C′ is equivalent to 〈x, y〉 ≥ 1 for all x ∈ C. Thus, for all x

such that ρ(b− x) ≤ σ,

〈x− b, y〉 ≥ 1− 〈b, y〉 ⇐⇒ 〈b− x, y〉 ≤ 〈b, y〉 − 1.

From Proposition 2.1(iii), this is further equivalent to σρ◦(y) ≤ 〈b, y〉 − 1.
Proposition 3.1 is very general since any closed convex set D containing the origin

can be represented in the form of { x | ρ(x) ≤ 1 }, where ρ(x) = inf {λ ≥ 0 | x ∈ λD };
cf. (2.2). For conic constraints in particular, one obtains the following corollary by
setting ρ(x) = δ−K(x).

Corollary 3.2. Let C = { x | x ∈ b+K } for some closed convex cone K and a
vector b /∈ −K. Then

C′ = { y ∈ K∗ | 〈b, y〉 ≥ 1 } .
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Note that Proposition 3.1 excludes the potentially important case σ = 0; however,
Corollary 3.2 can instead be applied by defining K = ρ−1(0) = { 0 }.

3.1. Linear transformations. We now consider the antipolar of the image of
C under a linear map A.

Proposition 3.3. It holds that

(AC)′ = (A∗)−1C′.

Furthermore, if cl(AC) does not contain the origin, then both sets above are nonempty.

Proof. Note that y ∈ (AC)′ is equivalent to

〈y,Ac〉 = 〈A∗y, c〉 ≥ 1 ∀ c ∈ C.

The last relation is equivalent to A∗y ∈ C′. Hence, (AC)′ = (A∗)−1C′. Further-
more, the assumption that cl(AC) does not contain the origin, together with an argu-
ment using supporting hyperplanes, implies (AC)′ is nonempty. This completes the
proof.

We have the following result concerning the preimage of C.
Proposition 3.4. If the set C is closed convex and does not contain the origin,

and A−1C �= ∅, then

(A−1C)′ = cl(A∗C′),

and both sets are nonempty.
Proof. It follows from the assumptions that cl(A∗C′) is nonempty. Moreover,

A−1C is also closed convex and does not contain the origin. Hence, (A−1C)′ is also
nonempty.

We next show that cl(A∗C′) does not contain the origin. Suppose that y ∈ A∗C′

so that y = A∗u for some u ∈ C′. Then for any x ∈ A−1C, we have Ax ∈ C and thus

〈x, y〉 = 〈x,A∗u〉 = 〈Ax, u〉 ≥ 1,

which shows that y ∈ (A−1C)′. Thus, we have A∗C′ ⊆ (A−1C)′ and consequently that
cl(A∗C) ⊆ (A−1C)′. Since the set A−1C is nonempty, (A−1C)′ does not contain the
origin. Hence, it follows that cl(A∗C′) also does not contain the origin.

Now apply Proposition 3.3 with A∗ in place of A, and C′ in place of C, to obtain

(A∗C′)′ = A−1C′′.

Taking the antipolar on both sides of the above relation, we arrive at

(3.1) (A∗C′)′′ = (A−1C′′)′.

Since C′ is ray-like, it follows that cl(A∗C′) is also ray-like. Since cl(A∗C′) does not
contain the origin, we conclude from the bi-antipolar theorem that (A∗C′)′′ = cl(A∗C′).
Moreover, we have

(
A−1C′′)′ = ( ⋃

λ≥1

λA−1C
)′

=
(
A−1C)′,
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where the first equality follows from Proposition 2.9, and the second equality can be
verified directly from definition. The conclusion now follows from the above discussion
and (3.1).

We have the following further consequence.
Proposition 3.5. Suppose that A−1C �= ∅, and either C is polyhedral or riC ∩

rangeA �= ∅. Then (A−1C)′ is nonempty and(
A−1C)′ = A∗C′.

Proof. We will show that A∗C′ is closed under the assumption of this proposition.
The conclusion then follows immediately from Proposition 3.4.

Abrams’s theorem (Berman, 1973, Lemma 3.1) asserts that A∗C′ is closed if and
only if C′ + kerA∗ is closed. We will thus establish the closedness of the latter set.

Suppose that C is a polyhedral. Then it is routine to show that C′ is also poly-
hedral and thus C′ + kerA∗ is closed. Hence, the conclusion of the proposition holds
under this assumption.

Finally, suppose that ri C ∩ rangeA �= ∅. From Auslender and Teboulle (2003,
Theorem 2.2.1) and the bipolar theorem, we have cl domσC′ = [(C′)∞]◦, where (C′)∞
is the recession cone of C′, which turns out to be just C∗ by Lemma 2.10. From this
and the bipolar theorem, we see further that

cl domσC′ = [C∗]◦ = [(cl cone C)∗]◦ = − cl cone C,
and hence ri domσC′ = − ri coneC, thanks to Rockafellar (1970, Theorem 6.3). Fur-
thermore, the assumption that riC∩rangeA �= ∅ is equivalent to ri cone C∩rangeA �= ∅,
since ri cone C =

⋃
λ>0 λ riC; see Rockafellar (1970, p. 50). Thus, the assumption

riC ∩ rangeA �= ∅, together with Rockafellar (1970, Theorem 23.8), implies that

C′ + kerA∗ = ∂σC′(0) + ∂δrangeA(0) = ∂(σC′ + δrangeA)(0),

where we use the fact that C′ = ∂σC′(0) ≡ { y | 〈y, x〉 ≤ σC′(x) ∀x } for the first equal-
ity; see Rockafellar (1970, Theorem 13.1). In particular, C′ + kerA∗ is closed.

