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Polar Deconvolution of Mixed Signals
Zhenan Fan[1] , Halyun Jeong[2] , Babhru Joshi[3] , Michael P. Friedlander[1, 3]

Abstract—The signal demixing problem seeks to sep-
arate a superposition of multiple signals into its con-
stituent components. This paper studies a two-stage
approach that first decompresses and subsequently de-
convolves the noisy and undersampled observations of
the superposition using two convex programs. Proba-
bilistic error bounds are given on the accuracy with
which this process approximates the individual signals.
The theory of polar convolution of convex sets and
gauge functions plays a central role in the analysis and
solution process. If the measurements are random and
the noise is bounded, this approach stably recovers low-
complexity and mutually incoherent signals, with high
probability and with near optimal sample complexity.
We develop an efficient algorithm, based on level-
set and conditional-gradient methods, that solves the
convex optimization problems with sublinear iteration
complexity and linear space requirements. Numerical
experiments on both real and synthetic data confirm
the theory and the efficiency of the approach.

Index Terms—signal demixing, polar convolution,
atomic sparsity, convex optimization

I. Introduction
The signal demixing problem seeks to separate a super-

position of signals into its constituent components. In the
measurement model we consider, a set of signals {x\i}ki=1
in Rn are observed through noisy measurements b ∈ Rm,
with m ≤ n, of the form

b = Mx\S + η with x\S :=
k∑
i=1

x\i . (1)

The known linear operator M : Rn → Rm models the
acquisition process of the superposition vector x\S. The
vector η ∈ Rm represents noise uncorrelated with the data.
This measurement model and its variations are useful for
a range of data-science applications, including mixture
models [1], [2], blind deconvolution [3], blind source sepa-
ration [4], and morphological component analysis [5].

A central concern of the demixing problem (1) is to de-
lineate efficient procedures and accompanying conditions
that make it possible to recover the constituent signals to
within a prescribed accuracy—using the fewest number of
measurements m. The recovery of these constituent signals
cannot be accomplished without additional information,
such as the latent structure in each signal x\i . We build
on the general atomic-sparsity framework formalized by
Chandrasekaran et al. [6], and assume that each signal
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x\i is itself well represented as a superposition of a few
atomic signals from a collection Ai ⊂ Rn. In other words,
the vectors {x\i}ki=1 are paired with atomic sets {Ai}ki=1
that allow for nonnegative decompositions of the form

x\i =
∑
a∈Ai

caa, ca ≥ 0, ∀a ∈ Ai, (2)

where most of the coefficients ca are zero. This model of
atomic sparsity includes a range of important notions of
sparsity, such as sparse vectors, which are sparse in the
set of canonical vectors, and low-rank matrices, which are
sparse in the set of rank-1 matrices with unit spectral
norm. Other important generalizations include higher-
order tensor decompositions, useful in computer vision [7]
and handwritten digit classification [8], and polynomial
atomic decomposition [9].

The nonnegative constraints on the coefficients ca in (2)
are key for the validity of this decomposition, particularly
for the case where the atomic sets Ai are not centrosym-
metric—i.e., when a ∈ Ai does not imply that −a ∈ Ai.
For example, suppose that the ground-truth signal x\i is
known to be low rank and positive definite. In that case,
we would choose the corresponding atomic set

Ai = {uuT | ‖u‖ = 1 } ,

which is the set of symmetric unit-norm rank-1 matrices.
The the nonnegativity constraint in (2) then ensures that
all nontrivial combinations of the atoms in Ai produce
positive definite matrices. The nonnegative constraint on
the coefficients ca can be dropped only in the special case
where the atomic set Ai is centrosymmetric, but this is
not an assumption that we make.

A common approach to recover an atomic signal is to
use the gauge function

γA(x) := inf
ca

{∑
a∈A

ca | x =
∑
a∈A

caa, ca ≥ 0 ∀a ∈ A
}
,

where A is the atomic set for x. This gauge function is
central to the formulation of convex optimization pro-
cess that provably leads to solutions that have sparse
decompositions in the sense of (2). The properties of
gauges and their relationship with atomic sparsity have
been well-studied in the literature and are outlined in
Chandrasekaran et al. [6] and Fan et al. [10].

The typical approach to the demixing problem is to
combine k separate gauge functions, each corresponding
to one of the atomic sets {Ai}ki=1, as a weighted sum or
similar formulations. We instead combine the k separate
gauge functions using a special-purpose convolution oper-
ation called polar convolution, that can reflect the additive
structure of the superposition, as defined in (1).
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Fig. 1. The sum of two atomic sets. The sum A1 + A2 is the
unit level set for the polar convolution γA1 � γA2 , i.e., A1 + A2 =
{ a | γA1 � γA2 (a) ≤ 1 }.

A. Polar convolution

For any two atomic sets A1 and A2, the polar convolu-
tion of the corresponding gauge functions is

(γA1 � γA2)(x) := inf
x1, x2

max
x=x1+x2

{ γA1(x1), γA2(x2) } .

The resulting function is the gauge to the vector sum

A1 +A2 = { a1 + a2 | a1 ∈ A1, a2 ∈ A2 } ,

which is confirmed by the identity

γA1 � γA2 = γA1+A2 , (3)

see Friedlander et al. [11, Proposition 6.2] and Figure 1.
The subdifferential properties of polar convolution fa-

cilitate our analysis and allow us to build an efficient
algorithm that is practical for a range of problems. In
particular, the polar convolution decouples under a duality
correspondence built around the polarity of convex sets.
The polar to a convex set C ⊂ Rn,

C◦ = { y ∈ Rn | 〈x, y〉 ≤ 1 for all x ∈ C } ,

contains a dual description of C in terms of all of its
supporting hyperplanes. Note that when C is a convex
cone, the constant 1 in the above definition can be replaced
with 0. Under this dual representation,

γ(A1+A2)◦ = γA◦1 + γA◦2 ,

which implies that the convex subdifferential decouples as

∂γ(A1+A2)◦ = ∂γA◦1 + ∂γA◦2 .

Thus, a subgradient computation, which is central to
all first-order methods for convex optimization, can be
implemented using only subdifferential oracles for each of
the polar functions γA◦

i
. We show in Section V how to use

this property to implement a version of the conditional
gradient method [12], [13] to obtain the polar decomposi-
tion using space complexity that scales linearly with the
size of the data.

B. Decompression and deconvolution
The principle innovation of our approach to the demix-

ing problem (1) is to decouple the recovery procedure into
two stages: an initial decompression stage meant to recover
the superposition x\S from the vector of observations b,
followed by a deconvolution stage that separates the re-
covered superposition x\S into its constituent components
{x\i}ki=1. We couple the convex theory of polar convolu-
tion [11] to the theory of statistical dimension and signal
incoherence to derive a recovery procedure and analysis
for demixing a compressively sampled mixture to within a
prescribed accuracy.

a) Stage 1: Decompression: The initial decompres-
sion stage is based on the observation that because each
signal x\i is Ai sparse, the superposition x\S must be sparse
with respect to the weighted vector sum

AS :=
k∑
i=1

λiAi

≡

{
k∑
i=1

λiai

∣∣∣∣∣ ai ∈ Ai ∪ { 0 } , i ∈ 1:k
} (4)

of the individual atomic sets Ai. The positive weights λi
carry information about the relative powers of the indi-
vidual signals, and serve to equilibrate the gauge values of
each signal. Thus, the weights λi are defined so that for
each i ∈ 1:k,

γλiAi(x
\
i) = γA1(x\1). (5)

The initial decompression stage solves the convex opti-
mization problem

minimize
x∈Rn

γAs(x) subject to ‖Mx− b‖2 ≤ α, (P1)

where the parameter α ≥ 0 bounds the acceptable level of
misfit between the linear model Mx and the observations
b, and correspondingly reflects the anticipated magnitude
of the noise η. It follows from (3) that the objective of (P1)
is in fact the polar convolution of the individual weighted
gauges:

γAS (x) = γλ1A1 � γλ2A2 � · · · � γλkAk(x).

