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Abstract Level-set methods for convex optimization are predicated on the idea
that certain problems can be parameterized so that their solutions can be recov-
ered as the limiting process of a root-finding procedure. This idea emerges time
and again across a range of algorithms for convex problems. Here we demonstrate
that strong duality is a necessary condition for the level-set approach to succeed.
In the absence of strong duality, the level-set method identifies ε-infeasible points
that do not converge to a feasible point as ε tends to zero. The level-set approach
is also used as a proof technique for establishing sufficient conditions for strong
duality that are different from Slater’s constraint qualification.

Keywords convex analysis · duality · level-set methods

1 Introduction

Duality in convex optimization may be interpreted as a notion of sensitivity of an
optimization problem to perturbations of its data. Similar notions of sensitivity
appear in numerical analysis, where the effects of numerical errors on the stability
of the computed solution are of central concern. Indeed, backward-error analysis
(Higham 2002, §1.5) describes the related notion that computed approximate
solutions may be considered as exact solutions of perturbations of the original
problem. It is natural, then, to ask if duality can help us understand the behavior
of a class of numerical algorithms for convex optimization. In this paper, we
describe how the level-set method (van den Berg and Friedlander 2007, 2008a;
Aravkin et al. 2018) produces an incorrect solution when applied to a problem
for which strong duality fails to hold. In other words, the level-set method cannot
succeed if there does not exist a dual pairing that is tight. This failure of strong
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duality indicates that the stated optimization problem is brittle, in the sense that
its value as a function of small perturbations to its data is discontinuous; this
violates a vital assumption needed for the level-set method to succeed.

Consider the convex optimization problem

minimize
x∈X

f(x) subject to g(x) ≤ 0, (P)

where f and g are closed proper convex functions that map Rn to the extended
real line R ∪ {∞}, and X is a convex set in Rn. Let the optimal value τ

∗
p of

(P) be finite, which indicates that that (P) is feasible. In the context of level-set
methods, we may think of the constraint g(x) ≤ 0 as representing a computational
challenge. For example, there may not exist any efficient algorithm to compute
the projection onto the constraint set {x ∈ X | g(x) ≤ 0 }. In many important
cases, the objective function has a useful structure that makes it computationally
convenient to swap the roles of the objective f with the constraint g, and instead
to solve the level-set problem

minimize
x∈X

g(x) subject to f(x) ≤ τ, (Qτ )

where τ is an estimate of the optimal value τ
∗
p . The term “level set” points to

the feasible set of problem (Qτ ), which is the τ level set {x | f(x) ≤ τ } of the
function f .

If τ ≈ τ
∗
p , the level-set constraint f(x) ≤ τ ensures that a solution xτ ∈ X

of this problem causes f(xτ ) to have a value near the optimal value τ
∗
p . If, addi-

tionally, g(xτ ) ≤ 0, then xτ is a nearly optimal and feasible solution for (P). The
trade-off for this potentially more convenient problem is that we must compute a
sequence of parameters τk that converges to τ

∗
p .

1.1 Objective and constraint reversals

The technique of exchanging the roles of the objective and constraint functions
has a long history. For example, the isoperimetric problem, which dates back to
the second century B.C.E., seeks the maximum area that can be circumscribed by
a curve of fixed length (Wiegert 2010). The converse problem seeks the minimum-
length curve that encloses a certain area. Both problems yield the same circular
solution. The mean-variance model of financial portfolio optimization, pioneered
by Markowitz (1987), is another example. It can be phrased as either the problem
of allocating assets that minimize risk (i.e., variance) subject to a specified mean
return, or as the problem of maximizing the mean return subject to a specified
risk. The correct parameter choice, such as τ in the case of the level-set problem
(Qτ ), causes both problems to have the same solution.

The idea of rephrasing an optimization problem as a root-finding problem
appears often in the optimization literature. The celebrated Levenberg-Marquardt
algorithm (Marquardt 1963; Morrison 1960), and trust-region methods (Conn
et al. 2000) more generally, use a root-finding procedure to solve a parameterized
version of the optimization problem. Lemaréchal et al. (1995) develop a root-
finding procedure for a level-bundle method for general convex optimization. The
widely used SPGL1 software package for sparse optimization (van den Berg and
Friedlander 2013) implements the level-set method for obtaining sparse solutions
of linear least-squares and underdetermined linear systems (van den Berg and
Friedlander 2008b, 2011).
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Fig. 1.1 A depiction of a value function v that exhibits the strict inequality described by (1.3);
see also Example 2.2. In this example, the value function v(τ) vanishes for all τ ≥ τ

∗
d , where

τ
∗
d < τ

∗
p . Solutions of (1.1) for values of τ < τ

∗
p are necessarily super-optimal and infeasible

for (P). The difference between τ
∗
d and τ

∗
p corresponds to the gap between the optimal values

of (P) and its dual problem.