3.2. Unions and intersections. Other important set operations are union and
intersection, which we discuss here. Ruys and Weddepohl (1979, Appendix A.1) out-
line additional rules.

Proposition 3.6. Let C1 and C2 be nonempty closed convex sets. Then

(C1 ∪ C2)′ = C′
1 ∩ C′

2.

If 0 /∈ cl conv(C1 ∪ C2), then the sets above are nonempty.
Proof. Note that y ∈ (C1 ∪ C2)′ is equivalent to 〈y, x〉 ≥ 1 for all x ∈ C1 as well

as x ∈ C2. This is equivalent to y ∈ C′
1 ∩ C′

2. Moreover, if we assume further that
0 /∈ cl conv(C1 ∪ C2), then (C1 ∪ C2)′ = [cl conv(C1 ∪ C2)]′ is nonempty. This completes
the proof.

We now consider the antipolar of intersections. Note that it is necessary to assume
that both C1 and C2 are ray-like, which was missing from Ruys and Weddepohl (1979,
Property A.5). (The necessity of this assumption is demonstrated by Example 3.1,
which follows the proposition.)

Proposition 3.7. Let C1 and C2 be nonempty ray-like closed convex sets not
containing the origin. Suppose further that C1 ∩ C2 �= ∅. Then

(C1 ∩ C2)′ = cl conv(C′
1 ∪ C′

2),
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and both sets are nonempty.
Proof. From the fact that both C1 and C2 are closed convex sets not containing

the origin, it follows that C′
1 and C′

2 are nonempty and hence cl conv(C′
1 ∪ C′

2) �= ∅.
Moreover, because C1 ∩ C2 does not contain the origin, (C1 ∩ C2)′ is also nonempty.

We first show that cl conv(C′
1 ∪ C′

2) does not contain the origin. To this end, let
y ∈ C′

1 ∪ C′
2. For any x ∈ C1 ∩ C2, we have 〈y, x〉 ≥ 1, which shows that C′

1 ∪ C′
2 ⊆

(C1∩C2)′, and hence cl conv(C′
1∪C′

2) ⊆ (C1∩C2)′. Since C1∩C2 is nonempty, (C1∩C2)′
does not contain the origin. Consequently, cl conv(C′

1∪C′
2) does not contain the origin,

as claimed.
Now apply Proposition 3.6, with C′

1 in place of C1 and C′
2 in place of C2, to obtain

(C′
1 ∪ C′

2)
′ = C′′

1 ∩ C′′
2 = C1 ∩ C2.

Take the antipolar of both sides to obtain

(C1 ∩ C2)′ = (C′
1 ∪ C′

2)
′′ = [cl conv(C′

1 ∪ C′
2)]

′′ = cl conv(C′
1 ∪ C′

2),

where the second equality follows from the definition of antipolar, and the third
equality follows from the observation that cl conv(C′

1 ∪ C′
2) is a nonempty ray-like

closed convex set not containing the origin. This completes the proof.
The following counterexample shows that the requirement that C1 and C2 are

ray-like cannot be removed from Proposition 3.7.
Example 3.1 (set intersection and the ray-like property). Consider the sets

C1 = { (x1, x2) | 1− x1 ≤ x2 ≤ x1 − 1 } and C2 = { (x1, x2) | x1 = 1 } .
Define H1 = { (x1, x2) | x1 + x2 ≥ 1 } and H2 = { (x1, x2) | x1 − x2 ≥ 1 } so that C1 =
H1∩H2. Clearly the set C2 is not ray-like, while the sets C1, H1, andH2 are. Moreover,
all four sets do not contain the origin. Furthermore, C1 ∩ C2 is the singleton { (1, 0)},
and hence a direct computation shows that (C1 ∩ C2)′ = { (y1, y2) | y1 ≥ 1 }.

Next, it follows directly from the antipolar definition that C′
2 = { (y1, 0) | y1 ≥ 1 }.

Also note that H1 = L−1
1 I, where L1(x1, x2) = x1 + x2 and I = { u | u ≥ 1 }. Thus,

by Proposition 3.5, H ′
1 = { (y1, y1) | y1 ≥ 1 }. Similarly, H ′

2 = { (y1,−y1) | y1 ≥ 1 }.
Because H1 and H2 are ray-like, it follows from Proposition 3.7 that

C′
1 = (H1 ∩H2)

′
= cl conv(H

′
1 ∪H

′
2),

which contains C′
2. Thus,

cl conv(C′
1 ∪ C′

2) = C′
1 � { (y1, y2) | y1 ≥ 1 } = (C1 ∩ C2)′.

4. Duality derivations. We derive in this section the gauge and Lagrange duals
of the primal problem (Pρ). Let

(4.1) C = { x | ρ(b−Ax) ≤ σ }
denote the constraint set, where ρ is a closed gauge and 0 ≤ σ < ρ(b). We also
consider the associated set

(4.2) C0 = { u | ρ(b− u) ≤ σ } ,
and note that C = A−1C0. Recall from our blanket assumption in section 2 that when
σ = 0, we consider only closed gauges ρ with ρ−1(0) = { 0 }.
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4.1. The gauge dual. We consider two approaches for deriving the gauge dual
of (Pρ). The first uses explicitly the abstract definition of the gauge dual (D). The
second approach redefines the objective function to also contain an indicator for the
nonlinear gauge ρ where C is an affine set. This alternative approach is instructive,
because it illustrates the modeling choices that are available when working with gauge
functions.