Proposition 2 establishes conditions under which the solu-
tion x∗S to (P1) stably approximates the superposition x\S.

b) Stage 2: Deconvolution: The solution x∗S of the de-
compression problem (P1) defines the subsequent convex
deconvolution problem

minimize
x1,...,xk

maxi∈1:k γλiAi(xi)

subject to
∑k
i=1 xi = x∗S

(P2)

to obtain approximations x∗i to each constituent signal x\i .
In both stages, a variant of the conditional-gradient

method provides a computationally and memory efficient
algorithm that can be implemented with storage propor-
tional to the number of measurements m [10]. We describe
in Section V the details of the method.
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Compressed Noisy Number Recovery Explicit
Reference measurements observations of signals algorithm error bound

McCoy et al. [14] 7 7 2 3 7
McCoy and Tropp [15] 7 7 2 7 3
Oymak and Tropp [16] 3 7 2 7 3
McCoy and Tropp [17] 3 3 ≥ 2 7 7
This paper 3 3 ≥ 2 3 3

TABLE I
Comparison of the main mathematical results obtained by this paper and related references. Only this paper and McCoy

and Tropp [17] consider the case of two or more signals.

C. Related work

The history of signal demixing can be traced to early
work in seismic imaging [18] and morphological component
analysis [5], [19], which used 1-norm regularization to
separate incoherent signals. More recently, McCoy and
Tropp [15], [17] and Oymak and Tropp [16] proposed a
unified theoretical framework for signal demixing using
modern tools from high-dimensional geometry.

McCoy et al. [14] analyzed the recovery guarantees of
a convex program that can reconstruct k = 2 randomly-
rotated signals from a full set of noiseless observations,
i.e., M is the identity matrix and ‖η‖ = 0. They also
provided an ADMM-type algorithm for solving their pro-
posed model. McCoy and Tropp [15] enhanced the error
bound analysis under the same problem setting. McCoy
and Tropp [17] subsequently extended this framework
to demixing k ≥ 2 randomly-rotated signals from noisy
measurements, as modeled by (1). However, the constants
in the recovery error bound are not made explicit. We
postpone to section IV-A a detailed comparison between
our theoretical results and theirs. Oymak and Tropp [16]
considered a demixing problem similar to (P2) that also
incorporates the measurement operator M , and provided
guarantees for demixing two unknown vectors from ran-
dom and noiseless measurements. We build on this line
of work by providing explicit recovery error bounds in
terms of the complexity of the signal sets and the number
of measurements. Our analysis allows for any number of
individual signals k ≥ 2. Moreover, we provide a memory-
efficient algorithm for solving our proposed model. Table I
compares main mathematical results obtained by this
paper and the above references.

Early work on demixing sparse signals implicitly as-
sumed some notion of incoherence between representations
of the signals. This concept was made concrete by Donoho
and Huo [20], and subsequently Donoho and Elad [21],
who measured the mutual incoherence of finite bases
via the maximal inner-products between elements of the
sets. Related incoherence definitions appear in compressed
sensing [22], [23] and robust PCA [24], [25]. In this paper
we adopt McCoy and Tropp’s [17] notion of incoherence
as the minimal angle between conic representation of the
individual signals.

D. Roadmap and contributions

Section II shows that the decompression problem (P1)
can stably recover the superposition x\S. Proposition 1
characterizes the recovery error in terms of the overall
complexity of the signal, provided the measurements are
random. This result follows directly from Tropp [26] and
a conic decomposition property particular to polar con-
volution. Section III shows that the deconvolution prob-
lem (P2) can stably approximate each constituent signal
x\i . The bound in the recovery error is given in terms
of the error in the initial decompression process and the
incoherence between signals as measured by the minimum
angle between conic representations of each signal; see
Proposition 2. This result requires a general notion of
incoherence based on the angle between descent cones,
first analyzed by McCoy and Tropp [17]. Section IV shows
how a random-rotation model yields a particular level
of incoherence with high probability; see Proposition 5.
In that section we also develop the recovery guarantee
under the random-rotation model; see Theorem 1. Sec-
tion V outlines an algorithm based on conditional-gradient
and level-set methods for computing the decompression
and deconvolution process. The worst-case computational
complexity of this process is sublinear in the required
accuracy. Section VI describes numerical experiments on
real and synthetic structured signals.

Proofs of all mathematical statements are given in
Appendix A.

In summary, the contributions of this paper are as
follows.
• We develop a two-stage, decompression-deconvolution

approach for compressed signal demixing that is mo-
tivated by the polar convolution of gauge functions;
see section I-B.

• Under the assumption of Gaussian measurements and
randomly rotated signals, we develop explicit signal-
recovery error and sample complexity bounds for the
two-stage approach; see Theorem 1. These are the
first known explicit error bounds for recovering an
arbitrary number of mixed and compressed signals.

• We propose an algorithm based on conditional-
gradient and level-set method to solve our proposed
model; see Algorithm 1 and Algorithm 2. Our im-
plementation is publicly available at https://github.
com/MPF-Optimization-Laboratory/AtomicOpt.jl.

• Extensive numerical experiments on synthetic and

https://github.com/MPF-Optimization-Laboratory/AtomicOpt.jl
https://github.com/MPF-Optimization-Laboratory/AtomicOpt.jl
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γA(x
\) · A

x\ +D(A, x\)

x\ + null(M)
γA(x̂) · A

x̂x\

Fig. 2. A non-trivial intersection of D(A, x\) and null(M) is required
for successful decompression. The blue shaded region represents the
shifted descent cone x\ +D(A, x\), and red line represents the shifted
null space null(M) + x\. If D(A, x\) ∩ null(M) 6= {0} (as depicted
here) then there exists a vector x̂ such that γA(x̂) < γA(x\) and
Mx̂ = Mx\.

real data, described in Section VI, verify the correct-
ness of our theoretical results and the effectiveness of
our approach.

E. Notation and assumption

Throughout this paper, we use capital Roman letters
A,B, . . . , to denote matrices or linear operators; lowercase
Roman letters a, b, . . . , to denote vectors; calligraphic let-
ters A,B, . . . , to denote sets; and lowercase Greek letters
α, β, . . . , to denote scalars. The 2-norm of a vector z ∈ Rn
is denoted by ‖z‖2 =

√
〈z, z〉, and for any convex set C,

projC(z) := arg min
x∈C

‖x− z‖2

gives the unique orthogonal projection of z onto C.
Let cone(C) := {αx | α ≥ 0, x ∈ C } denote the convex
cone generated by C. For any atomic set A ⊆ Rn, let
D(A, z) := cone { d ∈ Rn | γA(z + d) ≤ γA(z) } denote the
descent cone of A at z. The face of A exposed by z is the
set

F(A, z) = conv
{
x ∈ A

∣∣∣∣ 〈x, z〉 = sup
u∈A
〈u, z〉

}
,

which is the convex hull of all elements in A that lie on
the supporting hyperplane defined by the normal z.

Let N (0, I) denote the standard Gaussian distribution.
For a convex cone D, let δ(D) := Eg∼N (0,I) ‖ projD(g)‖2

2
denote the statistical dimension of D. For any compact
set C, let U(C) denote the uniform distribution over C.

The following blanket assumption holds throughout the
paper.

Assumption 1 (Measurement model). The linear
model (1) satisfies the following conditions: the linear map
M : Rn → Rm has i.i.d. standard Gaussian entries; the
noise vector η satisfies ‖η‖2 ≤ α for some scalar α; and
the relative signal powers {λi}ki=1 satisfy (5).

II. Decompressing the superposition
As shown in Section I-B, under the assumption that

the individual signals x\i are Ai sparse, the superposition
x\S is sparse with respect to the aggregate atomic set AS.
Thus, the decompression of the observations b in (1) is
accomplished by minimizing the gauge to AS to within
the bound on the noise level ‖η‖2 ≤ α, as modeled by the
recovery problem (P1). Without noise (i.e, α = 0), the
aggregate signal x\S is the unique solution to (P1) when
the null space of the measurement operator M has only a
trivial intersection with the descent cone DS := D(AS, x\S).
In other words, x\S is the unique solution of (P1) if and
only if

DS ∩ null(M) = {0}. (6)

Figure 2 illustrates the geometry of this optimality condi-
tion, and depicts a case in which it doesn’t hold.

