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Abstract—Feature selection in data science involves
identifying the most prominent and uncorrelated features
in the data, which can be useful for compression and
interpretability. If these feature can be easily extracted,
then a model can be trained over a reduced set of weights,
which leads to more efficient training and possibly more
robust classifiers. There are many approaches to feature
selection; in this work, we propose screening the “atoms”
of a gradient of a loss function taken at a random
point. We illustrate this approach on sparse and low-
rank optimization problems. Despite the simplicity of the
approach, we are often able to select the dominant features
easily, and greatly improve the runtime and robustness in
training overparametrized models.

I. INTRODUCTION

As data becomes more readily available, an impor-
tant aspect of algorithm design is feature selection, or
determining the core subset of features most prominent
in accounting for a model’s success. Feature selection
gives algorithmic advantages that reduce computational
and memory requirements, and often improves inter-
pretability and generalizability of results, which are
essential prerequisites for deployment.

Our approach to feature selection identifies a so-
lution variable’s atomic structure (e.g., the nonzero
indices or low-rank subspaces). We propose a one-
shot selection method by screening the gradient of the
smooth objective function at a random point. This is
motivated by the the observation that gradient prop-
erties can be used to obtain manifold identification
rates [NLS17, SJNS19], construct more generalized
dynamic safe screening rules [BERG15], and develop
better initialization techniques in nonconvex optimiza-
tion [CLS15].

We evaluate the effectiveness of this random screen-
ing procedure on 1) feature selection for interpretability;
2) problem size reduction; and 3) better initialization for
optimizing over a nonconvex problem. We do this over
three applications:

• logistic regression for binary classification;
• matrix completion for recommender systems

[HMLZ15, BKV07]; and
• semidefinite optimization for the MAX-CUT

problem [GW95].

For simple two-cluster models for classification, we
show that this method mathematically captures the most
influential features in the low-noise regime. This is
then corroborated on both simulated and real-world
data, often with as good or improved test error rates.
Moreover, in all cases, the downstream optimization
tasks themselves run much faster and more reliably, with
less overfitting.

A. Related work
Two notable approaches for safe screening meth-

ods for feature selection include [EGVR10, TBF+12],
which remove features during optimization and guaran-
tee a sparse and optimal solution. Similar methods are
applied to nuclear norm minimization [ZZ15] and dic-
tionary learning [XXR11]. Relatedly, grafting [PLT03]
picks nonzeros sequentially based on violations of the
optimality condition. The main difference in our work
is the one-shot aspect, in which we do not guarantee
optimality, but often observe good performance in prac-
tice, and can give probabilistic guarantees in simplified
models.

II. GRADIENT SCREENING RULES

Gradient screening rules arise as a consequence of
the optimality conditions for the problem

minimize
x

f(x) + ρ κA(x), (1)

where f is a differentiable convex loss function and
κA is a convex function that promotes sparsity with
respect to an atomic set A [CRPW12]. Here, x∗ is
optimal if and only if z∗ = −∇f(x∗) ∈ ∂κA(x∗)
the subdifferential of the nonsmooth regularizer κA(x∗)
[Roc70]. For example,

• κA(x) = ‖x‖1 =
∑

i |xi| promotes nonzero
element-wise sparsity of x, and at optimality,

x∗i 6= 0⇒ |z∗i | = ‖z∗‖∞;

• κA(X) = ‖X‖∗ (sum of the singular values)
promotes low-rank solutions, and at optimality,
X∗ and Z∗ have singular value decompositions

X∗ = UΣV T , Z∗ = UΛV T ,

and Σii > 0⇒ Λii = maxj Λjj ;

• κA(X) = tr(X) + δ�0(X)1 promotes low-

1The indicator function δ�0(X) = 0 if X � 0 and = +∞
otherwise.



rank, but also constrains X to be positive
semidefinite (PSD), and at optimality, X∗ and
Z∗ have eigenvalue decompositions

X∗ = UΣUT , Z∗ = UΛUT ,

and Σii > 0⇒ Λii = maxj Λjj .

At optimality, in order to find active values of x∗i or
subspaces of X∗, it suffices to find the maximal values
of z∗ or subspaces of Z∗. In general we cannot estimate
x∗ using a completely random point x. The surprising
phenomenon we illustrate here is that the gradient at a
random point z = −∇f(x) can be used to approximate
key features of z∗ = −∇f(x∗)–namely, it can pick out
which features should be nonzero. Since computing a
gradient at any point requires one pass through all the
data, we call this one-shot atomic screening.

Gradient screening rule. Let the set S characterizes
the selected atomic features.

• If κA = ‖ · ‖1, S = the indices corresponding
to the k largest values of |zi|.

• If κA = ‖·‖∗, S = {uvT : uTZv ≥ λk} where
λk = kth largest singular value of Z.

• If κA = tr(·) + δ�0(·), S = {uvT : uTZu ≥
λk} where λk = kth largest eigenvalue of Z.

We now evaluate the performance of these rules in
several common applications.

