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RON ESTRIN\dagger , MICHAEL P. FRIEDLANDER\ddagger , DOMINIQUE ORBAN\S , AND

MICHAEL A. SAUNDERS\P 

Dedicated to Roger Fletcher

Abstract. We develop a general equality-constrained nonlinear optimization algorithm based on
a smooth penalty function proposed by Fletcher in 1970. Although it was historically considered to be
computationally prohibitive in practice, we demonstrate that the computational kernels required are
no more expensive than other widely accepted methods for nonlinear optimization. The main kernel
required to evaluate the penalty function and its derivatives is solving a structured linear system.
We show how to solve this system efficiently by storing a single factorization at each iteration when
the matrices are available explicitly. We further show how to adapt the penalty function to the
class of factorization-free algorithms by solving the linear system iteratively. The penalty function
therefore has promise when the linear system can be solved efficiently, e.g., for PDE-constrained
optimization problems where efficient preconditioners exist. We discuss extensions including handling
simple constraints explicitly, regularizing the penalty function, and inexact evaluation of the penalty
function and its gradients. We demonstrate the merits of the approach and its various features on
some nonlinear programs from a standard test set, and some PDE-constrained optimization problems.
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1. Introduction. We consider a penalty function approach for solving general
equality-constrained nonlinear optimization problems

(NP) minimize
x\in \BbbR n

f(x) subject to c(x) = 0 : y,

where f : \BbbR n \rightarrow \BbbR and c : \BbbR n \rightarrow \BbbR m are smooth functions (m \leq n), and y \in \BbbR m is
the vector of Lagrange multipliers. A smooth exact penalty function \phi \sigma is used to
eliminate the constraints c(x) = 0. The penalty function is the Lagrangian L(x, y) =
f(x)  - c(x)Ty evaluated at y = y\sigma (x) (defined in (2.2a)) treated as a function of x
depending on a parameter \sigma > 0. Hence, the penalty function depends only on the
primal variables x. It was first proposed by Fletcher (1970) for (NP). A long-held
view is that Fletcher's penalty function is not practical because it is costly to compute
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A1810 ESTRIN, FRIEDLANDER, ORBAN, AND SAUNDERS

(Bertsekas, 1975; Conn et al., 2000; Nocedal and Wright, 2006). In particular, Nocedal
andWright (2006, p. 436) warn that ``although this merit function has some interesting
theoretical properties, it has practical limitations. . . ."" Our aim is to challenge that
notion and to demonstrate that the computational kernels are no more expensive
than other widely accepted methods for nonlinear optimization, such as sequential
quadratic programming.

The penalty function is exact because local minimizers of (NP) are minimizers
of the penalty function for all values of \sigma larger than a finite threshold \sigma \ast . The
main computational kernel for evaluating the penalty function and its derivatives
is the solution of a certain saddle-point system; see (4.8). If the system matrix is
available explicitly, we show how to factorize it once and reuse the factors to evaluate
the penalty function and its derivatives. We also adapt the penalty function for
factorization-free optimization by solving the linear system iteratively. This makes
the penalty function particularly applicable for certain problem classes, such as PDE-
constrained optimization problems when good preconditioners exist; see section 9.

1.1. Related work on penalty functions. Penalty functions have long been
used to solve constrained problems by transforming them into unconstrained problems
that penalize violations of feasibility. We provide a brief overview of common penalty
methods and their relation to Fletcher's penalty \phi \sigma (x). More detail is given by di Pillo
and Grippo (1984), Conn et al. (2000), and Nocedal and Wright (2006).

The simplest example is the quadratic penalty function (Courant, 1943), which
removes the nonlinear constraints by adding 1

2\rho \| c(x)\| 
2 to the objective (for some

\rho > 0). There are two main drawbacks: a sequence of optimization subproblems must
be solved with increasing \rho , and a feasible solution is obtained only when \rho \rightarrow \infty . As
\rho increases, the subproblems become increasingly difficult to solve.

An alternative to smooth nonexact penalty functions is an exact nonsmooth func-
tion such as the 1-norm penalty \rho \| c(x)\| 1 (Pietrzykowski, 1969; Fletcher, 1985). How-
ever, only nonsmooth optimization methods apply, which typically exhibit slower con-
vergence. Maratos (1978) further noted that nonsmooth merit functions may reject
steps and prevent quadratic convergence.

Another distinct approach is the class of augmented Lagrangian methods, in-
dependently introduced by Hestenes (1969) and Powell (1969). These minimize a
sequence of augmented Lagrangians, L\rho k

(x, yk) = L(x, yk) + 1
2\rho k\| c(x)\| 

2. When
yk is optimal, L\rho k

(x, yk) is exact for sufficiently large \rho k, thus avoiding the stability
issues of the quadratic penalty. However, a sequence of subproblems must be solved
to drive yk to optimality.

Although these penalty functions have often been successful in practice, in light of
their drawbacks, a class of smooth exact penalty functions has been explored (di Pillo
and Grippo, 1984; Zavala and Anitescu, 2014). With smooth exact penalty func-
tions, constrained optimization problems such as (NP) can be replaced by a single
smooth unconstrained optimization problem (provided the penalty parameter is suf-
ficiently large). Approximate second-order methods can be applied to obtain at least
superlinear local convergence. These methods are variations of minimizing the aug-
mented Lagrangian, where either the multipliers are parametrized in terms of x, or
they are kept independent and the gradient of the Lagrangian is penalized. The price
for smoothness (as we find for \phi \sigma ) is that a derivative of the penalty function re-
quires a higher-order derivative from the original problem data. That is, evaluating
\phi \sigma requires \nabla f and \nabla c; \nabla \phi \sigma requires \nabla 2f and \nabla 2ci; and so on. The third deriv-
ative terms are typically discarded during computation, but it can be shown that
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SMOOTH EXACT PENALTY FUNCTION A1811

superlinear convergence is retained (Fletcher, 1973, Theorem 2).
Fletcher (1970) introduced the class of smooth exact penalty functions from which

\phi \sigma originates. Extensions and variations of this class have been explored by several
authors, whose contributions are described by Conn et al. (2000, section 14.6). How-
ever, Fletcher (1970) envisioned his method being applied to small problems and
assumed ``the matrices in the problem are nonsparse."" Further, most developments
surrounding this method focused on linesearch schemes that require computing an ex-
plicit Hessian approximation and using it to compute a Newton direction. One of our
goals is to show how to adapt the method to large-scale problems by taking advantage
of computational advances made since Fletcher's proposal. Improved sparse matrix
factorizations and iterative methods for solving linear systems, and modern Newton-
CG trust-region methods (Ph. L. Toint, 1981; Steihaug, 1983), play a key role in the
efficient implementation of his penalty function. We also show how regularization can
be used to accommodate certain constraint degeneracy, and we explain how to take
advantage of inexact evaluations of functions and gradients.

1.2. Outline. We introduce the penalty function in section 2 and describe its
properties and derivatives in section 3. In section 4 we discuss options for efficiently
evaluating the penalty function and its derivatives. We then discuss modifications
of the penalty function in sections 5--6 to take advantage of linear constraints and
to regularize the penalty function if the constraint Jacobian is rank-deficient. In
some applications, it may be necessary to solve large linear systems inexactly, and
we show in section 7 how the resulting imprecision can be accommodated. Other
practical matters are described in section 8. We apply the penalty function to several
optimization problems in section 9 and conclude with future research directions in
section 10.

2. The penalty function for equality constraints. For (NP), Fletcher's pen-
alty function is

(2.1) \phi \sigma (x) := f(x) - c(x)Ty\sigma (x),

where y\sigma (x) are Lagrange multiplier estimates defined with other items as

y\sigma (x) := argminy
\bigl\{ 

1
2\| A(x)y  - g(x)\| 22 + \sigma c(x)Ty

\bigr\} 
, g(x) := \nabla f(x),(2.2a)

A(x) := \nabla c(x) =
\bigl[ 
g1(x) . . . gm(x)

\bigr] 
, gi(x) := \nabla ci(x),(2.2b)

Y\sigma (x) := \nabla y\sigma (x).(2.2c)

Note that A and Y\sigma are n-by-m matrices. The form of y\sigma (x) is reminiscent of the
variable-projection algorithm of Golub and Pereyra (1973) for separable nonlinear
least-squares problems.

We assume that (NP) satisfies some variation of the following conditions:

(A1) f and c are twice continuously differentiable and either
(A1a) have Lipschitz second-derivatives or
(A1b) are three-times continuously differentiable.

(A2) The linear independence constraint qualification (LICQ) is satisfied at
(A2a) stationary points of (NP) or
(A2b) all n-vectors x.

(LICQ is satisfied at a point x if the vectors \{ \nabla ci(x)\} mi=1 are linearly independent.)
(A3) The problem is feasible; i.e., there exists x such that c(x) = 0.
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A1812 ESTRIN, FRIEDLANDER, ORBAN, AND SAUNDERS

Assumption (A1b) ensures that \phi \sigma has two continuous derivatives and is typical for
smooth exact penalty functions (Bertsekas, 1982, Proposition 4.16). However, we use
at most two derivatives of f and c throughout. We typically assume (A1b) to simplify
the discussion, but this assumption can often be weakened to (A1a). We also initially
assume that (NP) satisfies (A2b) so that Y\sigma (x) and y\sigma (x) are uniquely defined. We
relax this assumption to (A2a) in section 6.

2.1. Notation. Denote x\ast as a local minimizer of (NP), with corresponding
dual solution y\ast . Let H(x) = \nabla 2f(x), Hi(x) = \nabla 2ci(x), and define

gL(x, y) := g(x) - A(x)y, g\sigma (x) := gL(x, y\sigma (x)),(2.3a)

HL(x, y) := H(x) - 
m\sum 
i=1

yiHi(x), H\sigma (x) := HL(x, y\sigma (x))(2.3b)

as the gradient and Hessian of L(x, y) evaluated at x and y, or evaluated at y\sigma (x).
We also define the matrix operators

S(x, v) := \nabla x[A(x)Tv] = \nabla x

\left[   g1(x)
T v

...
gm(x)T v

\right]   =

\left[   v
TH1(x)

...
vTHm(x)

\right]   ,

T (x,w) := \nabla x[A(x)w] = \nabla x

\Biggl[ 
m\sum 
i=1

wigi(x)

\Biggr] 
=

m\sum 
i=1

wiHi(x),

where v \in \BbbR n, w \in \BbbR m, and T (x,w) is a symmetric matrix. The operation of
multiplying the adjoint of S with a vector w is described by

S(x, v)Tw =

\Biggl[ 
m\sum 
i=1

wiHi(x)

\Biggr] 
v = T (x,w)v = T (x,w)T v .

If A(x) has full rank m, the operators

P (x) := A(x)
\bigl( 
A(x)TA(x)

\bigr)  - 1
A(x)T and \=P (x) := I  - P (x)

define, respectively, orthogonal projectors onto range(A(x)) and its complement. More
generally, for a matrix M , respectively define PM and \=PM as the orthogonal projec-
tors onto range(M) and ker(M). We define M\dagger as the Moore--Penrose pseudoinverse,
where M\dagger = (MTM) - 1MT if M has full column rank.

Let \lambda min(M) denote the smallest eigenvalue of a square matrixM , and let \sigma min(M)
denote the smallest singular value for a general matrix M . Unless otherwise indicated,
\| \cdot \| is the 2-norm for vectors and matrices. For M positive definite, \| u\| 2M = uTMu
is the energy norm. Define 1 as the vector of all ones.

3. Properties of the penalty function. We show how the penalty function
\phi \sigma (x) naturally expresses the optimality conditions of (NP). We also give explicit
expressions for the threshold value of the penalty parameter \sigma .