If the linear operator M is derived from Gaussian
measurements, Gordon [27] characterized the probability
of the event (6) as a function of the Gaussian width of
the descent cone DS and the number of measurements m.
This result is the basis for recovery guarantees developed
by Chandrasekaran et al. [6] and Tropp [26] for a convex
formulation similar to (P1).

Intuitively, the number of measurements required for
stable recovery of the superposition x\S depends on the
total complexity of the k constituent Ai-sparse vectors
x\i . The complexity is measured in terms of the statistical
dimension of each of the descent cones Di. Tropp [26,
Corollary 3.5] established a bound on the recovery error
between the solutions of the decompression problem (P1)
and the superposition x\S that depends on the statistical
dimension δ(DS) of its descent cone. The following propo-
sition is a restatement of Tropp [26, Corollary 3.5] applied
to the decompression problem (P1).

Proposition 1 (Stable decompression of the aggregate).
For any t > 0, any solution x∗ of (P1) satisfies

‖x∗ − x\S‖2 ≤ 2α
[√

m− 1−
√
δ(DS)− t

]−1

+

with probability at least 1 − exp(−t2/2), where [ξ]+ =
max{0, ξ}.

The statistical dimension of DS is in general challenging
to compute. However, we show in section III-A that when
all the signals {x\i}ki=1 are incoherent, a reasonable upper
bound on δ(DS) can be guaranteed; see Corollary 1.

As we can see from Proposition 1, the recovery error
bound depends linearly on the noise level α. This result
relies on the assumption that the noise level is overesti-
mated, i.e., α ≥ ‖η‖2, which is part of Assumption 1.
However, when the noise level is underestimated, i.e.,
α < ‖η‖2, we can not provide any meaningful recovery
error bound because even the ground-truth signal may
not be feasible for the decompression problem (P1). This
limitation suggests that if the true noise level isn’t known
in practice, then we can start with a relative large α, and
keep reducing it until satisfactory results are obtained.
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III. Deconvolving the components
The second stage of our approach is the deconvolution

stage which separates the recovered aggregate signal into
its constituent components. In order to successfully sep-
arate the superposition x\S into its components {x\i}ki=1
using the deconvolution problem (P2), additional assump-
tion on dissimilarity between the atomic representations of
the individual signals is generally required. For example,
it can be challenging to separate the superposition of
two sparse signals or two low-rank signals without ad-
ditional assumptions. We follow McCoy and Tropp [17],
and measure the dissimilarity between signal structures—
and thus their incoherence—using the angles between
corresponding descent cones.

To motivate the incoherence definition, consider the case
where there are only k = 2 signals x\1 and x\2. If the descent
cones −D1 and D2 have a nontrivial intersection, then
there exists a nonzero direction d ∈ −D1 ∩ D2 such that
γA1(x\1 − d) < γA1(x\1) and γA2(x\2 + d) < γA2(x\2), which
contradicts the optimality condition required for x\1 and
x\2 to be unique minimizers of (P2). Thus, deconvolution
only succeeds if the descent cones have a trivial intersec-
tion, which can be characterized using angle between the
descent cones. Figure 3 illustrates this geometry.

Obert [28] defined the angle between two cones K1 and
K2 in Rn as the minimal angle between vectors in these
two cones. It follows that the cosine of the angle between
two cones can be expressed as

cos∠(K1,K2) = sup { 〈x, y〉 | x ∈ K̄1, y ∈ K̄2 } ,

where
K̄i := Ki ∩ Sn−1, i = 1, 2.

For the general case where the number of signals k ≥ 2,
a natural choice for a measure of incoherence between
these structured signals is the minimum angle between
the descent cone of a signal with respect to the remaining
descent cones.

Definition 1. The pairs {(x\i ,Ai)}ki=1 are β-incoherent
with β ∈ (0, 1] if for all i ∈ 1:k,

cos∠

−Di,∑
j 6=i
Dj

 ≤ 1− β.

We use the incoherence between descent cones to bound
the error between the true constituent signals {x\i}ki=1 and
the solution set of the deconvolution problem (P2). This
bound depends on the accuracy of the approximation x∗S
to the true superposition x\S and is shown in Proposition 2.

Proposition 2 (Stable deconvolution). If the pairs
{(x\i ,Ai)}ki=1 are β-incoherent for some β ∈ (0, 1], then
any set of solutions {x∗i }ki=1 of (P2) satisfies for all i ∈ 1:k

‖x∗i − x
\
i‖2 ≤ ‖x∗S − x\S‖2/

√
β,

where x∗S is any solution of (P1).

In summary, a large angle between negation of a descent
cone −Di and all the other descent cones—as reflected by

a large incoherence constant β—corresponds a small error
between each x∗i and the ground truth x\i .

A. Bound on δ(DS) under incoherence

Proposition 1 gives a stable recovery result for the de-
compression stage. However, the recovery bound depends
on the the statistical dimension of DS, which is challenging
to compute even when the statistical dimension of the
individual descent cone Di is known. In this section, we
show that the incoherence between the structured signals
{x\i}ki=1 is sufficient to establish an upper bound for δ(DS).
We start with the k = 2 case. Proposition 3 shows that
if the angle between two cones is bounded, then the
statistical dimension of the sum of these two cones is also
bounded.

Proposition 3 (Bound on statistical dimension of sum).
Let K1 and K2 be two closed convex cones in Rn. If
cos∠(−K1,K2) ≤ 1− β for some β ∈ (0, 1], then√

δ(K1 +K2) ≤ 1√
β

(√
δ(K1) +

√
δ(K2)

)
.

This result generalizes to an arbitrary number of cones.

Corollary 1 (Bound on statistical dimension of sum under
incoherence). If the pairs {(x\i ,Ai)}ki=1 are β-incoherent
for some β ∈ (0, 1], then

√
δ(DS) ≤ β−

k−1
2

k∑
i=1

√
δ(Di).

Corollary 1 shows that when the pairs {(x\i ,Ai)}ki=1 are
β-incoherent, δ(DS) can be upper bounded in terms of the
statistical dimension of individual descent cones.

IV. Inducing incoherence through random
rotation

Proposition 2 establishes the stability of the deconvolu-
tion problem in the case that the unknown signals are β-
incoherent, as formalized in Definition 1. However, except
in very special cases like randomly rotated signals, it is
not feasible to determine the incoherence constant β. We
build on McCoy and Tropp’s random rotation model [17]
to quantify, with high probability, the β-incoherence of
k randomly-rotated atomic sparse signals, and present a
recovery result for a randomly rotated case.

We first consider a simpler case of two general cones, one
of which is randomly rotated. Let SO(n) denote the special
orthogonal group, which consists of all n-by-n orthogonal
matrices with unit determinant. The following proposition
provides a probabilistic bound on the angle between the
two cones in terms of their statistical dimension. This geo-
metric result maybe of intrinsic interest in other contexts.

Proposition 4 (Probabilistic bound under random rota-
tion). Let Q is drawn uniformly at random from SO(n).
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2).

Let K1 and K2 be two closed convex cones in Rn. For any
t ≥ 0, we have

P
[

cos∠(K1, QK2) ≥ 3√
n

(√
δ(K1) +

√
δ(K2)

)
+ t

]
≤ exp(−n−2

8 t2).

We now assume that the k structured signals x\i are
defined via a random rotations of k underlying structured
signals x̂i.

Assumption 2 (Random rotations). Fix x̂i and Âi for
i ∈ 1:k such that x̂i is sparse with respect to atomic set Âi.
For each i ∈ 1:k, assume

x\i := Qix̂i and Ai := QiÂi,

where the matrices Qi are drawn uniformly and i.i.d. from
SO(n).

Our next proposition shows that, under mild conditions,
randomly rotated structured signals are incoherent with
high probability.

Proposition 5. Suppose that Assumption 2 holds. If∑k
i=1
√
δ(Di) ≤

(
1− 4−

1
k−1 − t

)√
n/6 for some t > 0,

then the rotated pairs {(x\i ,Ai)}ki=1 are 4−
1

k−1 -incoherent
with probability at least 1− k(k − 1) exp(−n−2

8 t2).