4.1.1. First approach. The following combines Proposition 3.5 with Proposi-
tion 3.1, and gives an explicit expression for the antipolar of C when σ > 0.

Corollary 4.1. Suppose that C is given by (4.1), where 0 < σ < ρ(b), and C0
is given by (4.2). If C0 is polyhedral, or riC0 ∩ rangeA �= ∅, then

C′ = {A∗y | 〈b, y〉 − σρ◦(y) ≥ 1 } .

As an aside, we present the following result, which follows from Corollary 3.2 and
Proposition 3.5. It concerns a general closed convex cone K.

Corollary 4.2. Suppose that C = { x | Ax − b ∈ K} for some closed convex
cone K and b /∈ −K. If K is polyhedral, or (b + riK) ∩ rangeA �= ∅, then

C′ = {A∗y | 〈b, y〉 ≥ 1, y ∈ K∗ } .

These results can be used to obtain an explicit representation of the gauge dual
problem. We rely on the antipolar calculus developed in section 3. Assume that

(4.3) C0 is polyhedral or riC0 ∩ rangeA �= ∅.

Consider separately the cases σ > 0 and σ = 0.
Case 1: σ > 0. Apply Corollary 4.1 to derive the antipolar set

(4.4) C′ = {A∗y | 〈b, y〉 − σρ◦(y) ≥ 1 } .

Case 2: σ = 0. Here we use the blanket assumption (see section 2) that ρ−1(0) =
{ 0 }, and in that case, C = { x | Ax = b }. Apply Corollary 4.2 with K = { 0 } to
obtain

(4.5) C′ = {A∗y | 〈b, y〉 ≥ 1 } .

Since ρ−1(0) = { 0 } and ρ is closed, we conclude from Proposition 2.1(v) that
dom ρ◦ = X . Hence, (4.5) can be seen as a special case of (4.4) with σ = 0.

These two cases can be combined, and we see that when (4.3) holds, the gauge
dual problem (D) for (Pρ) can be expressed as (Dρ). If the assumptions (4.3) are not
satisfied, then in view of Proposition 3.4, it still holds that (D) is equivalent to

minimize
u,y

κ◦(u) subject to u ∈ cl {A∗y | 〈y, b〉 − σρ◦(y) ≥ 1 } .

This optimal value can in general be less than or equal to that of (Dρ).

4.1.2. Second approach. This approach does not rely on assumptions (4.3).
Define the function ξ(x, r, τ) := κ(x) + δepiρ(r, τ), which is a gauge because epi ρ is a
cone. Then (Pρ) can be equivalently reformulated as

(4.6) minimize
x,r,τ

ξ(x, r, τ) subject to Ax+ r = b, τ = σ.
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Invoke Proposition 2.4 to obtain

ξ◦(z, y, α) = max { κ◦(z), (δepiρ)
◦(y, α) }

(i)
= max { κ◦(z), δ(epiρ)◦(y, α) }
(ii)
= κ◦(z) + δ(epiρ)◦(y, α)

(iii)
= κ◦(z) + δepi(ρ◦

)(y,−α),

where (i) follows from Proposition 2.3(i), (ii) follows from the definition of indicator
function, and (iii) follows from Proposition 2.1(vi). As Freund (1987, section 2) shows
for gauge programs with linear constraints, the gauge dual is given by

minimize
y,α

ξ◦(A∗y, y, α) subject to 〈y, b〉+ σα ≥ 1,

which can be rewritten as

minimize
y,α

κ◦(A∗y) subject to 〈y, b〉+ σα ≥ 1, ρ◦(y) ≤ −α.

(The gauge dual for problems with linear constraints also follows directly from Corol-
lary 4.2 with K = { 0 }.) Further simplification leads to the gauge dual program (Dρ).

Note that the transformation used to derive (4.6) is very flexible. For example,
if (Pρ) contained the additional conic constraint x ∈ K, then ξ could be defined to
contain an additional term given by the indicator of K.

Even though this approach does not require the assumptions (4.3) used in sec-
tion 4.1, and thus appears to apply more generally, it is important to keep in mind
that we have yet to impose conditions that imply strong duality. In fact, as we show
in section 5, the assumptions required there imply (4.3).

4.2. Lagrange duality. Our derivation of the Lagrange dual problem (D�) is
standard, and we include here as a counterpoint to the corresponding gauge dual
derivation. We begin by reformulating (Pρ) by introducing an artificial variable r,
and deriving the dual of the equivalent problem

(4.7) minimize
x,r

κ(x) subject to Ax + r = b, ρ(r) ≤ σ.

Define the Lagrangian function

L(x, r, y) = κ(x) + 〈y, b−Ax− r〉.
The Lagrange dual problem is given by

maximize
y

inf
x, ρ(r)≤σ

L(x, r, y).