III. SPARSE BINARY CLASSIFICATION

Given a distribution D over data vectors a ∈ Rn and
binary labels b ∈ {−1, 1}, the goal is to identify a set
of weights x ∈ Rn such that sign(aTx) = b whenever
a and b are drawn from D. To do so, we train x from m
draws (ai, bi) ∈ Rn+1 for i = 1, . . . ,m samples, and
solve (1) under logistic loss with a one-norm regularizer:

f(x) =
1

m

m∑
i=1

− log σ(bia
T
i x), κA(x) = ‖x‖1

where σ(θ) = 1
1+e−θ

. The ith margin value biaTi x >

0 if and only if sign(aTi x) = bi, and the larger this
margin, the better classified is datapoint ai under this
choice of x. In fact, the gradient

−∇f(x) =
1

m

m∑
i=1

(1− σ(bia
T
i x))︸ ︷︷ ︸

>0

biai

can be interpreted as a weighted sum of margins. If the
ith margin is large, then σ(bia

T
i x) → 1, and ∇f(x)

is primarily constructed from weakly classified data
samples; that is, the classifier is working hard on the
few points left that are still classified incorrectly, or
classified with low confidence. If such datapoints are
few and n is large, then at this point the classifier may
be overfitting.

Fig. 1. Illustration of the two-cluster model for binary classification.

However, when x is random, then 1−σ(bia
T
i x) may

not be particularly large or small, and a large gradient
component corresponds to a data sample with large
margin, which may be a better representation of the
data distribution. For this reason, screening at a random
gradient is not so affected by hard-to-classify points,
and may resist overfitting more effectively.
A. Two-cluster model

To gain some intuition, we analyze the character-
istics of our one-shot gradient over a generalized two-
cluster model. We assume balanced labels, e.g., bi = ±1
with equal probability, and choose two cluster centers

c1 = v + c, c−1 = v − c,
for a bias variable v and cluster center c. The data
features are then drawn as

ai = cbi + ui, ui ∼ N (0,diag(ū)),

where ui is the noise. (See Fig. 1.) The constant
cj/(ūj + vj) is the signal-to-noise ratio of the jth
feature.

The two-cluster model characterizes what we in-
tuitively believe to be the data model in an easy-to-
classify problem. Because everything comes from a
Gaussian distribution, we can compute the expectation
and variance of the margins; e.g., for fixed c and v,

E[ba] = c, Var(baj) = v2j + ū2j .

Specifically, for logistic regression, we can further com-
pute the mean and variance of the gradient terms, and
applying the strong law of large numbers, we see that
almost surely as m→∞, 2

lim
m→∞

Ex[∇f(x)] = 1
2c,

1
4 (v2j + ū2j ) ≤ lim

m→∞
Var([∇f(x)2j ]) ≤ 1

2 (v2j + ū2j ).

In other words, in the two-cluster model, in expecta-
tion the gradient exactly represents the feature signal
strength, and the variance the noise.
B. Experiments

We evaluate the effectiveness of one-shot selection
on 1) our two-cluster model, 2) 0-1 disambiguation of
the MNIST dataset [LC10], and 3) the binary classi-
fication task over the Dorothea drug discovery dataset
[GGBHD05].

2This follows from the observation that, for any symmetric distri-
bution, E[σ(θ)] = 0.5 and 0.25 ≤ E[σ(θ)2] ≤ 0.5.



Fig. 2. Trajectory of variable x(k)i (left) and gradient z(k)i (right)
entries in a sparse logistic regression problem over the weighted two-
cluster model.

Fig. 3. Gradient strength in two-cluster model, over 5 random draws
(different colored dots). Here, m = n = 100. In the top plot, we
vary c̄ and hold ū = 1; in the bottom, ū is varied and c̄ is held at 1.

a) Trajectory: Figure 2 shows the trajectory of
x(k) and z(k) = −∇f(x(k)), where x(k) are the iterates
of the proximal-gradient method [BJ75, LM79, BT09]
over the two-cluster model. Here, v ∼ N (0, I) and c ∼
N (0,diag(c̄)), with strength c̄j for feature j. In the
primal space, the variables x(k)i interweave and, after a
time, snap to 0; however, in the gradient space, although
the magnitudes of the gradient values change, their size
relative to each other seems somewhat constant.

b) Feature selection: Figure 3 illustrates the
strength of ∇f(x) = −z for several random draws
of x and training data (ai, bi) from our proposed two-
cluster model. Clearly, a large c̄j signal power causes
domination of |zj |; however, a large ūj noise power
just causes more randomness. But, this is consistent
with what we may expect; at any value of ūj > 5,
the clusters along the jth dimension are not separable.
Figure 4 shows a surface plot of the gradient values for
logistic regression over the MNIST handwritten dataset
for 0’s and 1’s. From only a random point x, much of the
data has already been captured–the parts that are more
0-like forming ridges and 1-like forming valleys. The

Fig. 4. Surface plots of gradient values at (left) x = a random point,
(middle) x = 0, and (right) x = x∗.