Proposition 5 requires
∑k
i=1
√
δ(Di) to scale as

√
n

and thus controls the total complexity of the k unknown
signals. We now state the main theorem and show that
randomly rotated vectors can be recovered using the two-
stage approach (P1) and (P2).

Theorem 1. Suppose that Assumptions 1 and 2 hold. For
any t1, t2 > 0, if

∑k
i=1
√
δ(Di) ≤

(
1− 4−

1
k−1 − t2

)√
n/6,

then any set of minimizers {x∗i }ki=1 of (P2) satisfies

‖x∗i − x
\
i‖2 ≤

4α[√
m− 1− c

∑k
i=1
√
δ(Di)− t1

]
+

(7)

for all i ∈ 1:k with probability at least

1− exp
(
−t21/2

)
− k(k − 1) exp(−n−2

8 t22)

with c ≤ 2.

The proof follows directly from Proposition 1, Propo-
sition 2, Corollary 1, Proposition 5, and the probability
union bound. We verify empirically in section VI-A the
tightness of the bound in (7).

A. Comparison of error bound
Here we compare our results to the one provided in

[17], which also developed a novel procedure to solve the
demixing problem (1). McCoy and Tropp [17] introduced
the constrained optimization problem

minimize
x1,...,xk

∥∥∥M† (M∑k
i=1 xi − b

)∥∥∥
2

subject to γ(xi) ≤ γAi(x
\
i), ∀i ∈ 1:k,

(8)

whereM† is the Moore-Penrose pseudo-inverse ofM . They
showed that if n ≥ m ≥

∑k
i=1 δ(Di)+O(

√
kn) and {x\i}ki=1

are randomly rotated as per Assumption 2, then any set
of minimizers {x∗i }ki=1 of (8) satisfies with high probability
the bound

‖x∗i − x
\
i‖2 ≤ C‖M†η‖2 (9)

for all i ∈ 1:k [17, Theorem A]. To our knowledge, this
result is the first to show that stable recovery of the con-
stituent signals {x\i}ki=1 is possible with high probability
provided the number of measurement grow linearly in k.
However, the constant C in the error bound (9) could
depend on all of the problem parameters except η. As a
comparison to Theorem 1, the error bound in (7) makes
explicit the effect of all problem parameters.

V. Decompression and deconvolution algorithm
We describe a procedure for obtaining solutions for the

decompression (P1) and deconvolution (P2) problems. The
procedure first solves the decompression problem (P1)
using an algorithm that doesn’t store or track an approx-
imation to x\S, which in many contexts may be too large
to store or manipulate directly. Instead, the algorithm
produces a sequence of iterates r(t) := b−Mx(t) that ap-
proximate the residual vector corresponding to an implicit
approximation x(t) of x\S. The procedure requires only the



7

Algorithm 1: Decompression and deconvolution
algorithm
Input: noise level α > 0; accuracy ε > 0

1 τ0 ← 0
2 for t← 0, 1, 2, . . . do [level-set iterations]

3 (r(t), p(t), `(t))← DCG(τ (t)) [solve (10) approximately]

4 if ‖r(t)‖ >
√
α2 + ε then break [test ε-infeasibility]

5 τ (t+1) ← τ (t) + `(t)−α2/2
〈p(t),r(t)〉 [Newton update]

6 (x1, . . . , xk)← solve (13) [solve (P2)]

7 return (x1, . . . , xk)

storage of several vectors of length m, which represents
the size of the data b. As we show in section V-C, the
solution to the deconvolution problem (P2) is subsequently
obtained via an unconstrained linear least-squares problem
that uses information implicit in this residual vector.
Algorithm 1 summarizes the overall procedure.

A. Level-set method
The loop beginning at Line 2 of Algorithm 1 describes

the level-set procedure for solving the decompression prob-
lem (P1) [29]–[31]. More specifically, it approximately
solves a sequence of problems

v(τ) := min
x

{ 1
2‖Mx− b‖2 | γAs(x) ≤ τ

}
, (10)

parameterized by the scalar τ that defines the level-set
constraint. The subproblem (10) is solved by the dual
conditional gradient method (Line 3 of Algorithm 1),
introduced in section V-B. Under modest assumptions
satisfied by this problem, the sequence τ (t) → τ∗ = opt, the
optimal value of (P1). The tail of the resulting sequence
of computed solutions to (10) is super-optimal and ε-
infeasible for (P1), i.e., a solution x satisfies

γAs(x) ≤ opt and ‖Mx− b‖ ≤
√
α2 + ε, (11)

where ε is a specified optimality tolerance. The level-set
algorithm requires O(log(1/ε)) approximate evaluations of
the optimization problem (10) to achieve this optimality
condition. Each approximate evaluation provides a global
lower-minorant of v that is used by a Newton-like update
to the level-set parameter τ (t); see line 5.

B. Dual conditional gradient method
The level-set subproblems are solved approximately us-

ing the dual conditional-gradient method described by
Algorithm 2. An implementation of this algorithm requires
storage for three m-vectors

p(t) := Ma(t), q(t) := Mx(t), r(t) := b−Mx(t),

(The fourth vector ∆r(t) can be easily operated on im-
plicitly.) Implicit in these vectors are the iterate x(t)

and current atom a(t) ∈ As, which in some situations
are prohibitively large to store or manipulate The main
computational cost is in Line 3, which uses the residual r(t)

Algorithm 2: Dual conditional gradient method:
DCG(τ). This algorithm solves (P1) without refer-
ence to the primal iterate x(t), and instead returns
the implied residual r(t) ≡ b−Mx(t).

Input: τ
1 r(0) ← b; q(0) ← 0
2 for t← 0, 1, 2, . . . do
3 p(t) ∈ τF(MAs; r(t)) [see (12)]

4 ∆r(t) ← p(t) − q(t)
[∆r(t) ≡ M(a(t) − x(t))]

5 ρ(t) ← 〈r(t),∆r(t)〉 [optimality gap]

6 if ρ(t) < ε then break [break if optimal]

7 θ(t) ← min { 1, ρ(t)/‖∆r(t)‖2
2 } [exact linesearch]

8 r(t+1) ← r(t) − θ(t)∆r(t)
[r(t+1) ≡ b −Mx(t+1)]

9 q(t+1) ← q(t) + θ(t)∆r(t)
[q(t+1) ≡ Mx(t+1)]

10 `(t) ← 1
2‖r

(t)‖2 − ρ(t)
[lower bound on optimal value]

11 return r(t), p(t), `(t)

to expose an atom in the face F(MAs; r) of the mapped
atomic set MAS ⊂ Rm. Because the exposed faces decom-
pose under set addition, it follows from the expression (4)
of As that F(MAs; r) =

∑k
i=1 F(λiMAi; r). Thus, the

facial exposure operation on Line 3 can be computed by
separately exposing faces on each of the individual mapped
atomic sets, which can be implemented in parallel, i.e.,

p(t) = τ

k∑
i=1

λip
(t)
i where p

(t)
i ∈ F(MAi; r(t)) ∀i ∈ 1:k.

Note that Line 3 of Algorithm 2 can alternatively be
implemented using the identity

F(MAs; r) = MF(As; M∗r); (12)

see Fan et al. [10, Section 3]. This formulation is convenient
in cases where the operator M can be applied implicitly
to elements of the atomic set As.

The conditional-gradient method converges to the re-
quired optimality within O(1/ε) iterations [13]. Combined
with the complexity of the level-set method, we thus
expect a total worst-case complexity of O(log(1/ε)/ε)
iterations to satisfy the optimality condition (11).

C. Exposing the signals
Once Algorithm 1 reaches Line 6, the residual vector

r(t) contains information about the atoms that are in the
support of each of the approximations x∗i to the signals
x\i . It follows from Fan et al. [10, Theorem 7.1] that for all
i ∈ 1:k,

x∗i ∈ coneF(Ai; M∗r∗), r∗ := b−M
k∑
i=1

x∗i .

Thus, a solution of the deconvolution problem (P2) can be
recovered by solving

minimize
x1,...,xk

1
2‖M

∑k
i=1 xi − (b− r(t))‖2

subject to xi ∈ coneF(Ai; M∗r(t)),
(13)
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which can be implemented as a standard linear least-
squares problem over the coefficients of the atoms exposed
in each of the atomic sets.