1.2 Duality of the value function root

Define the optimal-value function, or simply the value function, of (Qτ ) by

v(τ) = inf
x∈X
{ g(x) | f(x) ≤ τ } . (1.1)

If the constraint in (P) is active at a solution, that is, g(x) = 0, this definition
then suggests that the optimal value τ

∗
p of (P) is a root of the equation

v(τ) = 0,

and in particular, is the leftmost root:

τ
∗
p = inf { τ | v(τ) = 0 } . (1.2)

The surprise is that this is not always true.
In fact, as we demonstrate in this paper, the failure of strong duality for (P)

implies that

τ
∗
d := inf { τ | v(τ) = 0 } < τ

∗
p . (1.3)

Thus, a root-finding algorithm, such as bisection or Newton’s method, imple-
mented so as to yield the leftmost root of the equation v(τ) = 0 will converge
to a value of τ that prevents (Qτ ) from attaining a meaningful solution. This
phenomenon is depicted in Figure 1.1, and is manifested by the semidefinite op-
timization problem in Example 2.2. Moreover, the infimal value in (1.3), defined
here as τ

∗
d , coincides with the optimal value of any dual pairing of (P) that arises

from Fenchel-Rockafellar convex duality (Rockafellar and Wets 1998, Theorem
11.39). These results are established by Theorems 5.1 and 5.2.

We do not assume that our readers are experts in convex duality theory, and so
we present an abbreviated summary of the machinery needed to develop our main
results. We also describe a generalized version of the level-set pairing between the
problems (P) and (Qτ ), and thus establish Theorem 5.2. We show in Section 2 how
these theoretical results can be used to establish sufficient conditions for strong
duality.
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1.3 Level-set methods

In practice, only an approximate solution of the problem (P) is required, and the
level-set method can be used to obtain an approximate root that satisfies v(τ) ≤ ε.
The solution x ∈ X of the corresponding level-set problem (Qτ ) is super-optimal
and ε-infeasible:

f(x) ≤ τ∗p and g(x) ≤ ε.

Aravkin et al. (2018) describe the general level-set approach, and establish a

complexity analysis that asserts that O
(

log ε
−1)

approximate evaluations of v are
required to obtain an ε-infeasible solution. These root-finding procedures are based
on standard approaches, including bisection, secant, and Newton methods. The
efficiency of these approaches hinges on the accuracy required of each evaluation of
the value function v. Aravkin et al. also demonstrate that the required complexity
can be achieved by requiring a bound on error in each evaluation of v that is
proportional to ε.

The formulation (P) is very general, even though the constraint g(x) ≤ 0
represents only a single function of the full constraint set represented by X . There
are various avenues for reformulating any combination of constraints that lead
to a single functional-constraint formulation such as (P). For instance, multiple
linear constraints of the form Ax = b can be represented as a constraint on the
norm of the residual, i.e., g(x) = ‖Ax − b‖ ≤ 0. More generally, for any set of
constraints c(x) ≤ 0 where c = (ci) is a vector of convex functions ci, we may set
g(x) = ρ(max{0, c(x)}) for any convenient nonnegative convex function ρ that
vanishes only at the origin, thus ensuring that g(x) ≤ 0 if and only if c(x) ≤ 0.

2 Examples

We provide concrete examples that exhibit the behavior shown in (1.3). These
semidefinite programs (SDPs) demonstrate that the level-set method can produce
diverging iterates.

Let xij denote the (i, j)th entry of the n-by-n symmetric matrix X = (xij).
The notation X � 0 denotes the requirement that X is symmetric positive
semidefinite.

Example 2.1 (SDP with infinite gap) Consider the 2× 2 SDP

minimize
X�0

−2x21 subject to x11 = 0, (2.1)

whose solution and optimal value are given, respectively, by

X∗ =

[
0 0
0 0

]
and τ

∗
p = 0.

The Lagrange dual is a feasibility problem:

maximize
y∈R

0 subject to

[
y −1
−1 0

]
� 0.

Because the dual problem is infeasible, we assign the dual optimal value τ
∗
d = −∞.