Consider the (concave) dual function

�(y) = inf
x, ρ(r)≤σ

L(x, r, y)

= inf
x, ρ(r)≤σ

{
〈y, b〉 − 〈y, r〉 − (〈A∗y, x〉 − κ(x)

}
= 〈y, b〉 − sup

ρ(r)≤σ

〈y, r〉 − sup
x

{
〈A∗y, x〉 − κ(x)

}
= 〈y, b〉 − σρ◦(y)− δκ◦

(·)≤1(A
∗y),
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where the first conjugate on the right-hand side follows from Proposition 2.1(iii) when
σ > 0, and when σ = 0, it is a direct consequence of the assumption that ρ−1(0) =
{ 0 } so that dom ρ◦ = X from Proposition 2.1(v); the last conjugate follows from
Proposition 2.1(iv). The Lagrange dual problem is obtained by maximizing �, leading
to (D�).

Strictly speaking, the Lagrangian primal-dual pair of problems that we have de-
rived is given by (4.7) and (D�), but it is easy to see that (Pρ) is equivalent to (4.7),
in the sense that the respective optimal values are the same, and that solutions to
one problem readily lead to solutions for the other. Thus, without loss of generality,
we refer to (D�) as the Lagrange dual to the primal problem (Pρ).

5. Strong duality. Freund’s 1987 analysis of the gauge dual pair is mainly based
on the classical separation theorem. It relies on the ray-like property of the constraint
set C. Our study of the gauge dual pairs allows us to relax the ray-like assumption. By
establishing connections with the Fenchel duality framework, we can develop strong
duality conditions that are analogous to those required for Lagrange duality theory.

The Fenchel dual (Rockafellar, 1970, section 31) of (P) is given by

(5.1) maximize
y

−σC(−y) subject to κ◦(y) ≤ 1,

where we use (δC)
∗ = σC and Proposition 2.1(iv) to obtain κ∗ = δ[κ◦≤1]. Let vp, vg,

and vf , respectively, denote the optimal values of (P), (D), and (5.1). The following
result relates their optimal values and dual solutions.

Theorem 5.1 (weak duality). Suppose that domκ◦ ∩ C′ �= ∅. Then

vp ≥ vf = 1/vg > 0.

Furthermore,
(i) if y∗ solves (5.1), then y∗ ∈ cone C′ and y∗/vf solves (D);
(ii) if y∗ solves (D) and vg > 0, then vfy

∗ solves (5.1).
Proof. The fact that vp ≥ vf follows from standard Fenchel duality theory. We

now show that vf = 1/vg.

Because domκ◦ ∩ C′ �= ∅, there exists y0 such that κ◦(y0) ≤ 1 and y0 ∈ τC′ for
some τ > 0. In particular, because −σC(−y) = infc∈C〈c, y〉 for all y, it follows from
the definition of vf that

(5.2) vf = sup
y

{ inf
c∈C

〈c, y〉 | κ◦(y) ≤ 1 } ≥ inf
c∈C

〈c, y0〉 ≥ τ > 0.

Hence

(5.3) vf = sup
y,λ

{λ | κ◦(y) ≤ 1, −σC(−y) ≥ λ, λ > 0 } .

From this, we have further that

vf = sup
y,λ

{λ | κ◦(y/λ) ≤ 1/λ, −σC(−y/λ) ≥ 1, 1/λ > 0 }

= sup
y,μ

{ 1/μ | κ◦(μy) ≤ μ, −σC(−μy) ≥ 1, μ > 0 } .
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Inverting both sides of this equation gives

(5.4)

1/vf = inf
y,μ

{μ | κ◦(μy) ≤ μ, −σC(−μy) ≥ 1, μ > 0 }
= inf

w,μ
{μ | κ◦(w) ≤ μ, −σC(−w) ≥ 1, μ > 0 }

(i)
= inf

w,μ
{μ | κ◦(w) ≤ μ, w ∈ C′, μ > 0 }

= inf
w,μ

{μ | κ◦(w) ≤ μ, w ∈ C′ }
= inf

w
{ κ◦(w) | w ∈ C′ } = vg,

where equality (i) follows from the definition of C′. This proves vf = 1/vg.
We now prove item (i). Assume that y∗ solves (5.1). Then vf is nonzero (by (5.2))

and finite, and so is vg = 1/vf . Then y∗ ∈ cone C′ because−σC(−y∗) = infc∈C〈c, y∗〉 =
vf > 0, and we see from (5.4) that y∗/vf solves (D). We now prove item (ii). Note
that if y∗ solves (D) and vg > 0, then κ◦(y∗) > 0. One can then observe similarly
from (5.4) that y∗/vg = vfy

∗ solves (5.1). This completes the proof.
Fenchel duality theory allows us to use Theorem 5.1 to obtain several sufficient

conditions that guarantee strong duality, i.e., vpvg = 1, and the attainment of the
gauge dual problem (D). For example, applying Rockafellar (1970, Theorem 31.1)
yields the following corollary.

Corollary 5.2 (strong duality I). Suppose that domκ◦ ∩ C′ �= ∅ and ri domκ ∩
riC �= ∅. Then vpvg = 1 and the gauge dual (D) attains its optimal value.

Proof. From ri domκ∩riC �= ∅ and Rockafellar (1970, Theorem 31.1), we see that
vp = vf and vf is attained. The conclusion of the corollary now follows immediately
from Theorem 5.1.

We would also like to guarantee primal attainment. Note that the gauge dual of
the gauge dual problem (D) (i.e., the bidual of (P)) is given by

(5.5) minimize
x

κ◦◦(x) subject to x ∈ C′′,

which is not the same as (P) unless C is ray-like and κ is closed; see Theorem 2.8
and Proposition 2.1(ii). However, we show in the next proposition that (5.5) and (P)
always have the same optimal value when κ is closed (even if C is not ray-like), and
that if the optimal value is attained in one problem, it is also attained in the other.