3.1. Derivatives of the penalty function. The gradient and Hessian of \phi \sigma 

may be written as

\nabla \phi \sigma (x) = g\sigma (x) - Y\sigma (x)c(x),(3.1a)

\nabla 2\phi \sigma (x) = H\sigma (x) - A(x)Y\sigma (x)
T  - Y\sigma (x)A(x)T  - \nabla x [Y\sigma (x)c] ,(3.1b)
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SMOOTH EXACT PENALTY FUNCTION A1813

where the last term \nabla x[Y\sigma (x)c] purposely drops the argument on c to emphasize
that this gradient is made on the product Y\sigma (x)c with c := c(x) held fixed. This
term involves third derivatives of f and c, and as we shall see, it is convenient and
computationally efficient to ignore it. We leave it unexpanded.

3.2. Optimality conditions. The penalty function \phi \sigma is closely related to the
Lagrangian L(x, y) associated with (NP). To make this connection clear, we define
the Karush--Kuhn--Tucker (KKT) optimality conditions for (NP) in terms of formulas
related to \phi \sigma and its derivatives. From the definition of \phi \sigma and y\sigma and the deriva-
tives (3.1), the following definitions are equivalent to the KKT conditions.

Definition 1 (first-order KKT point). A point x\ast is a first-order KKT point
of (NP) if for any \sigma \geq 0 the following hold:

c(x\ast ) = 0,(3.2a)

\nabla \phi \sigma (x
\ast ) = 0.(3.2b)

The Lagrange multipliers associated with x\ast are y\ast := y\sigma (x
\ast ).

Definition 2 (second-order KKT point). The first-order KKT point x\ast satisfies
the second-order necessary KKT condition for (NP) if for any \sigma \geq 0,

pT\nabla 2\phi \sigma (x
\ast )p \geq 0 for all p such that A(x\ast )Tp = 0,

i.e., \=P (x\ast )\nabla 2\phi \sigma (x
\ast ) \=P (x\ast ) \succeq 0. The condition is sufficient if the inequality is strict.

The second-order KKT condition says that at x\ast , \phi \sigma has nonnegative curvature
along directions in the tangent space of the constraints. However, at x\ast , increasing \sigma 
will increase curvature along the normal cone of the feasible set. We derive a threshold
value for \sigma that causes \phi \sigma to have nonnegative curvature at a second-order KKT point
x\ast , as well as a condition on \sigma that ensures stationary points of \phi \sigma are primal feasible.
For a given first- or second-order KKT pair (x\ast , y\ast ) of (NP), we define

(3.3) \sigma \ast := 1
2\lambda 

+
max (P (x\ast )HL(x

\ast , y\ast )P (x\ast )) ,

where \lambda +
max(\cdot ) = max \{ \lambda max(\cdot ), 0\} .

Lemma 3. If c(x) \in range(A(x)T ), then y\sigma (x) satisfies

(3.4) A(x)TA(x)y\sigma (x) = A(x)Tg(x) - \sigma c(x).

Further, if A(x) has full rank, then

(3.5) A(x)TA(x)Y\sigma (x)
T = A(x)T [H\sigma (x) - \sigma I] + S(x, g\sigma (x)).

Proof. For any x, the necessary and sufficient optimality conditions for (2.2a)
give (3.4). By differentiating both sides of (3.4), we obtain

S(x,A(x)y\sigma (x))+A(x)T
\bigl[ 
T (x, y\sigma (x)) +A(x)Y\sigma (x)

T
\bigr] 
= S(x, g(x))+A(x)T [H(x) - \sigma I].

From definitions (2.3), we obtain (3.5).D
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A1814 ESTRIN, FRIEDLANDER, ORBAN, AND SAUNDERS

Theorem 4 (threshold penalty value). Suppose \nabla \phi \sigma (\=x) = 0 for some \=x, and let x\ast 
1

and x\ast 
2 be a first-order and a second-order necessary KKT point, respectively, for

(NP). Let \sigma \ast be defined as in (3.3). Then

\sigma > \| A(\=x)TY\sigma (\=x)\| =\Rightarrow g(\=x) = A(\=x)y\sigma (\=x), c(\=x) = 0;(3.6a)

\sigma \geq \| A(x\ast 
1)Y\sigma (x

\ast 
1)

T \| =\Rightarrow \sigma \geq \sigma \ast ;(3.6b)

\nabla 2\phi \sigma (x
\ast 
2) \succeq 0 \Leftarrow \Rightarrow \sigma \geq \=\sigma := 1

2\lambda max (P (x\ast 
2)HL(x

\ast 
2, y

\ast )P (x\ast 
2)) .(3.6c)

If x\ast 
2 is second-order sufficient, then the inequalities in (3.6c) hold strictly. Observe

that \sigma \ast = max\{ \=\sigma , 0\} and that \=\sigma could be negative.

Proof. We prove (3.6a), (3.6c), and (3.6b) in order.
Proof of (3.6a). The condition \nabla \phi \sigma (\=x) = 0 implies that y\sigma (\=x) is well defined and

c(\=x) \in range(A(\=x)T ), so that

g(\=x) = A(\=x)y\sigma (\=x) + Y\sigma (\=x)c(\=x).

Substituting (3.4) evaluated at \=x into this equation yields, after simplifying,

A(\=x)TY\sigma (\=x)c(\=x) = \sigma c(\=x).

Taking norms of both sides and using submultiplicativity gives the inequality \sigma \| c(\=x)\| \leq 
\| A(\=x)TY\sigma (\=x)\| \| c(\=x)\| , which immediately implies that c(\=x) = 0. The condition\nabla \phi \sigma (\=x) =
0 then becomes g\sigma (\=x) = 0.

Proof of (3.6c). Because x\ast 
2 satisfies (3.2), we have g\sigma (x

\ast 
2) = 0 and y\ast = y\sigma (x

\ast 
2),

independently of \sigma . It follows from (3.5), HL(x
\ast 
2, y

\ast ) = H\sigma (x
\ast 
2), S(x

\ast 
2, g\sigma (x

\ast 
2)) = 0,

and the definition of the projector P = P (x\ast 
2) that

A(x\ast 
2)Y\sigma (x

\ast 
2)

T = A(x\ast 
2)
\bigl( 
A(x\ast 

2)
TA(x\ast 

2)
\bigr)  - 1

A(x\ast 
2)

T[H\sigma (x
\ast 
2) - \sigma I]

= P (HL(x
\ast 
2, y

\ast ) - \sigma I).
(3.7)

We substitute this equation into (3.1b) and use the relation P + \=P = I to obtain

\nabla 2\phi \sigma (x
\ast 
2) = HL(x

\ast 
2, y

\ast ) - PHL(x
\ast 
2, y

\ast ) - HL(x
\ast 
2, y

\ast )P + 2\sigma P

= \=PHL(x
\ast 
2, y

\ast ) \=P  - PHL(x
\ast 
2, y

\ast )P + 2\sigma P.

Note that \=PHL(x
\ast 
2, y

\ast ) \=P \succeq 0 because x\ast 
2 is a second-order KKT point. As P and \=P

have orthogonal ranges, \sigma must be large enough to ensure 2\sigma P  - PHL(x
\ast 
2, y

\ast )P \succeq 0,
which is equivalent to \sigma \geq \=\sigma .

Proof of (3.6b). With x\ast 
1 in (3.7), y\ast = y\sigma (x

\ast 
1), and the properties of P , we have

\sigma \geq \| A(x\ast 
1)Y\sigma (x

\ast 
1)

T \| = \| P (HL(x
\ast 
1, y

\ast ) - \sigma I)\| 
\geq \| P (HL(x

\ast 
1, y

\ast ) - \sigma I)P\| 
\geq \| PHL(x

\ast 
1, y

\ast )P\|  - \sigma \| P\| \geq 2\sigma \ast  - \sigma .

Thus, \sigma \geq \sigma \ast as required.

According to (3.6c), if x\ast is a second-order KKT point, there exists a threshold
value \=\sigma such that \phi \sigma has nonnegative curvature for \sigma \geq \=\sigma . As penalty parameters
are typically nonnegative, we treat \sigma \ast = max\{ \=\sigma , 0\} as the threshold. Unfortunately,
as for many exact penalty functions, Theorem 4 allows the possibility of stationary
points of \phi \sigma (x) that are not feasible points of (NP); for an example, see Appendix A.1.
However, we rarely encounter this in practice with feasible problems, and minimizers
of \phi \sigma (x) usually correspond to feasible (and therefore optimal) points of (NP).
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3.3. Additional quadratic penalty. In light of Theorem 4, it is somewhat
unsatisfying that local minimizers of \phi \sigma (x) might not be local minimizers of (NP). We
may add a quadratic penalty term to promote feasibility, and under mild conditions
ensure that minimizers of \phi \sigma are KKT points of (NP). Like Fletcher (1970), we define

(3.8) \phi \sigma ,\rho (x) := \phi \sigma (x) +
1
2\rho \| c(x)\| 

2 = f(x) - [y\sigma (x) - 1
2\rho c(x)]

Tc(x).

The multiplier estimates are now shifted by the constraint violation, similar to an
augmented Lagrangian. All expressions for the derivatives follow as before with an
additional term from the quadratic penalty.

Theorem 5 (threshold penalty value for quadratic penalty). Let \scrS \subset \BbbR n be a
compact set, and suppose that \sigma min(A(x)) \geq \lambda > 0 for all x \in \scrS . Then for any
\sigma \geq 0 there exists \rho \ast (\sigma ) > 0 such that for all \rho > \rho \ast (\sigma ), if \nabla \phi \sigma ,\rho (\=x) = 0 and \=x \in \scrS ,
then \=x is a first-order KKT point for (NP).

Proof. The condition \nabla \phi \sigma ,\rho (\=x) = 0 implies that

g(\=x) - A(\=x)y\sigma (\=x) - Y\sigma (\=x)c(\=x) = \rho A(\=x)c(\=x).

We premultiply with A(\=x)T and use (3.4) to obtain

(3.9)
\bigl( 
\sigma I  - A(\=x)TY\sigma (\=x)

\bigr) 
c(\=x) = \rho A(\=x)TA(\=x)c(\=x).

The left-hand side of (3.9) is a continuous matrix function with finite supremum
R(\sigma ) := supx\in \scrS \| \sigma I  - A(x)TY\sigma (x)\| defined over the compact set \scrS . We now define
\rho \ast (\sigma ) := R(\sigma )/\lambda 2, so that for \rho > \rho \ast (\sigma ),

R(\sigma )\| c(\=x)\| \geq \| \sigma I  - A(\=x)TY\sigma (\=x)\| \cdot \| c(\=x)\| 
\geq \| 

\bigl( 
\sigma I  - A(\=x)TY\sigma (\=x)

\bigr) 
c(\=x)\| 

= \rho \| A(\=x)TA(\=x)c(\=x)\| \geq \rho \lambda 2\| c(\=x)\| .

The above inequality only holds when c(\=x) = 0 because \rho \lambda 2 > R(\sigma ), so \=x is feasible
for (NP). Because c(\=x) = 0 and \nabla \phi \sigma (\=x) = \nabla \phi \sigma ,\rho (\=x) = 0, \=x is a first-order KKT
point.

We briefly consider the case \sigma = 0 and \rho > 0. The threshold value to ensure
positive semidefiniteness of \nabla 2\phi \sigma ,\rho at a second-order KKT pair (x\ast , y\ast ) to (NP) is

\rho \ast = \lambda +
max

\Bigl( 
A(x\ast )\dagger HL(x

\ast , y\ast )
\bigl( 
A(x\ast )\dagger 

\bigr) T\Bigr) 
.

Fletcher (1970) gives an almost identical (but slightly looser) expression for \rho \ast . This
threshold parameter is more difficult to interpret in terms of the problem data com-
pared to \sigma \ast due to the pseudoinverse. We give a theorem analogous to Theorem 4.

Theorem 6. Suppose \sigma = 0 and \rho \geq 0. Let \nabla \phi \sigma ,\rho (\=x) = 0 for some \=x, and let x\ast 

be a second-order necessary KKT point for (NP). Then

\rho > \| A(\=x)\dagger Y\sigma (\=x)\| =\Rightarrow g(\=x) = A(\=x)y\sigma (\=x), c(\=x) = 0;(3.10a)

\nabla 2\phi \sigma (x
\ast ) \succeq 0 \Leftarrow \Rightarrow \rho \geq \=\rho := \lambda max(A(x\ast )\dagger HL(x

\ast , y\ast )
\bigl( 
A(x\ast )\dagger 

\bigr) T
).(3.10b)

If x\ast is second-order sufficient, the inequalities in (3.10b) hold strictly.
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A1816 ESTRIN, FRIEDLANDER, ORBAN, AND SAUNDERS

Proof. The proof is identical to that of Theorem 4.