Thus, τ
∗
d = −∞ < τ

∗
p = 0, and this dual pairing fails to have strong duality.
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The application of the level-set method to the primal problem (2.1) can be
accomplished by defining the functions

f(X) := −2x21 and g(X) := |x11|,

which together define the value function of the level-set problem (Qτ ):

v(τ) = inf
X�0

{
|x11|

∣∣ −2x21 ≤ τ
}
. (2.2)

Because X
∗

is primal optimal, v(τ) = 0 for all τ ≥ τ
∗
p = 0. Now consider the

parametric matrix

X(τ, ε) :=

[
ε τ

2

τ
2
τ
2

4ε

]
for all τ < 0 and ε > 0,

which is feasible for the level-set problem (2.2). Thus, v(τ) is finite. The level-set
problem clearly has a zero lower bound that can be approached by sending ε ↓ 0.
Thus, v(τ) = 0 for all τ < 0.

In summary, v(τ) = 0 for all τ , and so v(τ) has roots less than the true optimal
value τ

∗
p . Furthermore, for τ < 0, there is no primal attainment for (1.1), because

limε↓0X(τ, ε) does not exist. ut

Example 2.2 (SDP with finite gap) Consider the 3× 3 SDP

minimize
X�0

−2x31 subject to x11 = 0, x22 + 2x31 = 1. (2.3)

The positive semidefinite constraint on X, together with the constraint x11 = 0,
implies that x31 must vanish. Thus, the solution and optimal value are given,
respectively, by

X
∗

=

0 0 0
0 1 0
0 0 0

 and τ
∗
p = 0. (2.4)

The Lagrange dual problem is

maximize
y∈R2

−y2 subject to

 y1 0 y2 − 1
0 y2 0

y2 − 1 0 0

 � 0.

The dual constraint requires y2 = 1, and thus the optimal dual value is τ
∗
d =

−1 < 0 = τ
∗
p .

For the application of the level-set method to primal problem (2.3), we assign

f(X) := −2x31 and g(X) := x
2
11 + (x22 + 2x31 − 1)

2
, (2.5)

which together define the value function

v(τ) = inf
X�0
{x211 + (x22 + 2x31 − 1)

2 | −2x31 ≤ τ } . (2.6)

As in Example 2.1, any convex nonnegative g function that vanishes on the feasible
set could have been used to define v. It follows from (2.4) that v(τ) = 0 for all
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τ ≥ 0. Also, it can be verified that v(τ) = 0 for all τ ≥ τ
∗
d = −1. To understand

this, first define the parametric matrix

Xε =

 ε 0 1
2

0 0 0
1
2 0 1

4ε

 with ε > 0,

which is feasible for level-set problem (2.6), and has objective value g(Xε) = ε
2
.

Because Xε is feasible for all positive ε, the optimal value vanishes because v(τ) =
inf { g(Xε) | ε > 0 } = 0. Moreover, the set of minimizers for (2.6) is empty for all
τ ∈ (−1, 0). Figure 1.1 illustrates the behavior of this value function.

Thus, we can produce a sequence of matrices Xε each of which is ε-infeasible
with respect to the infeasibility measure given by (2.5). However, the limit as ε ↓ 0
does not produce a feasible point, and the limit does not even exist because the
entry x33 of Xε goes to infinity.

The level-set method fails since the root of v(τ) identifies an incorrect optimal
primal value τ

∗
p , and instead identifies the optimal dual value τ

∗
d < τ

∗
p . ut

3 Value functions

The level-set method based on (1.1) is founded on the inverse-function relationship
between the pair of “flipped” value functions

p(u) = inf
x∈X
{ f(x) | g(x) ≤ u } (3.1a)

v(τ) = inf
x∈X
{ g(x) | f(x) ≤ τ } . (3.1b)

Clearly, τ
∗
p = p(0). Here we summarize the key aspects of the relationship between

the value functions v and p, and their respective solutions. Aravkin et al. (2013)
provide a complete description.

Let argmin v(τ) and argmin p(u), respectively, denote the set of solutions
to the optimization problem underlying the value functions v and p. Thus, for
example, if the value p(u) is finite,

argmin p(u) = {x ∈ X | f(x) = p(u), g(x) ≤ 0 } ;

otherwise, argmin p(u) is empty. Clearly, argmin p(0) = argmin (P). Because p is
defined via an infimum, argmin p(u) can be empty even if p is finite, in which case
we say that the value p(u) is not attained.

Let S be the set of parameters τ for which the level-set constraint f(x) ≤ τ
of (Qτ ) holds with equality. Formally,

S =
{
τ ≤ +∞ | ∅ 6= argmin v(τ) ⊆ {x ∈ X | f(x) = τ }

}
.

The following theorem establishes the relationships between the value functions p
and v, and their respective solution sets. This result is reproduced from Aravkin
et al. (2013, Theorem 2.1).