VI. Experiments and novel applications

In section VI-A we empirically verify Theorem 1 through
a set of synthetic experiments on recovering multiple
randomly-rotated sparse signals from noiseless and noisy
measurements. Note that the random rotation guarantees
incoherence among the unknown signals {x\i}ki=1. We also
empirically show that random rotation is not required
for successful recovery of a class of unknown signals
with different underlying structures. In section VI-B we
separate a sparse signal and sparse-in-frequency signal.
In section VI-C we separate the superposition of three
signals: a sparse signal, a low-rank matrix, and noise.
In section VI-D we separate a multiscale low-rank syn-
thetic image.

We implement the algorithm described in Section V in
the Julia language [32]. All the experiments are conducted
on a Linux server with 8 CPUs and 64Gb memory.

A. Stability of Demixing
We provide three experiments that numerically ver-

ify the bounds established by Theorem 1 to solve the
demixing problem (1). The experiment draws multiple
realizations of a random problem specified over a range of
parameters k (number of signals), m (number of measure-
ments), n (signal dimension) and s (the sparsity level for
each signal). Each signal x\i in (1) is generated according
to Assumption 2, where each vector x◦i is s-sparse with
respect to the standard basis. By construction, the atomic
sets i ∈ 1:k are defined to be

Ai = Qi {±e1, . . . ,±en } where Qi ∼ U(SO(n)).

Amelunxen et al. [33, Proposition 4.5] give an upper
bound on the statistical dimension of the descent cone
for (x\i ,Ai), and thus for the descent cone at (x◦i ,A◦i ),
for s-sparse vectors. We use this bound to approximate
the statistical dimension δ(Di) of the descent cone Di
corresponding to the pair (x\i ,Ai). We define the maximum
absolute error

maxerr := max
i∈1:k

‖x∗i − x
\
i‖2. (14)

1) Relation between m and n: We first show a phase
portrait for the noiseless case that verifies the relationship
between number of measurement m and signal dimension
n, as stated in Theorem 1. The number of signals is fixed
at k = 3 and the sparsity level is fixed at s = 5. The
phase plot is shown in Figure 4, where the horizontal axis
represents the signal dimension n ∈ {50, 65, . . . , 500} and
the vertical axis represents the number of measurements
m ∈ {50, 65, . . . , 500}. The colormap indicates the em-
pirical probability of successful demixing over 50 trials,
where we say the demixing is successful if maxerr < 10−2.

50 200 350 500
n

50

200

350

500

m

0.0

0.2

0.4

0.6

0.8

1.0

Fig. 4. Phase-transition plots for demixing the sum of randomly-
rotated sparse signals {x\

i}
k
i=1 from noiseless measurements b. The

horizontal and vertical axes, respectively, represent the signal di-
mension n and measurement dimension m. The colormap indi-
cates the empirical probability of successful demixing over 50 trials.
The red solid curve approximately represents the mapping

√
m =∑k

i=1

√
δ(Di) and the blue dashed line approximately represents

the position
√
n =

∑k

i=1

√
δ(Di).

The red solid curve and the blue dashed line, respectively,
approximate the graphs of the functions

√
m =

k∑
i=1

√
δ(Di) and

√
n =

k∑
i=1

√
δ(Di).

The statistical dimensions of Di are approximated using
[33, Proposition 4.5], as stated above. The area above the
red curve and to the right of the dashed line corresponds
to problem parameters with successful recovery and cor-
roborates the bounds stated in Theorem 1.

2) Relation between m and k: We also show a phase
portrait for the noiseless case that verifies the relationship
between number of measurement m and number of signals
k stated in Theorem 1. The signal dimension is fixed at
n = 1000 and the sparsity level is fixed at s = 3. The
phase plot is shown in Figure 5, where the horizontal axis
represents the number of signals k ∈ {2, 3, . . . , 10} and
the vertical axis represents the number of measurements
m ∈ {100, 200, . . . , 1000}. All the other settings are the
same as stated in section VI-A1. The red line corresponds
to
√
m =

∑k
i=1
√
δ(Di) and shows that recovery is possible

provided the number of measurements scale as k2, when
the complexity of all of unknown signals are the same.

3) Relation between maximal absolute error and noise
level: Lastly, we show a plot for the noisy case that verifies
the relationship between maximum absolute error maxerr
and noise level α stated in Theorem 1. The number of
measurement is fixed at m = 125, the signal dimension is
fixed at n = 200, the number of signals is fixed at k =
3, and the sparsity level is fixed at s = 5. The result is
shown in Figure 6, where the horizontal axis represents
the noise level α ∈ {0.01, 0.02, . . . , 2} and the vertical axis
represents the maximum absolute error maxerr. The blue
curve corresponds to the mean of maxerr over 50 trials
and the yellow shaded area corresponds to the standard
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Fig. 5. Phase-transition plots for demixing the sum of randomly-
rotated sparse signals {x\

i}
k
i=1 from noiseless measurements b. The

horizontal and vertical axes, respectively, represent the number of
signals k and measurement dimension m. The colormap indicates
the empirical probability of successful demixing over 50 trials.
The red solid curve approximately represents the mapping

√
m =∑k

i=1

√
δ(Di).
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Fig. 6. Error-noise plot for demixing the sum of randomly-rotated
sparse signals {x\

i}
k
i=1 from noisy measurements b. The horizontal

and vertical axes, respectively, represent the noise level α and the
maximum absolute error maxerr. The blue curve indicates the re-
lationship between the empirical average of maxerr over 50 trials
and α, and the yellow shaded area indicated the empirical standard
deviation.

deviation. The figure verifies the linear dependence of the
recovery error with the noise level, as stated in Theorem 1.

B. Separation of sparse and sparse-in-frequency signals
We reproduce the experiments done by McCoy et al. [14]

on separating an astronomical image into sparse and
sparse-in-frequency signals. An n-vector x is sparse-in-
frequency if its discrete cosine transform (DCT) Dx is
sparse, where the orthogonal linear map D : Rn → Rn en-
codes the DCT. Define the observations and corresponding
atomic sets

b = x\s + x\d, As := {±e1, . . . ,±en } , Ad = D∗As.

The star-galaxy image shown in Figure 7 exemplifies this
superposition: the stars are well-represented by sparse ma-

observation sparse sparse-in-frequency

Fig. 7. The star-galaxy separation experiment features two distinct
signal components. The image size is 601× 601 pixels.

trices in As, and the galaxy component is well-represented
by sinusoidal elements in Ad. The image size is 601× 601.
The results of the separation are shown in the second two
panels of Figure 7.

C. Sparse and low rank matrix decomposition with struc-
tured noise

In this next example we decompose an image that
contains a sparse foreground, a low-rank background, and
structured noise. This is an example of sparse principle
component analysis [34]–[37]. Typically, the entry-wise 1-
norm and the nuclear norm are used to extract from
the matrix each of these qualitatively different structures.
Here, we treat the noise as its own signal that also needs
to be separated. We consider the observations

B = X\
s +X\

l +X\
n,

where X\
s ∈ Rm×n is sparse, X\

l ∈ Rm×n is low-rank ma-
trix, and X\

n ∈ Rm×n represents structured noise so that
PX\

nQ is sparse, where P and Q are random orthogonal m-
by-m matrices. Based on the atomic framework, we choose
the atomic sets for X\

s, X
\
l , and X\

n, respective, as

As = {±Ei,j | 1 ≤ i ≤ m, 1 ≤ j ≤ n } ,
Al = {uvᵀ | u ∈ Rm, v ∈ Rn, ‖u‖2 = ‖v‖2 = 1 } ,
An = P ᵀAsQᵀ,

where Ei,j is a m× n matrix with a single nonzero entry
(i, j) with value 1.

Although the elements of the atomic sets As, Al and
An are described as explicit matrices, these elements
can be exposed and operated on implicitly without ever
forming these matrices. Thus, Line 3 of Algorithm 2 can
be implemented efficiently for very large examples. In
particular, let Z be a fixed exposing matrix. Then the
exposed atom from As can be computed by finding the
entry in Z with maximum absolute value; the exposed
atom from Al can be computed by finding the leading
singular vectors of Z; and exposed atom from An can be
computed by finding the entry in PZQ with the maximum
absolute value. Fan et al. [10] provide more detail on how
to efficiently implement these operations.