Using \rho > 0 can help cases where attaining feasibility is problematic for moderate
values of \sigma . For simplicity we let \rho = 0 from now on, because it is trivial to evaluate
\phi \sigma ,\rho and its derivatives if one can compute \phi \sigma .

3.4. Scale invariance. Note that \phi \sigma is invariant under diagonal scaling of the
constraints; i.e., if c(x) is replaced by Dc(x) for some diagonal matrix D, then \phi \sigma 

is unchanged. It is an attractive property for \phi \sigma and \sigma \ast to be independent of some
choices in model formulation, like the Lagrangian. However, \phi \sigma ,\rho with \rho > 0 is
not scale invariant, like the augmented Lagrangian, because of the quadratic term.
Therefore, constraint scaling is an important consideration if \phi \sigma ,\rho is to be used.

4. Evaluating the penalty function. The main challenge in evaluating \phi \sigma 

and its gradient is solving the shifted least-squares problem (2.2a) in order to com-
pute y\sigma (x), and computing the Jacobian Y\sigma (x). Below we show it is possible to
compute products Y\sigma (x)v and Y\sigma (x)

Tu by solving structured linear systems involving
the matrix used to compute y\sigma (x). If direct methods are used, a single factorization
that gives the solution (2.2a) is sufficient for all products.

For this section, it is convenient to drop the arguments on the various functions
and assume they are all evaluated at a point x for some parameter \sigma . For example,
y\sigma = y\sigma (x), A = A(x), Y\sigma = Y\sigma (x), H\sigma = H\sigma (x), S\sigma = S(x, g\sigma (x)), etc. We also
express (3.5) using the shorthand notation

(4.1) ATAY T
\sigma = AT [H\sigma  - \sigma I] + S\sigma .

We first describe how to compute products Y\sigma u and Y T
\sigma v and then describe how to

put those pieces together to evaluate the penalty function and its derivatives.

4.1. Computing the product \bfitY \bfitsigma \bfitu . For a given u \in \BbbR m, we premultiply (4.1)
by uT(ATA) - 1 to obtain

Y\sigma u = [H\sigma  - \sigma I]A(ATA) - 1u+ ST
\sigma (A

TA) - 1u

= [H\sigma  - \sigma I]v  - ST
\sigma w,

where we define w =  - (ATA) - 1u and v =  - Aw. Observe that w and v solve the
system

(4.2)

\biggl[ 
I A
AT

\biggr] \biggl[ 
v
w

\biggr] 
=

\biggl[ 
0
u

\biggr] 
.

Algorithm 1 formalizes the process.

Algorithm 1. Computing the matrix-vector product Y\sigma u.

1: (v, w)\leftarrow solution of (4.2)
2: return [H\sigma  - \sigma I]v  - ST

\sigma w

4.2. Computing the product \bfitY \bfitT 
\bfitsigma \bfitv . Multiplying both sides of (4.1) on the

right by v gives
ATA(Y T

\sigma v) = AT ([H\sigma  - \sigma I]v) + (S\sigma v).

The required product u = Y T
\sigma v is in the solution of the system

(4.3)

\biggl[ 
I A
AT

\biggr] \biggl[ 
r
u

\biggr] 
=

\biggl[ 
[H\sigma  - \sigma I]v
 - S\sigma v

\biggr] 
.
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SMOOTH EXACT PENALTY FUNCTION A1817

Algorithm 2 formalizes the process.

Algorithm 2. Computing the matrix-vector product Y T
\sigma v.

1: Evaluate [H\sigma  - \sigma I]v and S\sigma v
2: (r, u)\leftarrow solution of (4.3)
3: return u

4.3. Computing multipliers and first derivatives. The multiplier estimates
y\sigma can be obtained from the optimality conditions for (2.2a):

(4.4)

\biggl[ 
I A
AT

\biggr] \biggl[ 
g\sigma 
y\sigma 

\biggr] 
=

\biggl[ 
g
\sigma c

\biggr] 
,

which also gives g\sigma . Algorithm 1 then gives Y\sigma c and hence \nabla \phi \sigma in (3.1a).
Observe that we can reorder operations to take advantage of specialized solvers.

Consider the pair of systems

(4.5)

\biggl[ 
I A
AT

\biggr] \biggl[ 
d
y

\biggr] 
=

\biggl[ 
g
0

\biggr] 
and

\biggl[ 
I A
AT

\biggr] \biggl[ 
v
w

\biggr] 
=

\biggl[ 
0
c

\biggr] 
.

We have g\sigma = d+ \sigma v and y\sigma = y + \sigma w, while the computation of Y\sigma c is unchanged.
The systems in (4.5) correspond to pure least-squares and least-norm problems, re-
spectively. Specially tailored solvers may be used to improve efficiency or accuracy.
This is further explored in section 4.5.

4.4. Computing second derivatives. We can approximate \nabla 2\phi \sigma using (3.1b)
and (3.5) in two ways according to

\nabla 2\phi \sigma \approx B1 := H\sigma  - AY T
\sigma  - Y\sigma A

T(4.6a)

= H\sigma  - \widetilde PH\sigma  - H\sigma 
\widetilde P + 2\sigma \widetilde P  - A(ATA) - 1S\sigma  - ST

\sigma (A
TA) - 1A,

\nabla 2\phi \sigma \approx B2 := H\sigma  - \widetilde PH\sigma  - H\sigma 
\widetilde P + 2\sigma \widetilde P ,(4.6b)

where \widetilde P = A(ATA) - 1AT. Note that \widetilde P = PA here, but this changes when regulariza-
tion is used; see section 6. The first approximation ignores \nabla [Y\sigma (x)c] in (3.1b), while
the second ignores S\sigma = S(x, g\sigma (x)). Because we expect c(x) \rightarrow 0 and g\sigma (x) \rightarrow 0,
B1 and B2 are similar to Gauss--Newton approximations to \nabla 2\phi \sigma (x), and as Fletcher
(1973, Theorem 2) shows, using them in a Newton-like scheme is sufficient for qua-
dratic convergence if (A1a) is satisfied.

Because \widetilde P is a projection on range(A), we can compute products \widetilde Pu by solving

(4.7)

\biggl[ 
I A
AT

\biggr] \biggl[ 
p
q

\biggr] 
=

\biggl[ 
u
0

\biggr] 
and setting \widetilde Pu\leftarrow u - p. Note that with regularization, the (2, 2) block of this system

is modified and \widetilde P is no longer a projection; see section 6.
The approximations (4.6a) and (4.6b) trade Hessian accuracy for computational

efficiency. If the operator S(x, v) is not immediately available (or not efficiently im-
plemented), it may be avoided. Using B2 requires only least-square solves, which
allows us to apply specialized solvers (e.g., LSQR (Paige and Saunders, 1982)), which
cannot be done when products with Y T

\sigma are required.
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4.5. Solving the augmented linear system. We discuss some approaches to
solving linear systems of the form

(4.8) \scrK 
\biggl[ 
p
q

\biggr] 
=

\biggl[ 
w
z

\biggr] 
, \scrK :=

\biggl[ 
I A
AT  - \delta 2I

\biggr] 
,

which have repeatedly appeared in this section. Although \delta = 0 so far, we look ahead
to regularized systems as they require only minor modification. Let (p\ast , q\ast ) solve
(4.8).

Conceptually it is not important how this system is solved as long as it is solved
with sufficient accuracy. However, this is the most computationally intensive part
of using \phi \sigma . Different solution methods have different advantages and limitations,
depending on the size and sparsity of A, whether A is available explicitly, and the
prescribed solution accuracy.

One option is direct methods: factorize \scrK once per iteration and use the factors to
solve with each right-hand side. Several factorization-based approaches can be used
with various advantages and drawbacks; see the supplementary materials for details.

In line with the goal of creating a factorization-free solver for minimizing \phi \sigma , we
discuss iterative methods for solving (4.8), particularly Krylov subspace solvers. This
approach has two potential advantages: if a good preconditioner \scrP \approx ATA is available,
then solving (4.8) could be much more efficient than with direct methods, and we can
take advantage of solvers using inexact function values, gradients, or Hessian products
by solving (4.8) approximately; see Heinkenschloss and Vicente (2001) and Kouri et al.
(2014). For example, Pearson et al. (2012) and Simoncini (2012) describe various
preconditioners for saddle-point systems arising in PDE-constrained optimization,
which are closely related to the augmented systems in (4.8).

When z = 0, (4.8) is a (regularized) least-squares problem: minq \| Aq - w\| +\delta \| q\| 2.
We use LSQR (Paige and Saunders, 1982), which ensures that the error in iterates pk
and qk decreases monotonically at every iteration. (Hestenes and Stiefel (1952) show
this for CG, and LSQR is equivalent to CG on the normal equations.) Furthermore,
Estrin et al. (2019a) provide a way to compute an upper bound on \| p\ast  - pk\| and
\| q\ast  - qk\| via LSLQ when given an underestimate of \sigma min(A\scrP  - 1/2). (Note that the
error norm for q depends on the preconditioner.) Further discussion is in section 9.

When w = 0, (4.8) is a least-norm problem: minp,s \| p\| 2+\| s\| 2 s.t. AT p+ \delta s = z.
We then use CRAIG (Craig, 1955) because it minimizes the error in each Krylov
subspace. Given the same underestimate of \sigma min(A\scrP  - 1/2), Arioli (2013) and Estrin
et al. (2019b) give a way to bound the error norms for p and q.

Recall that \phi \sigma and \nabla \phi \sigma can be computed by solving only least-squares and least-
norm problems (only one of w and z is nonzero at a time). Furthermore, if (4.6b)
is used, the remaining solves with \scrK are least-squares solves. If both w and z are
nonzero (for products with Y T

\sigma ), we can shift the right-hand side of (4.8) and solve
the system

\scrK 
\biggl[ 
\=p
q

\biggr] 
=

\biggl[ 
0

z  - ATw

\biggr] 
, p = \=p+ w.

Thus, (4.8) can be solved by CRAIG or LNLQ (Arioli, 2013; Estrin et al., 2019b) or
other least-norm solvers.

Although \scrK is symmetric indefinite, we do not recommend methods such as
MINRES or SYMMLQ (Paige and Saunders, 1975). Orban and Arioli (2017) show
that if full-space methods are applied directly to \scrK , then every other iteration of the
solver makes little progress. However, if solves with \scrP can only be performed ap-
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proximately, it may be necessary to apply flexible variants of nonsymmetric full-space
methods to \scrK , such as flexible GMRES (Saad, 1993).

5. Maintaining explicit constraints. We consider a variation of (NP) where
some of the constraints c(x) are easy to maintain explicitly; for example, some are
linear. We can then maintain feasibility for a subset of the constraints, the contours
of the \phi \sigma are simplified, and as we show soon, the threshold penalty parameter \sigma \ast 

is decreased. We discuss the case where some of the constraints are linear, but it is
possible to extend the theory to any type of constraint.

Consider the problem

(NP-EXP) minimize
x\in \BbbR n

f(x) subject to c(x) = 0, BTx = d,

where we have nonlinear constraints c(x) = 0 \in \BbbR m1 and linear constraints BTx = d
with B \in \BbbR n\times m2 , so that m1 +m2 = m. We assume that (NP-EXP) at least satisfies
(A2a), so that B has full column rank. We define the penalty function problem to be

minimize
x\in \BbbR n

\phi \sigma (x) := f(x) - c(x)T y\sigma (x) subject to BTx = d,\biggl[ 
y\sigma (x)
w\sigma (x)

\biggr] 
:= argmin

y,w

1
2\| A(x)y +Bw  - g(x)\| 2 + \sigma 

\biggl[ 
c(x)

BTx - d

\biggr] T \biggl[ 
y
w

\biggr] 
,

which is similar to (2.1) except the linear constraints are not penalized in \phi \sigma (x), and
the penalty function is minimized subject to the linear constraints. A possibility is to
also penalize the linear constraints while keeping them explicit; however, penalizing
the linear constraints in \phi \sigma (x) introduces additional nonlinearity, and if all constraints
are linear, it makes sense that the penalty function reduces to (NP-EXP).