Theorem 3.1 (Value-function inverses) For every τ ∈ S, the following state-
ments hold:

(a) (p ◦ v)(τ) = τ ,
(b) argmin v(τ) = argmin (p ◦ v)(τ) ⊆ {x ∈ X | f(x) = v(τ) }.
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The condition τ ∈ S means that the constraint of the level-set problem (Qτ ) must
be active in order for the result to hold. The following example establishes that
this condition is necessary.

Example 3.1 (Failure of value-function inverse) The univariate problem

minimize
x∈R

|x| subject to |x| − 1 ≤ 0

has the trivial solution x
∗

= 0 with optimal value τ
∗
p = 0. Note that the constraint

is inactive at the solution, which violates the hypothesis of Theorem 3.1. Now
consider the value functions

p(u) = inf { |x| : |x| − 1 ≤ u },
v(τ) = inf { |x| − 1 : |x| ≤ τ},

which correspond, respectively, to a parameterization of the original problem, and
to the level-set problem. The level-set value function v evaluates to

v(τ) =

{
−1 if τ ≥ τ∗p
+∞ if τ < τ

∗
p .

Because p is nonnegative over its domain, there is no value τ for which the inverse-
function relationship shown by Theorem 3.1(a) holds.

Theorem 3.1 is symmetric, and holds if the roles of f and g, and p and v, are
reversed. Aravkin et al. (2013) show that this result holds even if the underlying
functions and sets that define (P) are not convex.

Part (b) of the theorem confirms that if τ
∗
p ∈ S, i.e., the constraint g(x) ≤ 0

holds with equality at a solution of (P), then solutions of the level-set problem
coincide with solution of the original problem defined by p(0). More formally,

argmin v(τ
∗
p ) = argmin (P).

Again consider Example 2.2, where we set τ = −1/2, which falls midway
between the interval (τ

∗
d , τ
∗
p ) = (−1, 0). Because the solution set argmin v(τ) is

empty, τ /∈ S. Thus,
(p ◦ v)(τ) = p(0) = 0 6= τ,

and the level-set method fails.
In order establish an inverse-function-like relationship between the value func-

tions p and v that always holds for convex problems, we provide a modified defi-
nition of the epigraphs for v and w.

Definition 3.1 (Value function epigraph) The value function epigraph of the
optimal value function p in (3.1a) is defined by

vfepi p = { (u, τ) | ∃x ∈ X , f(x) ≤ τ, g(x) ≤ u } .

This definition similar to the regular definition for the epigraph of a function,
given by

epi p = { (u, τ) | p(u) ≤ τ } ,
except that if τ = p(u) but argmin p(u) is empty, then (u, τ) /∈ vfepiw.

The result below follows immediately from the definition of the value function
epigraph. It establishes that (1.2) holds if (Qτ ) has a solution that attains its
optimal value (as opposed to relying on the infimal operator to achieve that value).

Proposition 3.1 For the value functions p and v,

(u, τ) ∈ vfepi p ⇐⇒ (τ, u) ∈ vfepi v.
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4 Duality in convex optimization

Duality in convex optimization can be understood as describing the behavior
of an optimization problem under perturbation to its data. From this point of
view, dual variables describe the sensitivity of the problem’s optimal value to
that perturbation. The description that we give here summarizes a well-developed
theory fully described by Rockafellar and Wets (1998). We adopt a geometric
viewpoint that we have found helpful for understanding the connection between
duality and the level-set method, and lays out the objects needed for the analysis
in subsequent sections.

For this section only, consider the generic convex optimization problem

minimize
x∈X

h(x),

where h : Rn → R ∪ {∞} is an arbitrary closed proper convex function. The
perturbation approach is predicated on fixing a certain convex function F (x, u) :
Rn × Rm → R ∪ {∞} with the property that

F (x, 0) = h(x) ∀x.

Thus, the particular choice of F determines the perturbation function

p(u) := inf
x
F (x, u),

which describes how the optimal value of h changes under a perturbation u. We
seek the behavior of the perturbation function about the origin, at which the value
of p coincides with the optimal value τ

∗
p , i.e., p(0) = τ

∗
p .

The convex conjugate of the function p is

p
?
(µ) = sup

u
{ 〈µ, u〉 − p(u) }

defines the affine function µ 7→ 〈µ, u〉 − p?(µ) that minorizes p and supports the
epigraph of p; see Figure 4.1. The biconjugate p

??
provides a convex and closed

function that is a global lower envelope for p, i.e., p
??

(u) ≤ p(u) for all u. This
last inequality is tight at a point u, i.e., p

??
(u) = p(u), if and only if p is lower-

semicontinuous at u (Rockafellar 1970, Theorem 7.1). Because of the connection
between lower semicontinuity and the closure of the epigraph, we say that p is
closed at such points u.