For the numerical experiment, we consider the noisy
chess board in-painting problem. The chess foreground is
sparse and the chess board background is low rank. The
image size is 596 × 596. The experiment result is shown
in Figure 8.
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Fig. 8. Noisy chess board in-painting experiment. The image size is
596×596. Northwest: noisy observations; Northeast: recovered sparse
component; Southwest: recovered low rank component; Southeast:
denoising result.
observation 1×1 4×4 16×16 64×64

Fig. 9. Multiscale low rank matrix decomposition experiment. The
matrix size is 64× 64. From left to right: observations; recovered Pi-
block-wise low rank component for i = 1, . . . , 4. All the blocks in Pi

have the same size 4i−1 × 4i−1 for i = 1, . . . , 4.

D. Multiscale low rank matrix decomposition
The multiscale low-rank matrix decomposition problem

proposed by Ong and Lustig [38] generalizes the sparse
and low-rank matrix decomposition through a block-wise
low-rank structure. Let X be an m×n matrix and P be a
partition of X into multiple blocks. Then X is considered
to be block-wise low-rank with respect to P if all the blocks
are low rank. For each block p ∈ P with size mp × np, let
Xp denote the corresponding part of the matrix X and
let Rp : Rm×n → Rmp×np denote the linear operator that
can extract Xp from X, namely Rp(X) = Xp. The adjoint
operator R∗p : Rmp×np → Rm×n embeds an mp×np matrix
into a m× n zero matrix. With this operator,

X =
∑
p∈P

R∗p(Xp).

Each block-wise low-rank signal is represented by a
corresponding atomic set. By definition, each block Xp ∈
Rmp×np is low rank, and thus Xp is Ap-sparse, where

Ap = {uvᵀ | u ∈ Rmp , v ∈ Rnp , ‖u‖ = ‖v‖ = 1} .

One and Lustig [38] propose a block-wise nuclear norm and
its associated dual norm, respectively, by the functions

‖ · ‖P,1 =
∑
p∈P ‖Rp(·)‖1, ‖ · ‖P,∞ = maxp∈P ‖Rp(·)‖∞,

where ‖ · ‖1 and ‖ · ‖∞ are the Schatten 1- and ∞-norms
of their matrix arguments. It follows that the block-wise
norm ‖ · ‖P,1 and dual norm ‖ · ‖P,∞ are the gauge and

support functions, respectively, for the atomic set AP :=⋃
p∈P R

∗
pAp.

We reproduce the synthetic model described by Ong and
Lustig, who construct the superposition B =

∑k
i=1 X

\
i ,

where X\
i ∈ Rm×n is block-wise low rank with respect to

the multiscale partitions {Pi }ki=1. In our experiment, we
set m = n = 64, k = 4, and for each i ∈ 1:k,

mp = np = 4i−1 ∀p ∈ Pi.

At the lowest scale i = 1, a block-wise low-rank matrix
is a scalar, and so 1-sparse matrices are included with
the atomic set AP1 . The solutions of the deconvolution
procedure Equation (P2) are shown in Figure 9.

VII. Looking ahead

The random rotation model is a useful mechanism
for introducing incoherence among the individual signals.
However, even in contexts where it’s possible to rotate
the signals, it may prove too costly to do so in practice
because the rotations need to be applied at each itera-
tion of the algorithm in Line 3. We might then consider
other mechanisms for introducing incoherence that are
computationally cheaper, and rely instead, for example, on
some fast random transform. The literature on demixing
abounds with various incoherence notions. We wish to
explore what is the relationship between these and our
definition of β-incoherence. Alternative incoherence defi-
nitions may prove useful in deriving other mechanisms for
inducing incoherence in the signals.

A significant assumption of our analysis is that the
parameters λi exactly equilibrate the gauge values for each
signal; cf. (5). Analogous assumptions appear in many
other related signal-demixing approaches [14]–[17]. For
example, McCoy and Tropp [17], who also deal with the
general case of recovering two or more signals, require
the gauge values for each signal; cf. Equation (8). There
are important practical cases where the parameters λi
are known, such as some secure communication problems,
where the sender can normalize the signals before they
are mixed [15, Section 1.3.1]. In cases where parameters
λi are not known, however, these may be reasonably ap-
proximated by a grid search. An open research question is
to analyze how the stability of the signal-recovery process
depends on errors that might exist in the ideal parameter
choices.

Appendix A
Proofs

This section contains proofs for the mathematical state-
ments in Section III and Section IV. We begin with several
technical results needed for analysis, which describe useful
properties of descent cones. Some of these results contain
their own intrinsic interest.
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A. Lemmas
Lemma 1 (Properties of descent cones). Let A, A1, A2
be compact sets in Rn that contain the origin in their
interiors. Fix the vectors x, x1, x2. The following properties
hold.

a) A vector d is contained in D(A, x) if and only if
there is some ᾱ > 0 such that γA(x+αd) ≤ γA(x)
for all α ∈ [0, ᾱ];

b) D(τA, x) = D(A, x) ∀τ > 0;
c) D(QA, Qx) = QD(A, x) if Q ∈ SO(n);
d) D(A1 + A2, x1 + x2) ⊆ D(A1, x1) + D(A2, x2) if

γA1(x1) = γA2(x2).

Proof.
a) See [15, Proposition 2.5];
b) It follows from the fact that a gauge function is

positive homogenous.
c) Because γQA = γA(Q∗·),

D(QA, Qx) = cone { d | γQA(Qx+ d) ≤ γQA(Qx) }
= cone { d | γA(x+Q∗d) ≤ γA(x) }
= QD(A, x).

d) For every d ∈ D(A1 +A2, x1 +x2), by Lemma 1(a),
there exists α > 0 such that

γA1+A2(x1 + x2 + αd) ≤ γA1+A2(x1 + x2).

Then there exists d1, d2 such that d1 + d2 = αd and

max { γA1(x1 + d1), γA2(x2 + d2) } ≤ γA1+A2(x1+x2).

By the fact that γA1+A2(x1 + x2) ≤
max { γA1(x1), γA2(x2) } and the assumption
γA1(x1) = γA2(x2), it follows that di ∈ D(Ai, xi),
which implies αd = d1 +d2 ∈ D(A1, x1)+D(A2, x2).
Thus d ∈ D(A1, x1) +D(A2, x2).

The Gaussian width of a set T ⊂ Rn is defined as

ω(T ) = Eg sup { 〈g, y〉 | y ∈ T } ,

where the expectation is taken with respect to the stan-
dard Gaussian N (0, In). The following lemma summarizes
the main properties that we use regarding the relationship
between the conic summaries δ and ω.

Lemma 2 (Properties of conic statistical summaries). Let
K be a closed and convex cones in Rn and let Q ∈ SO(n).
Then the following properties hold.

a) δ(QK) = δ(K);
b) δ(K) = Eg

[
sup { 〈g, y〉 | y ∈ K ∩ Bn }2

]
;

c) ω(K ∩ Bn)2 ≤ δ(K).

Proof. See [33, Proposition 3.1(6) and Proposition 3.1(5)],
respectively, for (a) and (b).

c) Indeed, we know that,

ω(K ∩ Bn)2 = [Eg sup { 〈g, y〉 | y ∈ K ∩ Bn }]2

≤ Eg
[
sup { 〈g, y〉 | y ∈ K ∩ Bn }2

]
= δ(K),

where the first equality follows from the definition of
gaussian with, the first inequality follows from the
fact that E(X)2 ≤ E(X)2 for any random variable
X, and the last equality follows from Lemma 2(b).

Our next lemma shows that if the angle between two
cones is bounded, then the norms of individual vectors
are bounded by the norm of their sum.

Lemma 3. Let K1 and K2 be two closed convex cones in
Rn. If cos∠(−K1,K2) ≤ 1 − β for some β ∈ (0, 1], then
for any u ∈ K1 and v ∈ K2,

max { ‖u‖, ‖v‖ } ≤ 1√
β
‖u+ v‖.