For a given first- or second-order KKT solution (x\ast , y\ast ), the threshold penalty
parameter becomes

(5.1) \sigma \ast := 1
2\lambda 

+
max

\bigl( 
\=PBPCHL(x

\ast , y\ast )PC
\=PB

\bigr) 
\leq 1

2\lambda 
+
max (PCHL(x

\ast , y\ast )PC) ,

where C(x) =
\bigl[ 
A(x) B

\bigr] 
is the Jacobian for all constraints. Inequality (5.1) holds

because \=PB is an orthogonal projector. If the linear constraints were not explicit,
the threshold value would be the rightmost term in (5.1). Intuitively, the threshold
penalty value decreases by the amount of the top eigenspace of the Lagrangian Hessian
that lies in the range of BT , because positive semidefiniteness of \nabla 2\phi \sigma (x

\ast ) along that
space is guaranteed by the underlying solver.

It is straightforward to adapt Theorem 4 to obtain an analogous exact penalization
results for the case with explicit constraints.

6. Regularization. Even if A(x\ast ) has full column rank, A(x) might have low
column rank or small singular values away from the solution. If A(x) is rank-deficient
and c(x) is not in the range ofA(x)T , then y\sigma (x) and \phi \sigma (x) are undefined. Even ifA(x)
has full column rank but is close to rank-deficiency, the linear systems (4.2)--(4.4) and
(4.7) are ill-conditioned, threatening inaccurate solutions and impeded convergence.

We modify \phi \sigma by changing the definition of the multiplier estimates in (2.2a) to
solve a regularized shifted least-squares problem with regularization parameter \delta > 0:

\phi \sigma (x; \delta ) := f(x) - c(x)Ty\sigma (x; \delta ),(6.1a)

y\sigma (x; \delta ) := argmin
y

1
2\| A(x)y  - g(x)\| 22 + \sigma c(x)Ty + 1

2\delta 
2\| y\| 22.(6.1b)

D
ow

nl
oa

de
d 

06
/2

8/
20

 to
 1

42
.1

03
.1

60
.1

10
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

A1820 ESTRIN, FRIEDLANDER, ORBAN, AND SAUNDERS

This modification is similar to the exact penalty function of di Pillo and Grippo
(1986). The regularization term 1

2\delta 
2\| y\| 22 ensures that the multiplier estimate y\sigma (x; \delta )

is always defined even when A(x) is rank-deficient. The only computational change
is that the (2, 2) block of the matrices in (4.2)--(4.4) and (4.7) is now  - \delta 2I.

Besides improving cond(\scrK ), \delta > 0 has the advantage of making \scrK symmetric
quasi-definite. Vanderbei (1995) shows that any symmetric permutation of such a
matrix possesses an LDLT factorization with L unit lower triangular and D diagonal
indefinite. Result 2 of Gill et al. (1996) implies that the factorization is stable as long
as \delta is sufficiently far from zero. Various authors propose regularized matrices of this
type to stabilize optimization methods in the presence of degeneracy. In particular,
Wright (1998) accompanies his discussion with an update scheme for \delta that guarantees
fast asymptotic convergence.

We continue to assume that (NP) satisfies (A1b), but we now replace (A2b)
by (A2a). For a given isolated local minimum x\ast of (NP), \sigma sufficiently large, define

x(\delta ) \in argminx \| x - x\ast \| such that x is a local-min of \phi \sigma (x; \delta )

for use as an analytical tool in the upcoming discussion. Although the above argmin
may be set-valued, Theorem 7 shows that for sufficiently small \delta , x(\delta ) is unique.

Note that for \delta > 0, we would not expect that x(\delta ) = x\ast , but we want to ensure
that x(\delta )\rightarrow x\ast as \delta \rightarrow 0. Note that for x such that y\sigma (x) is defined,

y\sigma (x; \delta ) = (A(x)TA(x) + \delta 2I) - 1A(x)TA(x)y\sigma (x)

= y\sigma (x) - \delta 2(A(x)TA(x) + \delta 2I) - 1y\sigma (x).

Therefore, for x such that \phi \sigma (x) is defined, we can write the regularized penalty
function as a perturbation of the unregularized one:

\phi \sigma (x; \delta ) = f(x) - c(x)Ty\sigma (x; \delta )

= f(x) - c(x)Ty\sigma (x) + \delta 2c(x)T(A(x)TA(x) + \delta 2I) - 1y\sigma (x)

= \phi \sigma (x) + \delta 2P\delta (x),(6.2)

where P\delta (x) := c(x)T(A(x)TA(x) + \delta 2I) - 1y\sigma (x). By (A1b), P\delta is bounded and has
at least two continuous derivatives in a neighborhood of x\ast .

Theorem 7. Suppose (A1b) and (A2a) are satisfied, x\ast is a second-order KKT
point for (NP), and \nabla 2\phi \sigma (x

\ast ) \succ 0. Then there exists \=\delta > 0 such that x(\delta ) is a \scrC 1
function for 0 \leq \delta < \=\delta . In particular, \| x(\delta ) - x\ast \| = O(\delta ).

Proof. The theorem follows from the Implicit Function Theorem (Ortega and
Rheinboldt, 2000, Theorem 5.2.4) applied to \nabla \phi \sigma (x; \delta ) = 0.

An option to recover x\ast using \phi \sigma (x; \delta ) is to minimize a sequence of problems
defined by xk+1 = argminx \phi \sigma (x; \delta k) with \delta k \rightarrow 0, using xk to warm-start the next
subproblem. However, we show that it is possible to solve a single subproblem by
decreasing \delta during the subproblem iterations, while retaining fast local convergence.

To keep results independent of the minimization algorithm being used, for a family
of functions \scrF we define G : \scrF \times \BbbR n \rightarrow \BbbR n such that for \varphi \in \scrF and an iterate x,
G(\varphi , x) computes an update direction. For example, if \scrF = \scrC 2, we can represent
Newton's method with G(\varphi , x) =  - (\nabla 2\varphi (x)) - 1\nabla \varphi (x). Define \nu (\delta ) as a function such
that for repeated applications, \nu k(\delta ) \rightarrow 0 as k \rightarrow \infty at a chosen rate; for example,
for a quadratic rate, we let \nu (\delta ) = \delta 2.
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Algorithm 3. Minimization of the regularized penalty function \phi \sigma (x, \delta ) with \delta \rightarrow 0.

1: Choose x1, \delta 0 < 1
2: for k = 1, 2, . . . do
3: Set

(6.3) \delta k \leftarrow max \{ min \{ \| \nabla \phi \sigma (xk; \delta k - 1)\| , \delta k - 1\} , \nu (\delta k - 1)\} 

4: pk \leftarrow G (\phi \sigma (\cdot , \delta k), xk)
5: xk+1 \leftarrow xk + pk
6: end for

Algorithm 3 describes how to adaptively update \delta each iteration.
In order to analyze Algorithm 3, we formalize the notions of rates of convergence

using definitions equivalent to those of Ortega and Rheinboldt (2000, section 9).

Definition 8. We say that xk \rightarrow x\ast with order at least \tau > 1 if there exists
M > 0 such that, for all sufficiently large k, \| xk+1  - x\ast \| \leq M\| xk  - x\ast \| \tau . We say
that xk \rightarrow x\ast with R-order at least \tau > 1 if there exists a sequence \alpha k such that, for
all sufficiently large k,

\| xk  - x\ast \| \leq \alpha k, \alpha k \rightarrow 0 with order at least \tau .

We first show that any minimization algorithm achieving a certain local rate of
convergence can be regarded as inexact Newton (Dembo et al., 1982).

Lemma 9. Let \varphi (x) be a \scrC 2 function with local minimum x\ast and \nabla 2\varphi (x\ast ) \succ 0.
Suppose we minimize \varphi according to

(6.4) xk+1 = xk + pk, pk = G(\varphi , xk),

such that xk \rightarrow x\ast with order at least \tau \in (1, 2]. Then in some neighborhood of x\ast ,
the update procedure G(\varphi , x) is equivalent to the inexact Newton iteration

(6.5) xk+1 \leftarrow xk + pk, \nabla 2\varphi (xk)pk =  - \nabla \varphi (xk)+ rk, \| rk\| = O(\| \nabla \varphi (xk)\| \tau ).

Proof. There exists a neighborhood NN (x\ast ) such that for xN
0 \in NN (x\ast ), the New-

ton update xN
k+1 = xN

k + pNk with \nabla 2\varphi (xN
k )pNk =  - \nabla \varphi (xN

k ) converges quadratically:

\| x\ast  - xN
k+1\| \leq M1\| x\ast  - xN

k \| 2, xk \in NN (x\ast ).

Let NG(x
\ast ) be the neighborhood where order \tau convergence is obtained for (6.4) with

constant M2. Let B\epsilon (x
\ast ) = \{ x | \| x\ast  - x\| \leq \epsilon \} . Set \epsilon < min\{ M - 1/(\tau  - 1)

2 , 1\} such
that B\epsilon (x

\ast ) \subseteq NN \cap NG, and observe that if x0 \in B\epsilon (x
\ast ), then xk \in B\epsilon (x

\ast ) for all k
because \| x\ast  - xk\| is monotonically decreasing (since M2\| x\ast  - x0\| \tau  - 1 < 1), and so
by induction

\| x\ast  - xk\| \leq M2\| x\ast  - xk - 1\| \tau = M2\| x\ast  - xk - 1\| \tau  - 1\| x\ast  - xk - 1\| < \| x\ast  - xk - 1\| .

By continuity of H(x), there exists M3 > 0 such that \| H(x)\| \leq M3 for all B\epsilon (x
\ast ).

Then for xk \in B\epsilon (x
\ast ),

\| rk\| = \| \nabla 2\varphi (xk)pk +\nabla \varphi (xk)\| = \| \nabla 2\varphi (xk)
\bigl( 
xk+1  - xk  - pNk

\bigr) 
\| 

\leq \| \nabla 2\varphi (xk)\| \| xk+1  - x\ast + x\ast  - xN
k+1\| 

\leq M3(\| xk+1  - x\ast \| + \| xN
k+1  - x\ast \| )

\leq M3(M1 +M2)\| xk  - x\ast \| \tau .
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A1822 ESTRIN, FRIEDLANDER, ORBAN, AND SAUNDERS

Now, because \varphi \in \scrC 2 and \nabla 2\varphi (x\ast ) \succ 0, there exists a constant M4 such that \| xk  - 
x\ast \| \leq M4\| \nabla \varphi (xk)\| for xk \in NG(x

\ast ) \cap NN (x\ast ). Therefore \| rk\| \leq M4M3(M1 +
M2)\| \nabla \varphi (xk)\| \tau , which is the inexact Newton method, convergent with order \tau .

Note that Lemma 9 can be modified to accommodate any form of superlinear
convergence, as long as \| rk\| converges at the same rate as xk \rightarrow x\ast .

Theorem 10. Suppose that (A1b) and (A2a) are satisfied, x\ast is a second-order
KKT point for (NP), \nabla 2\phi \sigma (x

\ast ) \succ 0, and there exist \=\delta and an open set B(x\ast )
containing x\ast such that for \widetilde x0 \in B(x\ast ) and 0 < \delta \leq \=\delta , the sequence defined by\widetilde xk+1 = \widetilde xk +G(\phi \sigma (\cdot ; \delta ), \widetilde xk) converges quadratically to x(\delta ):

\| x(\delta ) - \widetilde xk+1\| \leq M\delta \| x(\delta ) - \widetilde xk\| 2.