As described by Rockafellar and Wets (1998, Lemma 11.38), the function p
and its biconjugate p

??
define dual pairs of optimization problems given by

p(0) = inf
x
F (x, 0) and p

??
(0) = sup

y
−F ?(0, y), (4.1)

which define the primal and dual optimal values

τ
∗
d := p

??
(0) ≤ p(0) =: τ

∗
p . (4.2)

Strong duality holds when τ
∗
p = τ

∗
d , which indicates the closure of p at the origin.

As we show in Section 5, the optimal dual value τ
∗
d coincides with the value of

the infimal value defined in (1.3).
The following well-known result establishes a constraint qualification for (P)

that ensures strong duality holds. See Rockafellar and Wets (1998, Theorem 11.39)
for a more comprehensive version of this result.
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0 u

p(u)

〈µ, u〉 − p?(µ)

−p?(µ)

τ
∗
p

epi p

0 u

p(u)

〈µ, u〉 − p?(µ)

τ
∗
p = τ

∗
d

epi p

(a) Non-optimal dual (b) Optimal dual

Fig. 4.1 The relationship between the primal perturbation value p(u) and a single instance
(with slope µ and intercept qµ) of the uncountably many minorizing affine functions that
define the dual problem. The panel on the left depicts a non-optimal supporting hyperplane
that crosses the vertical axis at −p?(µ) < τ

∗
p ; the panel on the right depicts an optimal

supporting hyperplane that generates a slope µ and intercept −p?(µ) = τ
∗
p .

Theorem 4.1 (Weak and strong duality) Consider the primal-dual pair (4.1).

(a) [Weak duality] The inequality τ
∗
p ≥ τ

∗
d always holds.

(b) [Strong duality] If 0 ∈ int dom p, then τ
∗
p = τ

∗
d .

To establish the connection between the pair of value functions (3.1) for (P)
and this duality framework, we observe that

p(u) = inf
x∈X

{ f(x) | g(x) ≤ u } = inf
x
F (x, u),

where
F (x, u) := f(x) + δX (x) + δepi g(x, u), (4.3)

and the indicator function δC vanishes on the set C and is +∞ otherwise. The
dual problem p

??
(0) defined in (4.1) is derived as follows:

p
??

(0) = sup
λ
−F ?(0, λ)

= sup
λ

inf
x,u
{ f(x) + δX (x)− λu+ δepi g(x, u) }

= sup
λ≤0

inf
x∈X
{ f(x)− λg(x) } .

(4.4)

We recognize this last expression as the familiar Lagrangian-dual for the opti-
mization problem (P).

5 Duality of the value function root

We now provide a formal statement and proof our main result concerning prob-
lem (P) and the inequality shown in (1.3). In the latter part of this section we also
provide a straight-forward extension of the main result that allows for multiple
constraints, and not just a single constraint function, as specified by (P).

Note that the theorem below does not address conditions under which v(τ
∗
p ) ≤

0, which is true if and only if the solution set argmin (P) is not empty. In partic-
ular, any x

∗ ∈ argmin (P) is a solution of (Qτ ) for τ = τ
∗
p , and hence v(τ

∗
p ) ≤ 0.

However, if argmin (P) is empty, then there is no solution to (Qτ ) and hence
v(τ
∗
p ) = +∞.
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Theorem 5.1 (Duality of the value function root) For problem (P) and
the pair of value function v and p, defined by (3.1),

τ
∗
d = inf { τ | v(τ) ≤ 0 } and v(τ) ≤ 0 for all τ > τ

∗
d ,

where τ
∗
d := p

??
(0) is the optimal value of the Lagrange-dual problem (4.4).

Before giving the proof, below, we provide an intuitive argument for Theo-
rem 5.1. Suppose that strong duality holds for (P). Hence, τ

∗
p = p(0) = p

∗∗
(0) =

τ
∗
d , which means that the perturbation function p is closed at the origin. We sketch

in the top row of Figure 5.1 example pairs of value functions p and v that exhibit
this behavior. To understand this picture, first consider the value τ1 < τ

∗
p , shown

in the top row. It is evident that v(τ1) is positive, because otherwise there must
exist a vector x ∈ X that is super-optimal and feasible, i.e.,

f(x) ≤ τ1 < τ
∗
p and g(x) ≤ 0,

which contradicts the definition of τ
∗
p . It then follows that the value u := v(τ1)

yields p(u) = τ1. For τ2 > τ
∗
, any solution to the original problem would be

feasible (therefore requiring no perturbation u) and would achieve objective value
p(0) = τ

∗
p < τ2. Furthermore, notice that as τ1 → τ

∗
p , the value p(u1) varies

continuously in τ1, where u1 is the smallest root of p(u) = τ1.
Next consider the second row of Figure 5.1. In this case, strong duality fails,

which means that

lim
u↓0

p(u) = τ
∗
d 6= p(0).