Proposition 5.3. Suppose that κ is closed. Then the optimal values of (P) and
(5.5) are the same. Moreover, if the optimal value is attained in one problem, it is
also attained in the other.

Proof. From Proposition 2.9, we see that (5.5) is equivalent to

minimize
λ,x

λκ(x) subject to x ∈ C, λ ≥ 1,

which clearly gives the same optimal value as (P). This proves the first conclusion.
The second conclusion now also follows immediately.

Hence, we obtain the following corollary, which generalizes Freund (1987, Theo-
rem 2A) by dropping the ray-like assumption on C.

Corollary 5.4 (strong duality II). Suppose that κ is closed, and that ri domκ∩
riC �= ∅ and ri domκ◦ ∩ ri C′ �= ∅. Then vpvg = 1 and both values are attained.

Proof. The conclusion follows from Corollary 5.2, Proposition 5.3, the fact that
κ = κ◦◦ for closed gauge functions, and the observation that ri domκ∩ riC �= ∅ if and
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only if ri domκ ∩ ri C′′ �= ∅, since riC′′ =
⋃

λ>1 λ ri C (Rockafellar, 1970, p. 50) and
domκ is a cone.

Before closing this section, we specialize Theorem 5.1 to study the relationship
between the Lagrange (D�) and gauge (Dρ) duals. Let vl denote the optimal value of
(D�). We use the fact that, for any y,

(5.6) −σC(−y) = inf
c∈C

〈c, y〉
{
> 0 if y ∈ cone C′\ { 0 } ,
≤ 0 otherwise,

which is directly verifiable using the definition of C′.
Corollary 5.5. Suppose that C is given by (4.1), where 0 ≤ σ < ρ(b), assump-

tion (4.3) holds, and domκ◦ ∩ C′ �= ∅. Then vl = vf > 0. Moreover,
(i) if y∗ solves (D�), then y∗/vl solves (Dρ);
(ii) if y∗ solves (Dρ) and vg > 0, then vly

∗ solves (D�).

Proof. From (5.6), for any y ∈ cone C′\ { 0 }, we have −σC(−y) = infc∈C〈c, y〉 > 0
and is hence finite. Note that infc∈C〈c, y〉 = infc,r { 〈c, y〉 | Ac+ r = b, ρ(r) ≤ σ }.
Use this reformulation and proceed as in section 4.2 to obtain the dual function

�(u) = inf
c, ρ(r)≤σ

{〈u, b〉 − 〈u, r〉 − (〈A∗u, c〉 − 〈c, y〉}
= 〈b, u〉 − sup

ρ(r)≤σ

〈u, r〉 − sup
c

{〈A∗u− y, c〉}
= 〈b, u〉 − σρ◦(u)− δA∗

u=y(u).

The dual problem to infc∈C〈c, y〉 is given by maximizing � over u. Because of assump-
tion (4.3) and the finiteness of −σC(−y),

(5.7) inf
c∈C

〈c, y〉 = sup
y=A

∗
u

{〈b, u〉 − σρ◦(u)
}
,

and the supremum is attained, which is a consequence of Rockafellar (1970, Corol-
lary 28.2.2 and Theorem 28.4). On the other hand, for any y /∈ cone C′\ { 0 }, we have
from weak duality and (5.6) that

(5.8) sup
y=A

∗
u

{〈b, u〉 − σρ◦(u)
} ≤ inf

c∈C
〈c, y〉 ≤ 0.

Since domκ◦ ∩ C′ �= ∅, we can substitute (5.7) into (5.3) and obtain

0 < vf = sup {λ | κ◦(y) ≤ 1, −σC(−y) ≥ λ > 0 }
= sup { 〈b, u〉 − σρ◦(u) | κ◦(A∗u) ≤ 1, A∗u ∈ cone C′\ { 0 }}
= sup { 〈b, u〉 − σρ◦(u) | κ◦(A∗u) ≤ 1 } = vl,

where the last equality follows from (5.7), (5.8), and the positivity of vf . This com-
pletes the first part of the proof. In particular, the Fenchel dual problem (5.1) has
the same optimal value as the Lagrange dual problem (D�), and y∗ = A∗u∗ solves
(5.1) if and only if u∗ solves (D�). Moreover, since assumption (4.3) holds, section 4.1
shows that (D) is equivalent to (Dρ). The conclusion now follows from these and
Theorem 5.1.
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We next state a strong duality result concerning the primal-dual gauge pair (Pρ)
and (Dρ).

Corollary 5.6. Suppose that C and C0 are given by (4.1) and (4.2), where
0 ≤ σ < ρ(b). Suppose also that κ is closed,

(5.9) ri domκ ∩A−1 riC0 �= ∅, and ri domκ◦ ∩ A∗ riC′
0 �= ∅.

Then the optimal values of (Pρ) and (Dρ) are attained, and their product is 1.
Proof. Since A−1 riC0 �= ∅, A satisfies the assumption in (4.3). Then section 4.1

shows that (D) is equivalent to (Dρ). Moreover, from Rockafellar (1970, Theorems 6.6
and 6.7), we see that ri C = A−1 riC0 and ri C′ = A∗ ri C′

0. The conclusion now follows
from Corollary 5.4.

This last result also holds if C0 were polyhedral; in that case, the assumptions
(5.9) could be replaced with ri domκ ∩ C �= ∅ and ri domκ◦ ∩ C′ �= ∅.