Further suppose that for \delta \leq \=\delta , M\delta \leq M is uniformly bounded. Then there exist
an open set B\prime (x\ast ) that contains x\ast and 0 < \delta \prime < 1 such that if x \in B\prime (x\ast ),
\delta \leq \delta \prime , and xk \rightarrow x\ast for xk defined by Algorithm 3 (with \nu (\delta ) = \delta 2), then xk \rightarrow x\ast 

R-quadratically.

The proof is in Appendix A.2. Although there are many technical assumptions,
the takeaway message is that we need only minimize \phi \sigma (\cdot ; \delta k) until \| \nabla \phi \sigma \| = O(\delta k),
because under typical smoothness assumptions we have that \| x(\delta ) - x\ast \| = O(\delta ) for \delta 
sufficiently small. Decreasing \delta at the same rate as the local convergence rate of the
method on a fixed problem should not perturb \phi \sigma (x; \delta ) too much, therefore allowing
for significant progress on the perturbed problem in few steps. The assumption that
M\delta \leq M uniformly also appears strong, but we believe it is unavoidable---the number
of iterations between updates to \delta must be bounded above by a constant for overall
convergence to be unimpeded. Within the basin of convergence and for a fixed \delta > 0,
an optimization method would achieve the same local convergence rate that it would
have with \delta = 0 fixed.

Theorem 10 can be generalized to superlinear rates of convergence using a similar
proof. As long as \nu (\cdot ) drives \delta \rightarrow 0 as fast as the underlying algorithm would locally
converge for fixed \delta , local convergence of the entire regularized algorithm is unchanged.

7. Inexact evaluation of the penalty function. We discuss the effects of
solving (4.8) approximately, and thus evaluating \phi \sigma and its derivatives inexactly.
Various optimization solvers can utilize inexact function values and derivatives while
ensuring global convergence and certain local convergence rates, provided the user can
compute relevant quantities to a prescribed accuracy. For example, Conn et al. (2000,
sections 8--9) describe conditions on the inexactness of model and gradient evaluations
to ensure convergence; Heinkenschloss and Vicente (2001) describe a trust-region SQP
solver using inexact gradients; Kouri et al. (2014) describe an inexact trust-region
solver using inexact function values and gradients for unconstrained problems. We
focus on inexactness within trust-region methods for optimizing \phi \sigma .

The accuracy and computational cost in the evaluation of \phi \sigma and its derivatives
depends on the accuracy of the solves of (4.8). If the cost to solve (4.8) depends
on solution accuracy (e.g., with iterative linear solvers), it is advantageous to con-
sider optimization solvers that use inexact computations, especially for large-scale
problems.

Let \scrS \subseteq \BbbR n be a compact set. In this section, let \widetilde \phi \sigma (x), \nabla \widetilde \phi \sigma (x), etc. distinguish
the inexact quantities from their exact counterparts. We also drop the arguments from
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operators as in section 4. We consider three quantities that are computed inexactly:
g\sigma , \phi \sigma , and \nabla \phi \sigma . For given positive error tolerances \eta i (which may be relative to
their corresponding quantities), we are interested in exploring termination criteria for
solving (4.8) to ensure that the following conditions hold for all x \in \scrS :\bigm| \bigm| \phi \sigma  - \widetilde \phi \sigma 

\bigm| \bigm| \leq M\eta 1,(7.1a) \bigm\| \bigm\| \nabla \phi \sigma  - \nabla \widetilde \phi \sigma 

\bigm\| \bigm\| \leq M\eta 2,(7.1b)

\| g\sigma  - \widetilde g\sigma \| \leq M\eta 3,(7.1c)

where M > 0 is some fixed constant (which may or may not be known). Kouri
et al. (2014) give a trust-region method using inexact objective value and gradient
information that guarantees global convergence provided (7.1a)--(7.1b) hold without
requiring that M be known a priori. We may compare this to the conditions of Conn
et al. (2000, sections 8.4 and 10.6), which require more stringent conditions on (7.1a)--

(7.1b). They require that \eta 2 = \| \nabla \widetilde \phi \sigma \| and that M be known and fixed according to
parameters in the trust-region method.

This leads us to the following proposition, which allows us to bound the residuals
of (4.2) and (4.4) to ensure (7.1).

Proposition 11. Let \scrS be a compact set, and suppose that \sigma min(A(x)) \geq \lambda > 0
for all x \in \scrS . Then for x \in \scrS , if

\| r1\| =
\bigm\| \bigm\| \bigm\| \bigm\| \scrK \biggl[ \widetilde g\sigma \widetilde y\sigma 

\biggr] 
 - 
\biggl[ 
g
\sigma c

\biggr] \bigm\| \bigm\| \bigm\| \bigm\| \leq min\{ 1, \| c\|  - 1\} \cdot min\{ \eta 1, \eta 3\} ,(7.2)

then (7.1a) and (7.1c) hold for some constant M . Also, if

(7.3) \| r1\| \leq \eta 2 and \| r2\| =
\bigm\| \bigm\| \bigm\| \bigm\| \scrK \biggl[ \widetilde v\widetilde w

\biggr] 
 - 
\biggl[ 
0
c

\biggr] \bigm\| \bigm\| \bigm\| \bigm\| \leq min\{ 1, \eta 2\} ,

then (7.1b) holds for some (perhaps different) constant M .

Proof. Because \scrS is compact and \lambda > 0, there exists \=\lambda > 0 such that \| \scrK \| ,
\| \scrK  - 1\| \leq \=\lambda for all x \in \scrS . Thus, (7.1c) follows directly from (4.4) and (7.2) with
M = \=\lambda . Similarly,\bigm| \bigm| \phi \sigma  - \widetilde \phi \sigma 

\bigm| \bigm| = \bigm| \bigm| cT (y\sigma  - \widetilde y\sigma )\bigm| \bigm| \leq \| c\| \| y\sigma  - \widetilde y\sigma \| \leq \=\lambda \eta 1,

and (7.1a) holds with M = \=\lambda . We apply a similar analysis to ensure that (7.1b) holds.
Define the vector h \in \BbbR m such that hi = \| Hi\| . Define v, w as the solutions to (7.3)
for r2 = 0, so that from (7.3) we have

\| \nabla \phi \sigma  - \nabla \widetilde \phi \sigma \| \leq \| g\sigma  - \widetilde g\sigma \| + \| Y\sigma c - \widetilde Y\sigma c\| 

\leq \=\lambda \eta 2 + \| (H\sigma  - \sigma I)v  - ST
\sigma w  - ( \widetilde H\sigma  - \sigma I)\widetilde v + \widetilde ST

\sigma \widetilde w\| 
\leq \=\lambda \eta 2 + \sigma \| v  - \widetilde v\| + \| H\sigma v  - \widetilde H\sigma \widetilde v\| + \| ST

\sigma w  - \widetilde ST
\sigma \widetilde w\| 

\leq 
\bigl( 
\=\lambda + \sigma \=\lambda 

\bigr) 
\eta 2 + \| H\sigma (v  - \widetilde v) + (H\sigma  - \widetilde H\sigma )\widetilde v\| 

+ \| ST
\sigma (w  - \widetilde w) + (S\sigma  - \widetilde S\sigma )

T \widetilde w\| 
\leq 
\bigl( 
\=\lambda + \sigma \=\lambda 

\bigr) 
\eta 2 + \| H\sigma \| \| v  - \widetilde v\| + \bigm\| \bigm\| \bigm\| \bigm\| m\sum 

i=1

((y\sigma )i  - (\widetilde y\sigma )i)Hi

\bigm\| \bigm\| \bigm\| \bigm\| \| \widetilde v\| D
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+ \| S\sigma \| \| w  - \widetilde w\| + \bigm\| \bigm\| \bigm\| \bigm\| m\sum 
i=1

\widetilde wiHi

\bigm\| \bigm\| \bigm\| \bigm\| \| g\sigma  - \widetilde g\sigma \| 
\leq 
\bigl( 
\=\lambda + \sigma \=\lambda + \| H\sigma \| \=\lambda + \=\lambda \| \widetilde v\| \| h\| + \| S\sigma \| \=\lambda + \| \widetilde w\| \| h\| \=\lambda \bigr) \eta 2.

Note that \| H\sigma \| , \| h\| , \| S\sigma \| , \| \widetilde w\| , and \| \widetilde v\| are bounded uniformly in \scrS .
In the absence of additional information, using (7.1) with unknown M may be

the only way to take advantage of inexact computations, because computing exact
constants (such as the norm of \scrK or the various operators above) is not practical.

In some cases the bounds (7.1) are relative, e.g., \eta 2 = min\{ \| \nabla \widetilde \phi \sigma \| ,\Delta \} for a certain

\Delta > 0. It may then be necessary to compute \| \nabla \widetilde \phi \sigma \| and refine the solutions of (4.4)
and (4.2) until they satisfy (7.2)--(7.3). However, given the expense of applying these
operators, it may be more practical to use a nominal relative tolerance, as in the
numerical experiments of section 9.

We include a (trivial) improvement to Proposition 11 that satisfies (7.1a) and
(7.1c) with M = 1, given additional spectral information on A. If we solve (4.4) via

(7.4)

\biggl[ 
I A
AT 0

\biggr] \biggl[ 
\Delta g\sigma 
y\sigma 

\biggr] 
=

\biggl[ 
0

\sigma c - ATg

\biggr] 
, g\sigma = g +\Delta g\sigma ,

we can use LNLQ (Estrin et al., 2019b), a Krylov subspace method for such systems,

which ensures that \| \Delta g\sigma  - \Delta \widetilde g(j)\sigma \| and \| y\sigma  - \widetilde y(j)\sigma \| are monotonic, where \Delta \widetilde g(j)\sigma , \widetilde y(j)\sigma 

are the jth LNLQ iterates. Given \lambda > 0 such that \sigma min(A) \geq \lambda , LNLQ can compute

cheap upper bounds on \| \Delta g\sigma  - \Delta \widetilde g(j)\sigma \| and \| y\sigma  - \widetilde y(j)\sigma \| , allowing us to terminate the

solve when \| \Delta g\sigma  - \widetilde \Delta g\sigma \| \leq \eta 2\| \widetilde \Delta g\sigma + g\| = \eta 2\| \widetilde g\sigma \| and \| y\sigma  - \widetilde y\sigma \| \leq min\{ 1, \| c\|  - 1\} \eta 1.
Typically, termination criteria for the optimization solver will include a condition that
\| g\sigma \| \leq \epsilon d to determine approximate local minimizers to (NP). For such cases, we
can instead require that \| \widetilde g\sigma \| \leq 1

1+\eta 2
\epsilon d, because then

\| g\sigma \| \leq \| g\sigma  - \widetilde g\sigma \| + \| \widetilde g\sigma \| \leq (1 + \eta 2)\| \widetilde g\sigma \| \leq \epsilon d.

Similarly, we have \bigm| \bigm| \phi \sigma  - \widetilde \phi \sigma 

\bigm| \bigm| \leq \| c\| \| y\sigma  - \widetilde y\sigma \| \leq \eta 1,

which now satisfies (7.1a) with M = 1.
Although finding suitable bounds \lambda on the smallest singular value may be difficult

in general, it is trivially available in some cases because of the way \scrK is preconditioned
(for an example, see section 9). However, a complication is that if LNLQ is used with
a right-preconditioner \scrP \approx ATA, then \| y\sigma  - \widetilde y\sigma \| \scrP is monotonic and LNLQ provides
bounds on the preconditioned norm instead of the Euclidean norm. If \| \scrP  - 1\| can be
bounded, then the bound \| y\sigma  - \widetilde y\sigma \| \leq \| y\sigma  - \widetilde y\sigma \| \scrP \| \scrP  - 1\| can be used.

8. Practical considerations. We discuss some matters related to the use of
\phi \sigma in practice. In principle, nearly any smooth unconstrained solver can be used to
find a local minimum of \phi \sigma because it has at least one continuous derivative, and a
continuous Hessian approximation if (A1a) is satisfied. However, the structure of \phi \sigma 

lends itself more readily to certain optimization methods than to others, especially
when the goal of creating a factorization-free solver is kept in mind.