With τ = τ1, we have v(τ1) > 0. With τ = τ3 > τ
∗
p , we have v(τ) = 0 because

any solution to (P) causes (Qτ ) to have zero value. But for τ
∗
d < τ2 < τ

∗
p , we see

that v(τ2) = 0, because for any positive ε there exists positive u < ε such that
p(u) ≤ τ2. Even though there is no feasible point that achieves a superoptimal
value f(x) ≤ τ2 < τ

∗
p , for any positive ε there exists an ε-infeasible point that

achieves that objective value.

Proof (Theorem 5.1)
We first prove the second result that v(τ) ≤ 0 if τ > τ

∗
d . Suppose that strong

duality holds, i.e., τ
∗
p = τ

∗
d . Then the required result is immediate because if τ

∗
p is

the optimal value, then for any τ > τ
∗
p , there exists feasible x such that f(x) ≤ τ .

Suppose that strong duality does not hold, i.e., τ
∗
p > τ

∗
d . If τ > τ

∗
p , it is

immediate that v(τ) ≤ 0. Assume, then, that τ ∈ (τ
∗
d , τ
∗
p ]. Note that the two

conditions g(x) ≤ u and f(x) ≤ τ are equivalent to the single condition F (x, u) ≤
τ , where F is defined by (4.3). We will therefore prove that

∀ε > 0, ∃x ∈ X such that F (x, u) ≤ τ, u ≤ ε, (5.1)

which is equivalent to the required condition v(τ) ≤ 0. It follows from the con-
vexity of epi p and from (4.2) that (0, τ

∗
d ) ∈ epi p

∗∗
= cl epi p. Thus,

∀η > 0, ∃(u, ω) ∈ epi p such that ‖(u, ω)− (0, τ
∗
d )‖ < η.

Note that

lim
ε↓0

inf
{
p(u)

∣∣ |u| ≤ ε} (i)
= lim

ε↓0
inf
{
p
??

(u)
∣∣ |u| ≤ ε}

(ii)
= p

??
(0)

(iii)
= τ

∗
d ,

(5.2)
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0 u

τ
∗
p = τ

∗
d

epi p

p(u)

τ2

τ1

0 τ

v(τ)

τ
∗
p = τ

∗
d τ2τ1

(a) Perturbation function p under
strong duality

(b) Level-set value function v corre-
sponding to (a)

0 u

τ
∗
d

epi p

p(u)

τ
∗
p

τ1

τ2

τ3

0 τ

v(τ)

τ1 τ
∗
d τ2 τ

∗
p τ3

(c) Perturbation function p with no
strong duality

(d) Level-set value function v corre-
sponding to (c)

Fig. 5.1 The perturbation function p(u) and corresponding level-set value function v(τ)
for problems with strong duality (top row) and no strong duality (bottom row). Panel (c)
illustrates the case when strong duality fails and the graph of p is open at the origin, which
implies that τ

∗
d < τ

∗
p ≡ p(0).

where equality (i) follows from the fact that p(u) = p
??

(u) for all u ∈ dom p,
equality (ii) follows from the closure of p

??
, and (iii) follows from (4.2). This

implies that

∀η > 0, ∃(u, ω) ∈ epi p such that ‖(u, p(u))− (0, τ
∗
d )‖ < η.

For any fixed positive ε define µ = min { ε, 1
4 (τ − τ∗d ) }. Choose û ∈ dom p such

that ‖(û, p(û))− (0, τ
∗
d )‖ < µ, and so

ε ≥ µ > ‖(û, p(û))− (0, τ
∗
d )‖ ≥ max

{
‖û‖, |p(û)− τ∗d |

}
.

Thus,
p(û) < τ

∗
d + µ. (5.3)

Moreover, it follows from the definition of p(û), cf. (3.1a), that

∀ν > 0, ∃x ∈ X such that F (x, û) ≤ p(û) + ν.

Choose ν = µ, and so there exists x̂ such that F (x̂, û) ≤ p(û) + µ. Together with
(5.3), we have

f(x̂) ≤ p(û) + µ < τ
∗
d + 2µ ≤ τ.