6. Variational properties of the gauge value function. Thus far, our anal-
ysis has focused on the relationship between the optimal values of the primal-dual
pair (Pρ) and (Dρ). As with Lagrange duality, however, there is also a fruitful view of
dual solutions as providing sensitivity information on the primal optimal value. Here
we provide a corresponding variational analysis of the gauge optimal-value function
with respect to perturbations in b and σ.

Sensitivity information is captured in the subdifferential of the value function

(6.1) v(h, k) = inf
x

f(x, h, k),

with

(6.2) f(x, h, k) := κ(x) + δepi ρ(b + h−Ax, σ + k).

Following the discussion in Aravkin, Burke, and Friedlander (2013, section 4), we
start by computing the conjugate of f , which can be done as follows:

f∗(z, y, τ) = sup
x,h,k

{ 〈z, x〉+ 〈y, h〉+ τk − κ(x)− δepiρ(b+ h−Ax, σ + k) }

= sup
x,w,μ

{ 〈z +A∗y, x〉 − κ(x) + 〈y, w〉+ τμ− δepiρ(w, μ) } − 〈b, y〉 − τσ

= κ∗(z +A∗y) + δ∗epiρ(y, τ)− 〈b, y〉 − τσ.

Use Proposition 2.1(iv) and the definition of support function and convex conjugate
to further transform this as

f∗(z, y, τ) + 〈b, y〉+ τσ = δκ◦
(·)≤1(z +A∗y) + σepi ρ(y, τ)

(i)
= δκ◦

(·)≤1(z +A∗y) + δ(epiρ)◦(y, τ)

(ii)
= δκ◦

(·)≤1(z +A∗y) + δepi(ρ◦
)(y,−τ)

= δκ◦
(·)≤1(z +A∗y) + δρ◦

(·)≤·(y,−τ),

where equality (i) follows from Proposition 2.6 and Proposition 2.3(i), and equality
(ii) follows from Proposition 2.1(vi). Combining this with the definition of the value
function v(h, k),

(6.3)

v∗(y, τ) = sup
h,k

{ 〈y, h〉+ τk − v(h, k) }

= sup
x,h,k

{ 〈y, h〉+ τk − f(x, h, k) }

= f∗(0, y, τ) = −〈b, y〉 − στ + δκ◦
(·)≤1(A

∗y) + δρ◦
(·)≤·(y,−τ).
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In view of Rockafellar and Wets (1998, Theorem 11.39(b)), under a suitable constraint
qualification, the set of subgradients of v is nonempty and is given by

∂v(0, 0) = argmax
y,τ

{−f∗(0, y, τ) }

= argmax
y,τ

{ 〈b, y〉+ στ | κ◦(A∗y) ≤ 1, ρ◦(y) ≤ −τ }

=

{ (
y,−ρ◦(y)

) ∣∣∣∣ y ∈ argmax
y

{ 〈b, y〉 − σρ◦(y) | κ◦(A∗y) ≤ 1 }
}
,

(6.4)

in terms of the solution set of (D�) and the corresponding function value of ρ◦(y).
We state formally this result, which is a consequence of the above discussion and
Corollary 5.5.

Proposition 6.1. For fixed (b, σ), define v as in (6.1) and f as in (6.2). Then

dom f(·, 0, 0) �= ∅ ⇐⇒ 0 ∈ Adomκ− [ρ(b− ·) ≤ σ],

and hence

(0, 0) ∈ int dom v ⇐⇒ 0 ∈ int(Adomκ− [ρ(b− ·) < σ]).

If (0, 0) ∈ int dom v and v(0, 0) > 0, then ∂v(0, 0) �= ∅ with

∂v(0, 0) =

{
(y,−ρ◦(y))

∣∣∣∣ y ∈ argmax
y

{ 〈b, y〉 − σρ◦(y) | κ◦(A∗y) ≤ 1 }
}

=

{
v(0, 0) · (y,−ρ◦(y))

∣∣∣∣ y ∈ argmin
y

{ κ◦(A∗y) | 〈b, y〉 − σρ◦(y) ≥ 1 }
}
.

Proof. It is routine to verify the properties of the domain of f(·, 0, 0) and the
interior of the domain of v. Suppose that (0, 0) ∈ int dom v. Then the value function
is continuous at (0, 0) and hence ∂v(0, 0) �= ∅. The first expression of ∂v(0, 0) follows
directly from Rockafellar and Wets (1998, Theorem 11.39(b)) and the discussions pre-
ceding this proposition.

We next derive the second expression of ∂v(0, 0). Since (0, 0) ∈ int dom v im-
plies 0 ∈ int(Adomκ − [ρ(b − ·) < σ]), the linear map A satisfies assumption (4.3).
Moreover, as another consequence of Rockafellar and Wets (1998, Theorem 11.39(a)),
(0, 0) ∈ int dom v also implies that v(0, 0) = supy,τ{−f∗(0, y, τ)}, which is just the op-
timal value of the Lagrange dual problem (D�). Furthermore, v(0, 0) being finite and
nonzero together with the definition of (D�) and (4.4) implies that domκ◦ ∩ C′ �= ∅.
The second expression of ∂v(0, 0) now follows from these three observations and Corol-
lary 5.5.