Proof. By expanding the norm square of u+ v we can get
that

‖u+ v‖2 = ‖u‖2 + ‖v‖2 − 2〈−u, v〉
= ‖u‖2 + ‖v‖2 − 2 cos(∠(−u, v))‖u‖‖v‖
≥ ‖u‖2 + ‖v‖2 − 2(1− β)‖u‖‖v‖
= β(‖u‖2 + ‖v‖2) + (1− β)(‖u‖ − ‖v‖)2

≥ βmax { ‖u‖2, ‖v‖2 } ,

where the first inequality follows from the definition of the
cosine of the angle between two cones.

Our next lemma is a technical lemma for the expecta-
tion.

Lemma 4. Let X and Y be nonnegative random variables,
then we have

E[(X + Y )2] ≤
(√

E[X2] +
√

E[Y 2]
)2
.

Proof. By expanding the right hand side, we can get(√
E[X2] +

√
E[Y 2]

)2
= E[X2] + E[Y 2] + 2

√
E[X2]E[Y 2]

≥ E[X2] + E[Y 2] + 2E[XY ]
= E[(X + Y )2],

where the inequality follows from the Cauchy–Schwarz
inequality.

B. Proof for Proposition 2
For each i ∈ 1:k, let εi := x∗i − x

\
i and ε−i :=

∑
j 6=i εj .

By the definition of descent cone, εi ∈ D(Ai, x\i). Because
{(x\i ,Ai)}ki=1 are β-incoherent for some β ∈ (0, 1], by Def-
inition 1,

cos∠ (−εi, ε−i) ≤ 1− β.

By Lemma 3, it follows that

‖εi + ε−i‖ ≥
√
β‖εi‖.

The desired result follows.
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C. Proof for Proposition 3
In this proof, we define Ki,β = Ki∩ 1√

β
Bn and fi,β(g) =

sup { 〈g, u〉 | u ∈ Ki,β } for i = 1, 2. By Lemma 2(b), we
know that the statistical dimension can be expressed as

δ(K1 +K2) = Eg
[
sup { 〈g, y〉 | y ∈ (K1 +K2) ∩ Bn }2

]
= Eg

[
sup { 〈g, u+ v〉 | u ∈ K1, v ∈ K2, ‖u+ v‖ ≤ 1 }2

]
≤ Eg

[
sup { 〈g, u+ v〉 | u ∈ K1,β , v ∈ K2,β }2

]
= Eg

( sup
u∈K1,β

〈g, u〉+ sup
v∈K2,β

〈g, v〉

)2


≤
(√

Eg [f1,β(g)2] +
√

Eg [f2,β(g)2]
)2

= 1
β

(√
δ(K1) +

√
δ(K2)

)2
,

where the first inequality follows from Lemma 3 and the
fact that the supremum is always nonnegative, and the
second inequality follows from Lemma 4.

D. Proof for Corollary 1
Throught this proof, for all i ∈ 1 : k, we define

Di = D(Ai, x\i), δi = δ(Di) and δ1:i = δ(
∑i
j=1Di). By As-

sumption 1 and Lemma 1(d), we know that DS ⊆
∑k
i=1Di,

and it follows that δ(DS) ≤ δ1:k. So we only need to give
an upper bound for δ1:k. Since cos∠

(
−Dk,

∑k−1
i=1 Di

)
≤

1− β, by Proposition 3, it follows that√
δ1:k ≤ β−

1
2
(√

δ1:(k−1) +
√
δk

)
. (15)

Since
∑k−2
i=1 Di ⊆

∑
j 6=(k−1)Dj , it follows that

cos∠
(
−Dk−1,

∑k−2
i=1 Di

)
≤ 1 − β. By Proposition 3, we

have √
δ1:(k−1) ≤ β−

1
2
(√

δ1:(k−2) +
√
δk−1

)
. (16)

Combining (15) and (16), we know that√
δ1:k ≤ β−

2
2
(√

δ1:(k−2) +
√
δk−1 +

√
δk

)
.

Repeating this process, we can conclude that√
δ1:k ≤ β−

k−1
2

k∑
i=1

√
δi.

E. Proof for Proposition 4
Throught this proof, we define the following notations:
• Ki := Ki ∩ Sn−1 for i = 1, 2;
• K̂i := Ki ∩ Bn for i = 1, 2;
• f(W ∈ Rn×n) = sup { 〈x,Wy〉 | x ∈ K1, y ∈ K2 };
• f̂(W ∈ Rn×n) = sup { 〈x,Wy〉 | x ∈ K̂1, y ∈ K̂2 };
• On = {Q ∈ Rn×n : QTQ = In };
• SOn,+ = {Q ∈ On : det(Q) = 1 };
• SOn,− = {Q ∈ On : det(Q) = −1 }.
Our proof consists of three steps.

First step: show that both f and f̂ are convex and
1-Lipschitz functions. First, we show that both f and
f̂ are convex. For any W1,W2 ∈ Rn×n and any t ∈ [0, 1],

f(tW1 + (1− t)W2)
= sup { 〈x, (tW1 + (1− t)W2)y〉 | x ∈ K1, y ∈ K2 }
= sup { 〈x, tW1y〉+ 〈x, (1− t)W2y〉 | x ∈ K1, y ∈ K2 }
≤ tf(W1) + (1− t)f(W2).

So f is convex. The same reason holds for f̂ , and thus f̂
is also convex. Next, by [39, Lemma 2.6], in order to show
that both f and f̂ are 1-Lipschitz, we only need to show
that the norm of any subgradient of f or f̂ is bounded by
1. By [40, Theorem D.4.4.2], we know that for any W ∈
Rn×n,

∂f(W ) = conv {xyT | x ∈ K1, y ∈ K2, 〈x,Wy〉 = f(W ) } ,
∂f̂(W ) = conv {xyT | x ∈ K̂1, y ∈ K̂2, 〈x,Wy〉 = f(W ) } .

Since ‖x‖ ≤ 1 and ‖y‖ ≤ 1, it is easy to verify that for
any W ∈ Rn×n and for any Z ∈ ∂f(W ) ∪ ∂f̂(W ),

‖Z‖F ≤ 1,

where ‖ · ‖F is the Frobenius norm. Therefore, we can
conclude that both f and f̂ are 1-Lipschitz functions.

Second step: bound EQ∼U(SOn,+) [f(Q)]. First, we
give the bound on EQ∼U(On)

[
f̂(Q)

]
. From the first step,

we know that f̂ is convex. Then by the comparison princi-
ple developed by Tropp; see [41, Theorem 5 and Lemma 8],
we can conclude that

EQ∼U(On)

[
f̂(Q)

]
≤ 1.5√

n EG∼N (0,In)

[
f̂(G)

]
, (17)

Next, we give the bound on EQ∼U(SOn,+)

[
f̂(Q)

]
. By

expanding the uniform distribution over On, we can get

EQ∼U(On)

[
f̂(Q)

]
= 1

2 EQ∼U(SOn,+)

[
f̂(Q)

]
+ 1

2 EQ∼U(SOn,−)

[
f̂(Q)

]
≥ 1

2 EQ∼U(SOn,+)

[
f̂(Q)

]
,

where the inequality follows from the fact that f̂ is non-
negative. Combine this result with (17), we can conclude
that

EQ∼U(SOn,+)

[
f̂(Q)

]
≤ 3√

n EG∼N (0,In)

[
f̂(G)

]
. (18)

Then, by the Gaussian Chevet’s inequality; see [42, Exer-
cise 8.7.4], we know that

EG∼N (0,In)

[
f̂(G)

]
≤ ω(K̂1) + ω(K̂2)

≤
√
δ(K1) +

√
δ(K2),

(19)

where the second inequality follows from Lemma 2(c).
Combine (18) and (19), we can get

EQ∼U(SOn,+)

[
f̂(Q)

]
≤ 3√

n

(√
δ(K1) +

√
δ(K2)

)
. (20)



13

Finally, by the fact that f ≤ f̂ and (20), we can conclude
that

EQ∼U(SOn,+) [f(Q)] ≤ 3√
n

(√
δ(K1) +

√
δ(K2)

)
. (21)

Third step: concentration bound for f(Q). From
step 1, we know that f is 1-Lipschitz. For clearness, we
denote PQ∼U(SOn,+) and EQ∼U(SOn,+) as PQ and EQ.
By the concentration bounds of Lipschitz functions over
the special orthogonal group develop by Meckes; see [43,
Theorem 5.5 and Theorem 5.16], we can get that for every
t ≥ 0,

PQ [f(Q) ≥ EQ[f(Q)] + t] ≤ exp(−n−2
8 t2).