Therefore, for each ε > 0, we can find a pair (x̂, û) that satisfies (5.1), which
completes the proof of the second result.
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Next we prove the first result, which is equivalent to proving that v(τ) > 0
if τ < τ

∗
d because v(τ) is convex. Observe that τ < τ

∗
d ≡ p

∗∗
(0) is equivalent to

(0, τ) /∈ cl epi p, which implies that

0 < inf
u
{u | (u, τ) ∈ cl epi p }

= inf
u
{u | (u, τ) ∈ epi p }

= inf
u
{u | ∃x ∈ X such that F (x, u) ≤ τ } = v(τ),

(5.4)

which completes the proof. ut

The proof of Theorem 5.1 reveals that the behavior exhibited by Examples 2.1
and 2.2 stems from the failure of strong duality with respect to perturbations in
the linear constraints.

5.1 General perturbation framework

We now generalize Theorem 5.1 to inlclude arbitrary perturbations to (P), and
thus more general notions of duality. In this case we are interested in the value
function pair

p(u) = inf
x∈X

F (x, u), (5.5a)

v(τ) = inf
x∈X
{ ‖u‖ | F (x, u) ≤ τ } , (5.5b)

where F : Rn×Rm → R∪{∞} is an arbitrary convex function with the property
that F (x, 0) = f(x) (cf. Section 4), and ‖ · ‖ is any norm. Because p is parame-
terized by an m-vector u and not just a scalar as previously considered, we must
consider the norm of the perturbation. Therefore, v(τ) is necessarily non-negative.
We are thus interested in the leftmost root of the equation v(τ) = 0, rather than
an inequality as in Theorem 5.1.

Example 5.1 (Multiple constraints) Consider the convex optimization problem

minimize
x

f(x) subject to c(x) ≤ 0, Ax = b, (5.6)

where c = (ci)
m
i=1 is a vector-valued convex function and A is a matrix. Introduce

perturbations u1 and u2 to the right-hand sides of the constraints, which gives
rise to Lagrange duality, and corresponds to the perturbation function

p(u1, u2) = inf
x
{ f(x) | c(x) ≤ u1, Ax− b = u2 } .

One valid choice for the value function that corresponds to swapping both con-
straints with the objective to (5.6) can be expressed as

v(τ) = inf
x,u1,u2

1
2‖[u1]+‖

2
2 + 1

2‖u2‖
2
2

∣∣∣∣∣∣∣
f(x) ≤ τ
c(x) ≤ u1

Ax− b = u2

 ,

where the operator [u1]+ = max{0, u1} is taken component-wise on the elements
of u1. This particular formulation of the value function makes explicit the con-
nection to the perturbation function. We may thus interpret the value function as
giving the minimal perturbation that corresponds to an objective value less than
or equal to τ . ut
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Theorem 5.2 For the functions p and v defined by (5.5),

τ
∗
d = inf { τ | v(τ) = 0 } and v(τ) = 0 for all τ > τ

∗
d .

The proof is almost identical to that of Theorem 5.1, except that we treat u as a
vector, and replace u by ‖u‖ in (5.1), (5.2), and (5.4).

Theorems 5.1 and 5.2 imply that v(τ) ≤ 0 for all values larger than the optimal
dual value. (The inequality τ > τ

∗
d is strict, as v(τ

∗
d ) may be infinite.) Thus if

strong duality does not hold, then v(τ) identifies the wrong optimal value for the
original problem being solved. This means that the level-set method may provide
a point arbitrarily close to feasibility, but is at least a fixed distance away from
the true solution independent of how close to feasibility the returned point may
be.

Example 5.2 (Basis pursuit denoising (Chen et al. 1998, 2001)) The level-set
method implemented in the SPGL1 software package solves the 1-norm regularized
least-squares problem

minimize
x

‖x‖1 subject to ‖Ax− b‖2 ≤ u

for any value of u ≥ 0, assuming that the problem remains feasible. (The case
u = 0 is important, as it accommodates the case in which we seek a sparse solution
to the under-determined linear system Ax = b.) The algorithm approximately
solves a sequence of flipped problems

minimize
x

‖Ax− b‖2 subject to ‖x‖1 ≤ τk,

where τk is chosen so that the corresponding solution xk satisfies ‖Axk− b‖2 ≈ u.
Strong duality holds because the domains of the nonlinear functions (i.e., the 1-
and 2-norms) cover the whole space. Thus, the level-set method succeeds on this
problem. ut

6 Sufficient conditions for strong duality

The condition that 0 ∈ dom p may be interpreted as Slater’s constraint qualifi-
cation (Borwein and Lewis 2010, §3.2), which in the context of (P) requires that
there exist a point x̂ in the domain of f and for which g(x̂) < 0. This condition is
sufficient to establish strong duality. Here we show how Theorem 5.1 can be used
as a device to characterize an alternative set of sufficient conditions that continue
to ensure strong duality even for problems that do not satisfy Slater’s condition.