7. Extensions. The following examples illustrate how to extend the canonical
formulation (Pρ) to accommodate related problems. It also provides an illustration of
the techniques that can be used to pose problems in gauge form and how to derive
their corresponding gauge duals.

7.1. Composition and conic side constraints. A useful generalization of for-
mulation (Pρ) is to allow the gauge objective to be composed with a linear map, and for
the addition of conic side constraints. The composite objective can be used to capture,
for example, problems such as weighted basis pursuit (e.g., Candés, Wakin, and Boyd
(2008); Friedlander et al. (2012)), or together with the conic constraint, problems such
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as nonnegative total variation (Krishnan, Lin, and Yip, 2007). The following result
generalizes the canonical primal-dual gauge pair (Pρ) and (Dρ).

Proposition 7.1. Let D be a linear map and let K be a convex cone. The
following pair of problems constitute a primal-dual gauge pair:

minimize
x

κ(Dx) subject to ρ(b−Ax) ≤ σ, x ∈ K,(7.1a)

minimize
y, z

κ◦(z) subject to 〈y, b〉 − σρ◦(y) ≥ 1, D∗z −A∗y ∈ K∗.(7.1b)

Proof. Reformulate (7.1a) as a gauge optimization problem by introducing addi-
tional variables, and lifting both the cone K and the epigraph epi ρ into the objective
by means of their indicator functions: use the function f(x, s, r, τ) := δK(x) + κ(s) +
δepiρ(r, τ) to define the equivalent gauge optimization problem

minimize
x,s,r,τ

f(x, s, r, τ) subject to Dx = s, Ax+ r = b, τ = σ.

As with section 4.1, observe that f is a sum of gauges on disjoint variables. Thus, we
invoke Proposition 2.4 to deduce the polar of the above objective:

f◦(u, z, y, α) = max { δ◦K(u), κ◦(z), δ◦epiρ(y, α) }
(i)
= max { δK◦(u), κ◦(z), δ(epi ρ)◦(y, α) }
(ii)
= max { δK∗(−u), κ◦(z), δepi(ρ◦

)(y,−α) }
(iii)
= δK∗(−u) + κ◦(z) + δepi(ρ◦

)(y,−α),

where (i) follows from Proposition 2.3(i), (ii) follows from Proposition 2.1(vi), and
(iii) follows from the definition of indicator function. Moreover, use Corollary 4.2 to
derive the antipolar of the linear constraint set

C = { (x, s, r, τ) | Dx = s, Ax+ r = b, τ = σ } ,
which is given by

C′ = { (−D∗z +A∗y, z, y, α) | 〈b, y〉+ σα ≥ 1 } .
From the above discussion, we obtain the following gauge program:

minimize
y,z,α

δK∗(D∗z −A∗y) + κ◦(z) + δepi(ρ◦
)(y,−α) subject to 〈b, y〉+ σα ≥ 1.

Bringing the indicator functions down to the constraints leads to

minimize
y,z,α

κ◦(z) subject to 〈y, b〉+ σα ≥ 1, ρ◦(y) ≤ −α, D∗z −A∗y ∈ K∗;

further simplification by eliminating α yields the gauge dual problem (7.1b).

7.2. Nonnegative conic optimization. Conic optimization subsumes a large
class of convex optimization problems that ranges from linear, to second-order, to
semidefinite programming, among others. Example 1.3 describes how a general conic
optimization problem can be reformulated as an equivalent gauge problem; see (1.6).

We can easily accommodate a generalization of (1.6) by embedding it within the
formulation defined by (1.5a), and define

(7.2) minimize
x

〈c, x〉+ δK(x) subject to ρ(b−Ax) ≤ σ,
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with c ∈ K∗, as the conic gauge optimization problem. The following result describes
its gauge dual.

Proposition 7.2. Suppose that K ⊂ X is a convex cone and c ∈ K∗. Then the
gauge

κ(x) = 〈c, x〉+ δK(x)

has the polar

(7.3) κ◦(u) = inf {α ≥ 0 | αc ∈ K∗ + u } ,
with domκ◦ = span{c} − K∗. If K is closed and c ∈ intK∗, then κ has compact level
sets, and domκ◦ = X .

Proof. From Proposition 2.1, we have that

κ◦(u) = sup {〈u, x〉 |κ(x) ≤ 1}
= sup {〈u, x〉 | 〈c, x〉 ≤ 1 and x ∈ K}(7.4)

= inf
{
α ≥ 0

∣∣αc− u ∈ K∗} ,
where the strong (Lagrangian) duality relationship in the last equality stems from the
following argument. First consider the case where u ∈ domκ◦. Because the maxi-
mization problem in (7.4) satisfies Slater’s condition, equality follows from Rockafellar
(1970, Corollary 28.2.2 and Theorem 28.4). Next, consider the case where u /∈ domκ◦,
where κ◦(u) = ∞. The last equality then follows from weak duality. For the domain,
note that the minimization problem is feasible if and only if u ∈ span{c}−K∗; hence
domκ◦ = span{c} − K∗.