Note that a similar result can be obtained from [42,
Theorem 5.2.7]. Combining with (21), we can conclude
that for every t ≥ 0,

PQ
[
f(Q) ≥ 3√

n

(√
δ(K1) +

√
δ(K2)

)
+ t
]
≤ exp(−n−2

8 t2).

F. Lemmas needed for the proof of Proposition 5
In this section, we present two lemmas that are needed

for the proof of Proposition 5. These two lemmas provide
probabilistic bound on the statistical dimension of sum of
randomly rotated cones.

The next lemma provides a probabilistic bound on the
statistical dimension of the sum of two cones.

Lemma 5 (Probabilistic bound on statistical dimension
under random rotation). Let K1 and K2 be two closed
convex cones in Rn. Then

P
[√

δ(K1 +QK2) ≤ 1√
β(t)

(√
δ(K1) +

√
δ(K2)

)]
≥ 1− exp(−n−2

8 t2)

with β(t) = 1− 3√
n

(√
δ(K1) +

√
δ(K2)

)
− t,

where Q is drawn uniformly at random from SO(n).

Proof. By Proposition 3 and Proposition 4.

Our next lemma extends Lemma 5 to arbitrary number
of cones.

Lemma 6. Let K1, . . . ,Kp be closed convex cones in Rn
and let Q1, . . . , Qp be i.i.d. matrices uniformly drawn from
SO(n). If

∑p
i=1
√
δ(Ki) ≤

(
1− 4−

1
p−1 − t

)√
n/6 for some

t > 0, then

P

[√
δ
(
K
)
≤ 2

p∑
i=1

√
δ(Ki)

]
≥ 1− (p− 1) exp(−n−2

8 t2),

where K =
∑p
i=1 QiKi.

Proof. Throughout this proof, we define the following
notations:
• δi = δ(Ki), for all i ∈ 1 : p;
• δ1:i = δ

(∑i
j=1 QjKj

)
, for all i ∈ 1 : p;

• For each i ∈ 2 : p, define the event

Ei(t) =
{√

δ1:i ≤ 1√
βi(t)

(√
δ1:(i−1) +

√
δi

)}
with βi(t) = 1− 3√

n

(√
δ1:(i−1) +

√
δi

)
− t.

Our proof consists of three steps.
Step 1: bound the probability of E2(t)∧· · ·∧Ep(t).

Denote the indicator random variable for Ei(t) by 1Ei(t),
which evaluates to 1 if Ei(t) occurs and otherwise evalu-
ates to 0. Then for each i ∈ 2 : p, we have

P(Ei(t)) = E(1Ei(t))
= E{Qj}i−1

j=1

[
E
(
1Ei(t) | {Qj}

i−1
j=1
)]

≥ E{Qj}i−1
j=1

[
1− exp(−n−2

8 t2)
]

= 1− exp(−n−2
8 t2),

where the inequality follows from Lemma 5 and the
assumption that Qi are all independent. Extending the
bound on P(Ei(t)) to all i ∈ 2:p via the union bound, we
have

P(E2(t) ∧ · · · ∧ Ep(t)) ≥ 1− (p− 1) exp(−n−2
8 t2).

Step 2: show that E2(t)∧ · · · ∧Ep(t) implies bound
on

√
δ1:p ≤ 1√

β2(t)...βp(t)

∑p
i=1
√
δi. Indeed, we have

√
δ1:p ≤ 1√

βp(t)

(√
δ1:(p−1) +

√
δp

)
≤ 1√

βp(t)

(
1√

βp−1(t)

(√
δ1:(p−2) +

√
δp−1

)
+
√
δp

)
≤ 1√

βp(t)βp−1(t)

(√
δ1:(p−2) +

√
δp−1 +

√
δp

)
...

≤ 1√
β2(t)...βi(t)

i∑
j=1

√
δj .

Step 3: show that E2(t)∧· · ·∧Ep(t) and the assump-
tion

∑p
i=1
√
δ(Ki) ≤

(
1− 4−

1
p−1 − t

)√
n/6 implies that

βi(t) ≥ 4−
1

k−1 for i ∈ 2 : p. We prove this by induction on
i. First we show that β2(t) ≥ 4−

1
k−1 . Indeed, we have

β2(t) = 1− 3√
n

(√
δ1 +

√
δ2

)
− t

≥ 1− 3√
n

(
1−4−

1
k−1−t

)
√
n

6 − t ≥ 4−
1

k−1 .

Next for any i ∈ 3 : k, we assume that βj(t) ≥ 4−
1

k−1 for
all 2 ≤ j ≤ (i− 1), then we have

βi(t) = 1− 3√
n

(√
δ1:(i−1) +

√
δi

)
− t

≥ 1− 3√
n

1√
β2(t)...βi−1(t)

i∑
j=1

√
δj − t

≥ 1− 3√
n

2
i−2
k−1

(
1−4−

1
k−1−t

)
√
n

6 − t ≥ 4−
1

k−1 .
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Finally, combining all three steps, we can conclude that

P

[√
δ
(
K
)
≤ 2

p∑
i=1

√
δ(Ki)

]
≥ 1− (p− 1) exp(−n−2

8 t2),

with K =
∑p
i=1 QiKi.

G. Proof for Proposition 5
Throughout this proof, we define the following notations

for all i ∈ 1 : k:
• Di = D(Ai, x\i);
• D̂i = D(Âi, x̂\i);
• δi = δ(Di);
• δ1:i = δ

(∑i
j=1Di

)
;

• δ−i = δ
(∑

j 6=iDj
)

.
By Lemma 1(c), for all i ∈ 1 : k, we have

Di = D(QiÂi, Qix̂\i) = QiD̂i.

Then it follows from Lemma 2(a) that

δ(D̂i) = δ(QTi Di) = δi.

For all i ∈ 1:k, define
• D̂i := D(Âi, x̂\i);
• δi = δ(Di);
• δ−i = δ

(∑
j 6=iDj

)
First, fix t > 0, for each i ∈ 1:k, define the event

Ei(t) =

cos∠

−Di,∑
j 6=i
Dj

 ≤ 3√
n

(√
δi +

√
δ−i

)
+ t

 .

Denote the indicator random variable for Ei(t) by 1Ei(t),
which evaluates to 1 if Ei(t) occurs and otherwise evalu-
ates to 0. Then, the following chain of inequalities gives
the upper bound for the probability of the event Ei(t):

P(Ei(t)) = E(1Ei(t))
= E{Qj}j 6=i E

[
1Ei(t)

∣∣ Qj ∀j 6= i
]

≥ E{Qj}j 6=i [1− exp(−n−2
8 t2)]

= 1− exp(−n−2
8 t2),

(22)

where the inequality follows from Proposition 4.
Next, by Lemma 6, we know that

P

√δ−i ≤ 2
∑
j 6=i

√
δj

 ≥ 1− (k − 2) exp(−n−2
8 t2). (23)

Thirdly, for each i ∈ 1:k, define the event,

Êi(t) =

cos∠

−Di,∑
j 6=i
Dj

 ≤ 6√
n

k∑
i=1

√
δi + t

 .

By combining Equation (22) and Equation (23) together,
we can conclude that

P(Êi(t)) ≥ 1− (k − 1) exp(−n−2
8 t2).

Extend the bound on P(Êi(t)) to all i ∈ 1:k via the union
bound:

P(Ê1 ∧ · · · ∧ Êk) ≥ 1− k(k − 1) exp(−n−2
8 t2).

Finally, by our assumption that
∑k
i=1
√
δ(Di) ≤(

1− 4−
1

k−1 − t
)√

n/6, it follows that

6√
n

k∑
i=1

√
δi + t ≤ 1− 4−

1
k−1 .

Therefore, we can conclude that the rotated pairs
{(x\i ,Ai)}ki=1 are 4−

1
k−1 -incoherent with probability at

least 1− k(k − 1) exp(−n−2
8 t2).
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