Fletcher (1973) originally envisioned a Newton-type procedure

xk+1 \leftarrow xk  - \alpha kB
 - 1
i (xk)\nabla \phi \sigma (xk), i = 1 or 2,
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where B1, B2 are the Hessian approximations from (4.6) and \alpha k > 0 is a step-size.
Fletcher (1973, Theorem 2) further proved that superlinear convergence is achieved,
or quadratic convergence if the second derivatives of f and c are Lipschitz continuous.
However, for large problems it is expensive to compute Bi explicitly and solve the
dense system Bisk =  - \nabla \phi \sigma (xk).

We instead propose using a Steihaug (1983) Newton-CG type trust-region solver
to minimize \phi \sigma . First, trust-region methods are preferable to linesearch methods
(Nocedal and Wright, 2006, sections 3--4) for objectives with expensive evaluations;
it is costly to evaluate \phi \sigma repeatedly to determine a step-size at every iteration as
this requires solving a linear system. Further, \nabla 2\phi \sigma is often indefinite, and trust-
region methods can take advantage of directions of negative curvature. Computing Bi

explicitly is not practical, but products are reasonable as they only require solving two
additional linear systems with the same matrix, thus motivating the use of a Newton-
CG type trust-region solver. In particular, solvers such as TRON (Lin and Mor\'e,
1999b) and KNITRO (Byrd et al., 2006) are suitable for minimizing \phi \sigma . KNITRO
has the additional advantage of handling explicit linear constraints.

We have not yet addressed choosing the penalty parameter \sigma . Although we can
provide an a posteriori threshold value for \sigma \ast , it is difficult to know this threshold
ahead of time. Mukai and Polak (1975) give a scheme for updating \rho with \phi \sigma ,\rho and \sigma =
0; however, they were using a Newton-like scheme that required a solve with B1(x).
Further, \sigma \ast ensures only local convexity, and that a local minimizer of (NP) is a local
minimizer of \phi \sigma ---but as with other penalty functions, \phi \sigma may be unbounded below
in general for any \sigma . A heuristic that we employ is to ensure that the primal and dual
feasibility, \| c(x)\| and \| gL(x, y\sigma (x))\| , are within some factor of each other (e.g., 100)
to encourage them to decrease at approximately the same rate. If primal feasibility
decreases too quickly and small steps are taken, it is indicative of \sigma being too large,
and similarly if primal feasibility is too large, then \sigma should be increased; this can be
done with a multiplicative factor or by estimating 1

2\| PA(x)H\sigma (x)PA(x)\| via the power
method (because it is an upper bound on \sigma \ast when x = x\ast ; see (3.3)). Although this
heuristic is often effective in our experience, in situations where the penalty function
begins moving toward negative infinity, we require a different recovery strategy, which
is the subject of future work. The works of Mukai and Polak (1975); Byrd et al. (2012)
give promising directions for developing such strategies.

In practice, regularization (section 6) is used only if necessary. For well-behaved
problems, using \delta = 0 typically requires fewer outer iterations than using \delta > 0. How-
ever, when convergence is slow and/or the Jacobians are ill-conditioned, initializing
with \delta > 0 is often vital and can improve performance significantly.

9. Numerical experiments. We investigate the performance of Fletcher's pen-
alty function on several PDE-constrained optimization problems and some standard
test problems. For each test we use the stopping criterion

(9.1)
\| c(xk)\| \leq \epsilon pk
\| g\sigma (xk)\| \leq \epsilon dk

or \| \nabla \phi \sigma (xk)\| \leq \epsilon d,

with \epsilon pk := \epsilon (1 + \| xk\| \infty + \| c(x0)\| \infty ) and \epsilon dk := \epsilon (1 + \| yk\| \infty + \| g\sigma (x0)\| \infty ), where
\epsilon > 0 is a tolerance, e.g., \epsilon = 10 - 8. We also keep \sigma fixed for each experiment.

Depending on the problem, the augmented systems (4.8) are solved by either
direct or iterative methods. For direct methods, we use the corrected seminormal
equations (Bj\"orck, 1996); see the supplementary materials for implementation details.
For iterative solves, we use CRAIG (Arioli, 2013) with preconditioner \scrP and two
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possible termination criteria: for some positive parameter \eta ,\bigm\| \bigm\| \bigm\| \bigm\| \scrK \biggl[ p(k)q(k)

\biggr] 
 - 
\biggl[ 
u
v

\biggr] \bigm\| \bigm\| \bigm\| \bigm\| 
\scrP  - 1

\leq \eta 

\bigm\| \bigm\| \bigm\| \bigm\| \biggl[ uv
\biggr] \bigm\| \bigm\| \bigm\| \bigm\| 

\scrP  - 1
, \=\scrP :=

\biggl[ 
I
\scrP 

\biggr] 
,(9.2a)

\bigm\| \bigm\| \bigm\| \bigm\| \biggl[ p\ast q\ast 
\biggr] 
 - 
\biggl[ 
p(k)

q(k)

\biggr] \bigm\| \bigm\| \bigm\| \bigm\| 
\scrP 
\leq \eta 

\bigm\| \bigm\| \bigm\| \bigm\| \biggl[ p(k)q(k)

\biggr] \bigm\| \bigm\| \bigm\| \bigm\| 
\scrP 
,(9.2b)

which are respectively based on the relative residual and the relative error (obtained
via LNLQ). We can use (9.2b) when a lower bound on \sigma min(A\scrP  - 1/2) is available (e.g.,
for the PDE-constrained optimization problems).

Because we are using trust-region methods to minimize \phi \sigma , the objective and
gradient of \phi \sigma (and therefore of f) are evaluated once per iteration. We use KNITRO
(Byrd et al., 2006) and a MATLAB implementation of TRON (Lin and Mor\'e, 1999b).
Our implementation of TRON does not require explicit Hessians (only Hessian-vector
products) and is unpreconditioned. We use B1(x) (4.6a) when efficient products
with S(u, x) are available; otherwise we use B2(x) (4.6b). When \phi \sigma is evaluated
approximately (for large \eta ), we use the solvers without modification, thus pretending
that the function and gradient are evaluated exactly. Note that when the evaluations
are noisy, the solvers are no longer guaranteed to converge; the development of suitable
solvers is left to future work and discussed in section 10.

9.1. 1D Burgers' problem. Let \Omega = (0, 1) denote the physical domain and
H1(\Omega ) denote the Sobolev space of functions in L2(\Omega ), whose weak derivatives are also
in L2(\Omega ). We solve the following one-dimensional ODE-constrained control problem:

(9.3)

minimize
u\in H1(\Omega ),z\in L2(\Omega )

1
2

\int 
\Omega 

(u(x) - ud(x))
2
dx+ 1

2\alpha 

\int 
\Omega 

z(x)2dx

subject to  - \nu uxx + uux = z + h in \Omega ,
u(0) = 0, u(1) =  - 1,

where the constraint is a 1D Burgers' equation over \Omega = (0, 1), with h(x) = 2
\bigl( 
\nu + x3

\bigr) 
and \nu = 0.08. The first objective term measures deviation from the data ud(x) =  - x2,
while the second term regularizes the control with \alpha = 10 - 2. We discretize (9.3) by
segmenting \Omega into nc = 512 equal-sized cells, and we approximate u and z with piece-
wise linear elements. This results in a nonlinearly constrained optimization problem
with n = 2nc = 1024 variables and m = nc  - 1 constraints.

We optimize u, z by minimizing \phi \sigma with \sigma = 103, using B1(x) (4.6a) as Hessian
approximation and u0 = 0, z0 = 0 as the initial point. We use TRON to optimize \phi \sigma 

and LNLQ to (approximately) solve (4.8). We partition the Jacobian of the discretized
constraints into A(x)T =

\bigl[ 
Au(x)

T Az(x)
T
\bigr] 
, where Au(x) \in \BbbR n\times n and Az(x) \in \BbbR m\times m

are the Jacobians for u and z. We use the preconditioner \scrP (x) = Au(x)
TAu(x), which

amounts to performing two linearized Burgers' solves with a given source. For this
preconditioner, \sigma min(A\scrP  - 1/2) \geq 1, allowing us to bound the error via LNLQ and to
use both (9.2b) and (9.2a) to terminate LNLQ. The maximum number of inner-CG
iterations (for solving the trust-region subproblem) is n.

We choose \epsilon = 10 - 8 in the stopping conditions (9.1). Table 1 records the number
of Hessian- and Jacobian-vector products as we vary the accuracy of the linear system
solves via \eta in (9.2).

TRON required a moderate number of trust-region iterations. However, evaluat-
ing \phi \sigma and its derivatives can require many Jacobian and Hessian products, because
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Table 1
Results of solving (9.3) using TRON to minimize \phi \sigma , with various \eta in (9.2b) (left) and (9.2a)

(right) to terminate the linear system solves. We record the number of Lagrangian Hessian (\#Hv),
Jacobian (\#Av), and adjoint Jacobian (\#ATv) products.

\eta Iter. \#Hv \#Av \#ATv Iter. \#Hv \#Av \#ATv

10 - 2 37 19112 56797 50553 35 7275 29453 27148
10 - 4 34 6758 35559 33423 35 7185 36757 34482
10 - 6 35 7182 45893 43619 35 7194 47999 45721
10 - 8 35 7176 53296 51204 35 7176 54025 51753
10 - 10 35 7176 59802 57530 35 7176 59310 57038

Error-based termination Residual-based termination

for every product with the approximate Hessian we need to solve an augmented lin-
ear system. (Note that there are more products with AT than A because we shift
the right-hand side as in (7.4) prior to each system solve.) On the other hand, the
linear systems did not have to be solved to full precision. As \eta increased from 10 - 10

to 10 - 2, the number of Hessian-vector products stayed relatively constant, but the
number of Jacobian-vector products dropped substantially, and the average number
of LNLQ iterations required per solve dropped from about 9 to 5, except that when
\eta = 10 - 2 in (9.2b), the linear solves were too inaccurate and the number of CG itera-
tions per trust-region subproblem increased dramatically near the solution (requiring
more linear solves). Using (9.2a) usually led to more products with the Lagrangian
Hessian and Jacobian, except when the linear solves were nearly exact, or extremely
inexact.

9.2. 2D inverse Poisson problem. Let \Omega = ( - 1, 1)2 denote the physical do-
main and H1

0 (\Omega ) \subset H1(\Omega ) be the Hilbert space of H1(\Omega ) functions whose value on the
boundary \partial \Omega is zero. We solve the following 2D PDE-constrained control problem:

(9.4)

minimize
u\in H1

0 (\Omega ), z\in L\infty (\Omega )

1
2

\int 
\Omega 

(u - ud)
2
dx+ 1

2\alpha 

\int 
\Omega 

z2dx

subject to  - \nabla \cdot (z\nabla u) = h in \Omega ,
u = 0 in \partial \Omega .

Let c = (0.2, 0.2) and define S1 = \{ x | \| x - c\| 2 \leq 0.3\} and S2 = \{ x | \| x - c\| 1 \leq 0.6\} .
The target state ud is generated as the solution of the PDE with z\ast (x) = 1 + 0.5 \cdot 
IS1

(x) + 0.5 \cdot IS2
(x), where for any set C, IC(x) = 1 if x \in C and 0 otherwise.

The force term here is h(x1, x2) =  - sin(\omega x1) sin(\omega x2), with \omega = \pi  - 1
8 . The

control variable z represents the diffusion coefficients for the Poisson problem that we
are trying to recover based on the observed state ud. We set \alpha = 10 - 4 as regularization
parameter. We discretize (9.4) using P1 finite elements on a uniform mesh of 1089
triangles and employ an identical discretization for the optimization variables z \in 
L\infty (\Omega ), obtaining a problem with nz = 1089 controls and nu = 961 states, so that
n = nu + nz. There are m = nu constraints, as we must solve the PDE on every
interior grid point. The initial point is u0 = 1, z0 = 1. Typically z \geq 0 is explicitly
imposed, but we only consider equality constraints in the present paper (inequality
constraints are treated in (Estrin et al., 2020)). For this discretization, the iterates
zk remained positive throughout the minimization.