Proposition 6.1 Problem (P) satisfies strong duality if either one of the follow-
ing conditions hold:

(a) the objective f is coercive, i.e., f(x)→∞ as ‖x‖ → ∞;
(b) X is compact.

Proof Consider the level-set problem (Qτ ) and its corresponding optimal-value
function v(τ) given by (1.1). In either case (a) or (b), the feasible set

{x ∈ X | f(x) ≤ τ }

of (1.1) is compact because either X is compact or the level sets of f are compact.
Therefore, (Qτ ) always attains its minimum for all τ ≥ inf { f(x) | x ∈ X }.
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Suppose strong duality does not hold. Theorem 5.1 then confirms that there
exists a parameter τ ∈ (τ

∗
d , τ
∗
p ) such that v(τ) = 0. However, because (Qτ ) always

attains its minimum, there must exist a point x̂ ∈ X such that f(x̂) ≤ τ < τ
∗
p and

g(x) ≤ 0, which contradicts the fact that τ
∗
p is the optimal value of (P). We have

therefore established that τ
∗
d = τ

∗
p and hence that (P) satisfies strong duality. ut

We can use Proposition 6.1 to establish that certain optimization problems
that do not satisfy a Slater constraint qualification still enjoy strong duality. As
an example, consider the conic optimization problem

minimize
x

〈c, x〉 subject to Ax = b, x ∈ K, (6.1)

where A : E1 → E2 is a linear map between Euclidean spaces E1 and E2, and
K ⊆ E1 is a closed proper convex cone. This wide class of problems includes linear
programming (LP), second-order programming (SOCP), and SDPs, and has many
important scientific and engineering applications (Ben-Tal and Nemirovski 2001).
If c is in the interior of the dual cone K∗ = { y ∈ E1 | 〈x, y〉 ≥ 0 ∀x ∈ K}, then
〈c, x〉 > 0 for all feasible x ∈ K. Equivalently, the function f(x) := 〈c, x〉+ δK(x)
is coercive. Thus, (6.1) is equivalent to the problem

minimize
x

f(x) subject to Ax = b,

which has a coercive objective. Thus, Part (a) of Proposition 6.1 applies, and
strong duality holds.

A concrete application of this model problem is the SDP relaxation of the
celebrated phase-retrieval problem (Candès et al. 2013; Waldspurger et al. 2015)

minimize
X

tr(X) subject to AX = b, X � 0, (6.2)

where K is now the cone of Hermitian positive semidefinite matrices (i.e., all the
eigenvalues are real-valued and nonnegative) and c = I is the identity matrix, so
that 〈C,X〉 = tr(X). In that setting, Candès et al. (2013) prove that with high
probability, the feasible set of (6.1) is a rank-1 singleton (the desired solution),
and thus we cannot use Slater’s condition to establish strong duality. However,
because K is self dual (Boyd and Vandenberghe 2004, Example 2.24), clearly
c ∈ intK, and by the discussion above, we can use Proposition 6.1 to establish
that strong duality holds (6.2).

A consequence of Proposition 6.1 is that it is possible to modify (P) in order
to guarantee strong duality. In particular, we may regularize the objective, and in-
stead consider a version of the problem with the objective as f(x) + µ‖x‖, where
the parameter µ controls the degree of regularization contributed by the regu-
larization term ‖x‖. If, for example, f is bounded below on X , the regularized
objective is then coercive and Proposition 6.1 asserts that the revised problem
satisfies strong duality. Thus, the optimal value function of the level-set problem
has the correct root, and the level-set method is applicable. For toy problems
such as Examples 2.1 and 2.2, where all of the feasible points are optimal, regu-
larization would not perturb the solution; however, in general we expect that the
regularization will perturb the resulting solution, and in some cases this may be
the desired outcome.

Acknowledgements The authors are indebted to Professor Bruno F. Lourenço of Seikei Uni-
versity for fruitful discussions that followed the second author’s course on first-order methods
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at the summer school associated with the 2016 International Conference on Continuous Op-
timization, held in Tokyo. Professor Lourenço asked if level-set methods could be be applied
to solve degenerate SDPs. His thinking was that the level-set problems (Qτ ) might satisfy
Slater’s constraint qualification even if the original problem (P) did not, and therefore the
level-set method might be useful as a way to alleviate numerical difficulties that can arise
when an algorithm is applied directly to an SDP without strong duality. The conclusion of
this paper suggests that this is not always the case.
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