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1. Direct methods for solving the augmented system. We describe various6

direct methods for solving7
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required to evaluate φσ and its derivatives. Recall that Aδ “
“

AT δI
‰T

when δ ą 0;9

otherwise Aδ “ A. For this section, given a matrix R and vector b, the shorthand10

notation x Ð Rzb means that x solves the system Rx “ b (typically via forward or11

backward substitution).12

1.1. QR factorization. Algorithm 1 computes pp, qq using the thin QR factor-13

ization of Aδ “ QR, with Q orthogonal and R P Rmˆm.14

Algorithm 1 Solving (1.1) using the QR factorization.

1: Q, RÐ qrpAδq
2: w̄ Ð QT1:n,:w

3: z̄ Ð RT zz
4: pÐ w ´Q1:n,:pw̄ ´ z̄q
5: q Ð Rzpw̄ ´ z̄q
6: return pp, qq

The advantage is that Aδ is factorized instead of K, and this method is backward15

stable for both p and q (Golub and Van Loan, 2013, §5.3.6). If Aδ is sparse, R is likely16

to be sparse (for some column permutation of Aδ) but unfortunately Q is not. For17

large problems, it may not be practical to store Q in order to solve (1.1).18

1.2. Corrected semi-normal equations. The R factor from Aδ “ QR can19

be computed without storing Q. We can then solve the semi-normal equations20

RTRq “ ATw ´ z and set p “ w ´ Aq. Björck and Paige (1994) show that this is21

not acceptable-error stable for p, possibly giving large error in p, particularly when22

}p} ! }w}. Note that p “ gσ when solving for the multiplier estimate means we may23
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obtain large errors in the gradient near the solution if care is not taken. Fortunately,24

Björck and Paige (1994) show that one step of iterative refinement ensures p is25

acceptable-error stable; see Algorithm 2.26

Algorithm 2 Solving (1.1) using the semi-normal equations.

1: RÐ qrpAδq
2: q Ð pRTRqzpATw ´ zq pÐ w ´Aq
3: ∆q Ð pRTRqzpATp´ δ2q ´ zq Ź Iterative refinement
4: q Ð q `∆q pÐ p´A∆q
5: return pp, qq

1.3. LDL and Bunch-Kaufman factorization. When it is not practical to27

store Q from the QR factors of A, or the semi-normal equations do not provide sufficient28

accuracy, it may be possible to compute the LDL or Bunch-Kaufman factorization of29

K directly. Although an pn`mq ˆ pn`mq matrix is factorized (rather than an nˆm30

matrix), the entire factorization is likely to be sparse, and the solution is typically31

more accurate than with the semi-normal equations.32

Björck (1967) and Saunders (1995) discuss scaling of the p1, 1q identity block to33

improve the condition number of K. Saunders (1995) also considers the case where K34

is regularized with ´δ2I in the p2, 2q block.35
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