We use \sigma = 10 - 2 as penalty parameter and B2(x) as Hessian approximation.
We again use LNLQ for the linear solves, with the same preconditioning strategy as
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Table 2
Results of solving (9.4) using TRON to minimize \phi \sigma with various \eta in (9.2b) (left) and (9.2a)

(right) to terminate the linear system solves. We record the number of Lagrangian Hessian (\#Hv),
Jacobian (\#Av), and adjoint Jacobian (\#ATv) products.

\eta Iter. \#Hv \#Av \#ATv Iter. \#Hv \#Av \#ATv

10 - 2 29 874 1794 2608 27 850 1772 2562
10 - 4 27 830 1950 2728 25 668 1649 2265
10 - 6 27 866 2317 3129 27 868 2356 3168
10 - 8 27 866 2673 3485 27 866 2784 3596
10 - 10 27 866 3145 3957 27 866 3251 4063

Error-based termination Residual-based termination

in section 9.1. The results are given in Table 2. We see a similar trend to that
of Table 1, as larger \eta allows TRON to converge within nearly the same number
of outer iterations and Lagrangian Hessian-vector products (even when \eta = 10 - 2),
while significantly decreasing the number of Jacobian-vector products. We see again
that using (9.2b) to terminate LNLQ tends to need less work than with (9.2a). The
exception is using (9.2a) with \eta = 10 - 4. The solver terminates two iterations sooner,
resulting in a sharp drop in Jacobian-vector products but little change in solution
quality. Note that if \epsilon = 10 - 9 were used for the experiment, the runs would appear
more similar to one another.

9.3. 2D Poisson--Boltzmann problem. We now solve a control problem where
the constraint is a 2D Poisson--Boltzmann equation:

(9.5)

minimize
u\in H1

0 (\Omega ),z\in L2(\Omega )

1
2

\int 
\Omega 

(u - ud)
2
dx+ 1

2\alpha 

\int 
\Omega 

z2dx

subject to  - \Delta u+ sinh(u) = h+ z in \Omega ,
u = 0 in \partial \Omega .

We use the same notation and \Omega as in section 9.2, with forcing term h(x1, x2) =
 - sin(\omega x1) sin(\omega x2), \omega = \pi  - 1

8 , and target state

ud(x) =

\Biggl\{ 
10 if x \in [0.25, 0.75]2,

5 otherwise.

We discretize (9.5) using P1 finite elements on a uniform mesh with 10201 triangles,
resulting in a problem with n = 20002 variables and m = 9801 constraints. We use
u0 = 1, z0 = 1 as the initial point.

We perform the experiment described in section 9.2 using \sigma = 10 - 1 and record the
results in Table 3. The results are similar to Table 2, where the number of Jacobian
products decreases with \eta , while the number of outer iterations and Lagrangian-
Hessian products stays fairly constant. We see that with stopping criterion (9.2a),
the LNLQ iterations increase somewhat compared to (9.2b), as it is a tighter criterion.

9.4. Regularization. We next solve problems where A(x) is rank-deficient for
some iterates, requiring that \phi \sigma be regularized (section 6). We use the corrected
seminormal equations to solve the linear systems (to machine precision), with B2(x)
as the Hessian approximation.

For problem hs061 (n = 3 variables, m = 3 constraints) from the CUTEst test set
(Gould et al., 2015) we use x0 = 0, \sigma = 102, \delta 0 = 10 - 1. For problem mss1 (n = 90,

D
ow

nl
oa

de
d 

06
/2

8/
20

 to
 1

42
.1

03
.1

60
.1

10
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

SMOOTH EXACT PENALTY FUNCTION A1829

Table 3
Results of solving (9.5) using TRON to minimize \phi \sigma with various \eta in (9.2b) (left) and (9.2a)

(right) to terminate the linear system solves. We record the number of Lagrangian Hessian (\#Hv),
Jacobian (\#Av), and adjoint Jacobian (\#ATv) products.

\eta Iter. \#Hv \#Av \#ATv Iter. \#Hv \#Av \#ATv

10 - 2 57 1150 2300 3392 58 1166 2427 3534
10 - 4 58 1166 2479 3586 57 1150 2728 3820
10 - 6 57 1150 2812 3904 57 1150 3210 4302
10 - 8 57 1150 3357 4449 57 1150 3721 4813
10 - 10 57 1150 3811 4903 57 1150 4265 5357

Error-based termination Residual-based termination

Table 4
Convergence results for hs 061 (left) and mss 1 (right) when TRON and KNITRO minimize

\phi \sigma (\cdot ; \delta ). The first rows show the iteration at which \delta is updated, and the last two rows record the
final primal and dual infeasibilities.

\delta TRON KNITRO

10 - 1 22 12
10 - 2 23 13
10 - 4 24 14

\| c(\=x)\| 10 - 10 10 - 9

\| g\sigma (\=x)\| 10 - 7 10 - 8

\delta TRON KNITRO

10 - 2 46 33
10 - 4 52 36
10 - 7 53 37

\| c(\=x)\| 10 - 12 10 - 14

\| g\sigma (\=x)\| 10 - 8 10 - 9

m = 73) we use x0 = 0, \sigma = 103, \delta 0 = 10 - 2. In both cases we decrease \delta according
to \nu (\delta ) = \delta 2 to retain local quadratic convergence. For both problems, A(x0) is rank-
deficient and \phi \sigma is undefined, so the trust-region solvers terminate immediately. We
therefore regularize \phi \sigma and record the iteration at which \delta changed. For mss1, we set
\delta min = 10 - 7 to avoid ill-conditioning. The results are in Table 4.

The regularized problems converge with few iterations between \delta updates, showing
evidence of quadratic convergence. Note that a large \delta can perturb \phi \sigma (\cdot ; \delta ) substan-
tially, so that \delta 0 may need to be chosen judiciously. We use \delta 0 = 10 - 2 because neither
TRON nor KNITRO would converge for mss1 when \delta 0 = 10 - 1.

10. Discussion and concluding remarks. The smooth exact penalty ap-
proach is promising for nonlinearly constrained optimization particularly when the
augmented linear systems (4.8) can be solved efficiently. However, several potential
drawbacks remain as avenues for future work.

One property of \phi \sigma observed from our experiments is that it is highly nonlin-
ear and nonconvex. Even though superlinear or quadratic local convergence can be
achieved, the high nonlinearity potentially results in many globalization iterations
and small step-sizes. Further, \phi \sigma is usually nonconvex, even if (NP) is convex.

Another aspect not yet discussed is preconditioning the trust-region subproblem.
This is particularly nontrivial because the (approximate) Hessian is available only
as an operator. Traditional approaches based on incomplete factorizations (Lin and
Mor\'e, 1999a) are not applicable. One possibility is to use a preconditioner for the
Lagrangian Hessian H\sigma as a preconditioner for the approximate penalty Hessian Bi

(4.6a)--(4.6b). This may be effective when m \ll n because H\sigma and Bi would dif-
fer only by a low-rank update; otherwise H\sigma can be a poor approximation to Bi.
Preconditioning is vital for trust-region solvers and is a direction for future work.

Products with Bi (4.6a)--(4.6b) are generally more expensive than typical Hessian-
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vector products, as they require solving a linear system. Products with a quasi-
Newton approximation would be significantly faster. Also, exact curvature away from
the solution may be less important than near the solution for choosing good directions;
therefore a hybrid scheme that begins with quasi-Newton and switches to Bi may be
effective. Another strategy, similar to Morales and Nocedal (2000), is to use quasi-
Newton approximations to precondition the trust-region subproblems involving Bi:
the approximation for iteration k can be updated with every Bi(xk - 1) product, or
with every update step xk  - xk - 1.

Further improvements that would make our approach applicable to a wider range
of problems include developing suitable solvers based on the work of Heinkenschloss
and Vicente (2001) and Kouri et al. (2014) as these properly handle noisy function
and gradient evaluations; a robust update for the penalty parameter \sigma ; termination
criteria on the augmented systems in order to integrate \phi \sigma fully into a solver in the
style of Kouri et al. (2014); and relaxing (A2a) to weaker constraint qualifications.
Even if \sigma \geq \sigma \ast , it is possible for \phi \sigma to be unbounded, because \sigma only guarantees
local convexity. Diverging iterates must be detected sufficiently early because by the
time unboundedness is detected, it may be too late to update \sigma and we would need
to backtrack several iterates. To relax (A2a), it may be possible to combine our
regularization (6.1a) with a dual proximal-point approach.

The next obvious extension is to handle inequality constraints---the subject of
Estrin et al. (2020). Fletcher (1973) proposed a nonsmooth extension to \phi \sigma for this
purpose, but it is less readily applicable to most solvers.

Our MATLAB implementation can be found at https://github.com/optimizers/
FletcherPenalty. To highlight the flexibility of Fletcher's approach, we implemented
several options for applying various solvers to the penalty function and for solving the
augmented systems, and other options discussed along the way.

Appendix A. Technical details. We provide proofs and technical details that
were omitted earlier.

A.1. Example problem with a spurious local minimum. Consider the
feasibility problem (NP) with f(x) = 0 and c(x) = x3 + x - 2. The only minimizer is
x\ast = 1. The penalty function

\phi \sigma (x) = \sigma 
(x3 + x - 2)2

(3x2 + 1)2

is defined everywhere and has local minimizers at x1 = 1 (the solution) and x2 \approx 
 - 1.56. Because the stationary points are independent of \sigma in this case, \phi \sigma always has
the spurious local minimizer x2.

A.2. Proof of Theorem 10. We repeat the assumptions of Theorem 10:
(B1) (NP) satisfies (A1b) and (A2a).
(B2) x\ast is a second-order KKT point for (NP) satisfying \nabla 2\phi \sigma (x

\ast ) \succ 0.
(B3) There exist \=\delta > 0 and an open set B(x\ast ) containing x\ast such that if \widetilde x0 \in B(x\ast )

and \delta \leq \=\delta , the sequence \widetilde xk+1 = \widetilde xk +G(\phi \sigma (\cdot ; \delta ), \widetilde xk) converges quadratically
to x(\delta ) with constant M independent of \delta .

(B4) Assume \delta , \delta k \geq 0 throughout so that we can avoid indicating this everywhere.

Lemma 12. Under the assumptions of Theorem 10:
1. \phi \sigma (\cdot ; \delta ) has two continuous derivatives for \delta > 0 and x \in \BbbR n by (B1).
2. There exists an open set B1(x

\ast ) containing x\ast such that \phi \sigma (x) is well defined
and has two continuous derivatives for all x \in B1(x

\ast ) by (B1).

D
ow

nl
oa

de
d 

06
/2

8/
20

 to
 1

42
.1

03
.1

60
.1

10
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

https://github.com/optimizers/FletcherPenalty
https://github.com/optimizers/FletcherPenalty


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

SMOOTH EXACT PENALTY FUNCTION A1831

3. \nabla 2\phi \sigma (x
\ast ) = \nabla 2\phi \sigma (x

\ast ; 0) \succ 0 and \phi \sigma (x; \delta ) is \scrC 2 in both x and \delta , so by

assumption (B2) there exists an open set B2(x
\ast ) containing x\ast and \widetilde \delta > 0

such that \nabla 2\phi \sigma (x; \delta ) \succ 0 for (x, \delta ) \in B2(x
\ast )\times [0, \widetilde \delta ].

4. By Theorem 7, there exists \^\delta such that for \delta \leq \^\delta , x(\delta ) is continuous in \delta .

Therefore there exists an open set B3(x
\ast ) such that x(\delta ) \in B3(x

\ast ) for \delta \leq \^\delta .
5. There exists a neighborhood B4(x

\ast ) where Newton's method is quadratically
convergent (with factor N) on \phi \sigma (x) by (B2).