To prove compactness of the level sets of κ when K is closed and c ∈ intK∗, define
γ := infx { 〈c, x〉 | ‖x‖ = 1, x ∈ K } and observe that compactness of the feasible set
in this minimization implies that the infimum is attained and that γ > 0. Thus, for
any x ∈ K \ {0}, 〈c, x〉 ≥ γ‖x‖ > 0 and, consequently, that { x ∈ X | κ(x) ≤ α } =
{ x ∈ K | 〈c, x〉 ≤ α } ⊂ { x ∈ X | ‖x‖ ≤ α/γ }. This guarantees that the level sets of κ
are bounded, which establishes their compactness. From this and Proposition 2.1(iii),
we see that κ◦(u) is finite for any u ∈ X .

Remark 7.1. Note that even though the polar gauge in (7.3) is closed, it is not
necessarily the case that it has a closed domain. For example, let K be the cone of
PSD 2-by-2 matrices, and define

c =

(
1 0
0 0

)
and un =

(
0 1
1 − 1

n

)
for each n = 1, 2, . . .. Use the expression (7.3) to obtain that κ◦(un) = n. Hence,
un ∈ domκ◦, but limn→∞ un �∈ domκ◦.

The reader will find that the example is a more general result described by
Ramana, Tunçel, and Wolkowicz (1997, Lemma 2.2), which shows that the cone of
PSD matrices is devious (i.e., for every nontrivial proper face F of K, spanF+K is not
closed). The concept of a devious cone seems to be intimately related to the closedness
of the domain of polar gauges such as (7.3) because span{c}−K∗ = −(spanF +K∗),
where F ⊆ K∗ is the smallest face of K∗ that contains c; see (Tunçel and Wolkowicz,
2012, Proposition 3.2).

With that in mind, it is interesting to derive a representation for the closure
of the domain of (7.3). It follows from Rockafellar (1970, Corollary 16.4.2) that

cl domκ◦ = cl
(
span{c} − K∗) = ({c}⊥ ∩ clK)◦.
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7.2.1. Semidefinite conic gauge optimization. Here we give a concrete ex-
ample of how to derive the gauge dual of a semidefinite conic gauge optimization
problem. Consider the feasible semidefinite program

(7.5) minimize
X

〈C,X〉 subject to AX = b, X � 0,

where C � 0, and A : Sn → R
m is a linear map from symmetric n-by-n matrices to

m-vectors. Define the gauge objective κ(X) = 〈C,X〉 + δ·
0(X), set σ = 0, and let
ρ = ‖ · ‖, i.e., the constraint set is C = {X | AX = b }. Proposition 7.2, with K equal
to the (self-dual) PSD cone, gives the gauge polar

κ◦(U) = inf {α ≥ 0 | αC � U } .
The gauge dual (Dρ) then specializes to

minimize
α,y

α subject to α ≥ 0, 〈b, y〉 ≥ 1, αC � A∗y,

which is valid for all C � 0. This dual can be simplified by noting that

κ◦(U) = max{0, λmax (U,C)},
where λmax (U,C) is the largest generalized eigenvalue corresponding to the eigenvalue
problem Ux = λCx (which might be +∞ as in the example given in Remark 7.1).
Together with Corollary 4.2, which gives the antipolar of C, and Theorem 5.1, which
asserts that the optimal dual value is positive, the gauge dual problem can then be
written as

minimize
y

λmax(A∗y, C) subject to 〈b, y〉 ≥ 1.

The lifted formulation of phase retrieval (Candès, Strohmer, and Voroninski, 2012) is
an example of the conic gauge optimization problem (7.5) with C = I. In that case,
(7.5) is the problem of minimizing the trace of a PSD matrix that satisfies a set of
linear constraints. The gauge dual problem above is simply minimizing the maximum
eigenvalue of A∗y over a single linear constraint.

8. Discussion. Our focus in this paper has been mainly on the duality aspects
of gauge optimization. The structure particular to gauge optimization allows for an
alternative to the usual Lagrange duality, which may be useful for providing new
avenues of exploration for modeling and algorithm development. Depending on the
particular application, it may prove computationally convenient or more efficient to
use existing algorithms to solve the gauge dual rather than the Lagrange dual problem.
For example, some variation of the projected subgradient method might be used to
exploit the relative simplicity of the gauge dual constraints in (Dρ). As with methods
that solve the Lagrange dual problem, a procedure would be needed to recover the
primal solution. Although this is difficult to do in general, for specific problems
it is possible to develop a primal-from-dual recovery procedure via the optimality
conditions.

More generally, an important question left unanswered is if there exists a class of
algorithms that can leverage this special structure. We are intrigued by the possibility
of developing a primal-dual algorithm specific to the primal-dual gauge pair.

The sensitivity analysis presented in section 6 relied on existing results from
Lagrange duality. We would prefer, however, to develop a line of analysis that is
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self-contained and based entirely on gauge duality theory and some form of “gauge
multipliers.” In this regard, if we define the value function as

ṽ(b, σ) = inf
x
{ κ(x) + δepiρ(b −Ax, σ) } ,

then ṽ is a gauge. It is conceivable that sensitivity analysis could be carried out based
on studying its polar, given by

ṽ◦(y, τ) = inf {μ ≥ 0 | (y, τ) ∈ μD } = κ◦(A∗y) + δρ◦
(·)≤·(y,−τ),

where D = { (y, τ) | κ◦(A∗y) ≤ 1, ρ◦(y) ≤ −τ }. This formula follows from Proposi-
tion 2.1(iv) and a computation of ṽ∗ similar to the one leading to (6.3). This approach
would be in contrast to the usual sensitivity analysis, which is based on studying a
certain (convex) value function and its conjugate.
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