Fig. 5. Left: misclassification rate for MNIST 0-1 detection, and
Right: F1 score for Dorothea binary classification task. M-red and G-
red refer to solving the problem over the reduced space from screening
the margin (M) or noisy gradient (G).

pattern actually disappears at x = x∗, where the more
important features correspond to discriminating points
in hard-to-classify datasets.

c) Optimization over reduced features.: Figure
5 gives a performance comparison for MNIST and
Dorothea. We compare simple gradient descent (GD),
proximal gradient descent (Prox GD), and gradient
descent over the reduced support from the one-shot
gradient screening method (M-red and G-red), all using
an Armijo-Wolfe line search. With reduced support, the
training performance suffers, but the test performance
is as good, if not better, than using the full support.
And, the runtime of the reduced support method is
much faster than the gradient or prox-gradient method:
for MNIST, selecting p = 100 < n = 784 fea-
tures reduced the average time-per-iteration from 0.016
seconds to 0.003 seconds, and for Dorothea, selecting
p = 10, 000 < n = 100, 000 reduced from 0.19 seconds
to 0.020 seconds.

IV. MATRIX COMPLETION

We now geneneralize the notion of atomic sparsity
to matrix rank, where

κA(X) = ‖X‖∗ (sum of singular values)
is the well-known nuclear norm. We apply this to
recommender systems with binary feedback; e.g., Rij ∈
{−1, 1} for a subset of i = 1, ..., n1 users and j =
1, ..., n2 movies. The problem then reduces to binary
classification on each unobserved pair (i, j), which is
the solution to the convex problem (1) with loss function



Fig. 6. Loss function and misclassification rate on (top) one-bit
observations of a random low-rank matrix and (bottom) the Movielens
1M dataset (quantized so that ratings are +1 if > 3, and −1
otherwise). R is the rating matrix, G the noisy gradient.

f(X) :=
1

|E|
∑
i,j∈E

− log σ(RijXij), (2)

where E contains the observed index pairs, and RijXij

is the margin for observation i, j. Our final prediction
will be Rij = sign(Xij).

In practice, dealing with the nuclear norm is com-
putationally burdensome, as it requires repeated spectral
calculations. A common alternative is to use alternating
gradient descent on the nonconvex reformulation

min
U,V

1

|E|
∑
i,j∈E

− log σ(Riju
T
i vj),

where U = [u1, ..., un1
]T ∈ Rn1×r and V =

[v1, ..., vn2
]T ∈ Rn2×r implicitly force the solution to

be of lower rank r. However, the solution quality to
such a problem can depend heavily on initialization. A
common technique [BG08] is to set the initial iterates
U (0), V (0) as the dominant singular vectors of the sparse
matrix R (where Rij = 0 whenever i, j 6∈ E). We
compare this initialization scheme (SVD R) to a ran-
dom initialization, and initialization via an SVD of the
random gradient (SVD G) in Figure 6. In practice, we
find the performance of using an SVD of R comparable
to that of Z (with variations across trials), though both
often outperform random initialization. This suggests
that, though Z 6= R, this perturbation does not affect
its range and corange significantly.

V. SEMIDEFINITE RELAXATION OF MAX-CUT
Finally, we take a detour from machine learning to

consider the semidefinite relaxations of the MAX-CUT

Fig. 7. Top: three adjacency matrices from the DIMACS MAX-CUT
challenge set. Bottom: histogram of cut values formed from a rank
r = n/20 approximate factorization 1) of the entire SDP solution
(X∗), 2) a noisy gradient (G), 3) the adjacency matrix (C), and 4)
the Laplacian matrix (L). The larger the number, the better the cut
value. As a baseline, rounding of random matrices results in similar
histogram shapes, but centered at 0.

problem, where the constraint

xi ∈ {−1, 1} ⇐⇒ X = xxT , diag(X) = 1.

The relaxed MAX-CUT convex relaxation is then

min
X
{−tr(CX) : diag(X) = 1, X � 0}, (3)

where C is the adjacency matrix for an undirected graph
with n nodes, and the rank-1 requirement is dropped.
The solution is then “rounded”; e.g., x̄ = sign(UT y)
and y ∼ N (0, 1), where UUT is the best rank-r
approximation of X , and the cut value is x̄TCx̄.

By shifting the constraint to a smooth penalty, we
can relax (3) to a problem of form (1), with

f(X) = −tr((C + ρI)X) +
β

2

n∑
i=1

(Xii − 1)2 (4)

and the eigenspace of −∇f(X) resembles that of C
(agnostic to ρ). Figure 7 shows histograms of cut values
brought about by the rank-r factorizations of X∗ the
solution to (4), −∇f(X) at a random point, and C.
We also compare against rounded solutions using the r
bottom eigenvectors of L the graph Laplacian [VL07].

VI. CONCLUSION

In sparse optimization, a variable value is nonzero
only when its corresponding gradient value is “maxi-
mal”. Moreover, because the gradient “contains the data
structure”, the relative size of values remain consistent
at random points. We exploit this to promote fast
screening techniques for feature selection, dimensional-
ity reduction, and better initialization, observing similar
(if not better) results in downstream tasks.
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