6. Given \delta 0 \leq min\{ \=\delta , \^\delta \} , where \=\delta is defined in (B3), there exists a neighborhood
B5(x

\ast ) such that \| \nabla \phi \sigma (x; \delta 0)\| \leq \delta 0 for all x \in B5(x
\ast ).

We define

B\prime (x\ast ) := B(x\ast ) \cap 

\Biggl( 
5\bigcap 

i=1

Bi(x
\ast )

\Biggr) 
and \delta \prime < min\{ \=\delta , \widetilde \delta , \^\delta , 1\} 

and note that xk defined by Algorithm 3 satisfies xk \in B\prime (x\ast ) for all k by (B3).
Because \phi \sigma (x; \delta ) is \scrC 2 in B\prime (x\ast ) \times [0, \delta \prime ], there exist positive constants K1, . . . ,K5

such that
7. \| \nabla \phi \sigma (x; \delta )\| \leq K1 < 1, \| \nabla 2\phi \sigma (x; \delta )\| , \| \nabla 2\phi \sigma (x; \delta )

 - 1\| \leq K2 for x \in B\prime (x\ast )
and \delta \leq \delta \prime ;

8. \| \nabla P\delta (x)\| \leq K3, \| \nabla 2P\delta (x)\| \leq K4 for x \in B\prime (x\ast ) and \delta \leq \delta \prime ;
9. \| xk  - x\ast \| \leq K5\| \nabla \phi \sigma (xk)\| .

Proof. Statements 1--2 follow from (B1). Statements 3 and 5 follow from (B2).
Statement 4 follows from Theorem 7.

Now consider statement 6. For a given \delta 0, we have \nabla \phi \sigma (x(\delta 0); \delta 0) = 0 and so

there exists a neighborhood \widetilde B around x(\delta 0) such that \| \nabla \phi \sigma (x; \delta 0)\| \leq \delta 0 for all x \in \widetilde B.

Further, x(\delta 0) \in B3(x
\ast ), so let B5(x

\ast ) = \widetilde B \cap B3(x
\ast ).

We first give some technical results. All assume that xk \in B\prime (x\ast ) and \delta k \leq \delta \prime .

Lemma 13. Assume \delta k - 1 \leq \delta 0 \leq \delta \prime . For \delta k defined according to (6.3),

\| \nabla \phi \sigma (xk; \delta k)\| = O(\delta k).

Proof. The result holds for k = 0 in view of observation 6 of Lemma 12.
Because xk \in B\prime (x\ast ) and \delta k, \delta k - 1 \leq \delta \prime , observation 8 of Lemma 12 gives

\| \nabla P\delta k - 1
(xk)\| \leq K3 and \| \nabla P\delta k(xk)\| \leq K3. Using (6.2), we have

\| \nabla \phi \sigma (xk; \delta k)\| = \| \nabla \phi \sigma (xk; \delta k - 1) - \delta 2k - 1\nabla P\delta k - 1
(xk) + \delta 2k\nabla P\delta k(xk)\| 

\leq \| \nabla \phi \sigma (xk; \delta k - 1)\| + \delta 2k - 1\| \nabla P\delta k - 1
(xk)\| + \delta 2k\| \nabla P\delta k(xk)\| 

\leq \| \nabla \phi \sigma (xk; \delta k - 1)\| + (\delta 2k - 1 + \delta 2k)K3

= \| \nabla \phi \sigma (xk; \delta k - 1)\| +O(\delta k),(A.1)

where the last inequality follows from \delta 2k \leq \delta k and (6.3), which implies that \delta k \geq 
\nu (\delta k - 1) = \delta 2k - 1.

We consider two cases. If \| \nabla \phi \sigma (xk; \delta k - 1)\| \leq \delta k - 1, (6.3) implies that

\delta k = max(\| \nabla \phi \sigma (xk; \delta k - 1)\| , \delta 2k - 1) \geq \| \nabla \phi \sigma (xk; \delta k - 1)\| ,

and therefore (A.1) gives \| \nabla \phi \sigma (xk; \delta k)\| = O(\delta k).
Otherwise, (6.3) yields \delta k = max(\delta k - 1, \delta 

2
k - 1) = \delta k - 1, and there exists \ell \leq k  - 1

such that \delta k = \delta k - 1 = \cdot \cdot \cdot = \delta \ell < \delta \ell  - 1, or \ell = 1. If \delta \ell < \delta \ell  - 1, step 3 of Algorithm 3
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implies that \| \nabla \phi \sigma (x\ell ; \delta \ell  - 1)\| < \delta \ell  - 1, which by the above sequence of inequalities
implies that \| \nabla \phi \sigma (x\ell ; \delta \ell )\| = O(\delta \ell ). Then, because \delta k = \delta \ell ,

\| \nabla \phi \sigma (x\ell , \delta k)\| = \| \nabla \phi \sigma (x\ell , \delta \ell )\| = O(\delta \ell ) = O(\delta k).

Define the sequence \{ \widetilde xj\} with \widetilde x0 = x\ell and \widetilde xj+1 = \widetilde xj + G(\phi \sigma (\cdot ; \delta \ell ), \widetilde xj). By (B3),\widetilde xj \rightarrow x(\delta \ell ) quadratically, so after j iterations of this procedure, by Taylor's theorem,

for some \widetilde M , we have

\| \nabla \phi \sigma (\widetilde xj ; \delta \ell )\| \leq \widetilde M j\| \nabla \phi \sigma (\widetilde x0; \delta \ell )\| 2
j

\leq \widetilde M jK2j - 1

1 \| \nabla \phi \sigma (\widetilde x0; \delta \ell )\| 2.

Then after j = O(1) iterations of this procedure (depending only on \widetilde M and K1), we

have \widetilde M jK2j - 1

1 \leq 1 (because K1 < 1), so that

\| \nabla \phi \sigma (\widetilde xj ; \delta k)\| \leq \| \nabla \phi \sigma (\widetilde x0; \delta k)\| 2 = \| \nabla \phi \sigma (x\ell ; \delta k)\| 2 = O(\delta 2k) < O(\delta k).

Therefore, k  - \ell \leq j = O(1), and by (B3) and the fact that \delta k - 1 = \delta k,

\| \nabla \phi \sigma (xk; \delta k - 1)\| = O
\Bigl( 
Mk - \ell \| \nabla \phi \sigma (x\ell ; \delta k - 1)\| 2

k - \ell 
\Bigr) 
= O

\Bigl( 
Mk - \ell \delta 2

k - \ell 

k

\Bigr) 
= O(\delta k).

The second equality follows from the fact that \delta k - 1 = \delta k, and so \| \nabla \phi \sigma (x\ell ; \delta k - 1)\| =
O(\delta k) by the induction assumption.

Lemma 14. For pk defined by step 4 of Algorithm 3, \| pk\| = O(\delta k).

Proof. According to (B3), we may apply Lemma 9 with \tau = 2 and view step 4 of
Algorithm 3 as an inexact Newton step, i.e., there exists a constant N2 > 0 such that

\nabla 2\phi \sigma (xk; \delta k)pk =  - \nabla \phi \sigma (xk; \delta k) + rk, \| rk\| \leq N2\| \nabla \phi \sigma (xk; \delta k)\| 2.

Therefore by Lemma 13,

\| pk\| = \| \nabla 2\phi \sigma (xk; \delta k)
 - 1( - \nabla \phi \sigma (xk; \delta k) + rk)\| 

\leq \| \nabla 2\phi \sigma (xk; \delta k)
 - 1\| (\| \nabla \phi \sigma (xk; \delta k)\| + \| rk\| )

\leq K2

\bigl( 
\| \nabla \phi \sigma (xk; \delta k)\| +N2\| \nabla \phi \sigma (xk; \delta k)\| 2

\bigr) 
\leq K2

\bigl( 
O(\delta k) +O(\delta 2k)

\bigr) 
= O(\delta k).

Lemma 15. Let pk be defined by step 4 of Algorithm 3 and qk be the Newton
direction for the unregularized penalty function defined by \nabla 2\phi \sigma (xk)qk =  - \nabla \phi \sigma (xk).
Then \| pk  - qk\| \in O(\delta 2k).

Proof. According to (B3), we may apply Lemma 9 with \tau = 2 and view step 4 of
Algorithm 3 as an inexact Newton step, i.e.,

\nabla 2\phi \sigma (xk; \delta k)pk =  - \nabla \phi \sigma (xk; \delta k) + rk,(A.2a)

\| rk\| = O(\| \nabla \phi \sigma (xk; \delta k)\| 2).(A.2b)

We premultiply (A.2a) by \nabla 2\phi \sigma (xk)
 - 1 and use (6.2) to obtain

pk + \delta 2k\nabla 2\phi \sigma (xk)
 - 1\nabla 2P\delta k(xk)pk = qk + \delta 2k\nabla 2\phi \sigma (xk)

 - 1\nabla P\delta k(xk) +\nabla 2\phi \sigma (xk)
 - 1rk.

Lemma 13, Lemma 14, and the triangle inequality then yield

\| pk  - qk\| =
\bigm\| \bigm\| \delta 2k\nabla 2\phi \sigma (xk)

 - 1
\bigl( 
\nabla P\delta k(xk) - \nabla 2P\delta k(xk)pk

\bigr) 
+\nabla 2\phi \sigma (xk)

 - 1rk
\bigm\| \bigm\| 

\leq \delta 2k\| \nabla 2\phi \sigma (xk)
 - 1\| 

\bigl( 
\| \nabla P\delta k(xk)\| + \| \nabla 2P\delta k(xk)pk\| 

\bigr) 
+ \| \nabla 2\phi \sigma (xk)

 - 1rk\| 
\leq \delta 2kK2 (K3 +O(\delta k)) +O(\delta 2k) = O(\delta 2k).
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Using the previous technical results, we are in position to establish our main
result.

Proof of Theorem 10. We show that for x0 \in B\prime (x\ast ) we achieve R-quadratic con-
vergence, by showing that \| xk  - x\ast \| = O(\delta k) and that \delta k \rightarrow 0 quadratically. By
observation 9 of Lemma 12, (6.2), the triangle inequality, Lemma 13, and observa-
tion 8 of Lemma 12, we have

\| xk  - x\ast \| \leq K5\| \nabla \phi \sigma (xk)\| 
= K5\| \nabla \phi \sigma (xk; \delta k) - \delta 2k\nabla P\delta k(xk)\| 
\leq K5(\| \nabla \phi \sigma (xk; \delta k)\| + \delta 2k\| \nabla P\delta k(xk)\| )
\leq K5

\bigl( 
O(\delta k) + \delta 2kK3

\bigr) 
= O(\delta k).

Let qk be the Newton direction defined in Lemma 15. There exists a constant N > 0
such that

\| xk+1  - x\ast \| = \| xk + pk  - x\ast \| 
\leq \| xk + qk  - x\ast \| + \| pk  - qk\| 
\leq N\| xk  - x\ast \| 2 + \| pk  - qk\| = O(\delta 2k).

It remains to show that \delta k decreases quadratically. If \| \nabla \phi \sigma (xk+1, \delta k)\| \leq \delta 2k,

\delta k+1 = max\{ min\{ \| \nabla \phi \sigma (xk+1, \delta k)\| , \delta k\} , \delta 2k\} \leq max\{ \| \nabla \phi \sigma (xk+1, \delta k)\| , \delta 2k\} = \delta 2k.

Assume now that \| \nabla \phi \sigma (xk+1, \delta k)\| > \delta 2k. We have from (6.2) and observations 7--8 of
Lemma 12 that

\delta k+1 = max\{ min\{ \| \nabla \phi \sigma (xk+1, \delta k)\| , \delta k\} , \delta 2k\} 
\leq \| \nabla \phi \sigma (xk+1, \delta k)\| 
\leq \| \nabla \phi \sigma (xk+1)\| + \delta 2k\| \nabla P\delta k(xk+1)\| 
\leq K - 1

2 \| xk+1  - x\ast \| + \delta 2kK3 = O(\delta 2k).

Thus we have \| xk  - x\ast \| = O(\delta k) and \delta k+1 = O(\delta 2k), which means that xk \rightarrow x\ast 

R-quadratically.
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