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Abstract
We introduce two quantum algorithms for solving structured prediction problems. We first show that a stochastic gradient 
descent that uses the quantum minimum finding algorithm and takes its probabilistic failure into account solves the struc-
tured prediction problem with a runtime that scales with the square root of the size of the label space, and in Õ(1∕𝜖) with 
respect to the precision, 𝜖, of the solution. Motivated by robust inference techniques in machine learning, we then introduce 
another quantum algorithm that solves a smooth approximation of the structured prediction problem with a similar quantum 
speedup in the size of the label space and a similar scaling in the precision parameter. In doing so, we analyze a variant of 
stochastic gradient descent for convex optimization in the presence of an additive error in the calculation of the gradients, 
and show that its convergence rate does not deteriorate if the additive errors are of the order O(

√

�) . This algorithm uses 
quantum Gibbs sampling at temperature Ω(𝜖) as a subroutine. Based on these theoretical observations, we propose a method 
for using quantum Gibbs samplers to combine feedforward neural networks with probabilistic graphical models for quantum 
machine learning. Our numerical results using Monte Carlo simulations on an image tagging task demonstrate the benefit 
of the approach.

Keywords  Quantum algorithms · Statistical learning · Structured prediction · Support vector machines · Computational 
complexity · Query complexity · Quantum minimum finding · Quantum Gibbs sampling · Stochastic gradient descent · 
Stochastic subgradient methods · Stochastic average gradient methods · Smooth approximation

1  Introduction

Structured prediction is an area of machine learning in which 
the aim is to learn an association of the input data to a struc-
tured output (Sebastian et al. 2014). Structured prediction 
tasks arise naturally in many real-world applications. For 
example, predicting temporal structures (e.g., the parse tree 
of a sentence, or the coreferences between nouns and pro-
nouns in texts) is important in natural language processing 
applications (Daume and Marcu 2006). Spatial structures 
(e.g., the segmentation of an image into meaningful compo-
nents, the geometry of molecules) are of interest in several 

areas of application, such as image processing, computer 
vision, and computational biology (Jiang 2020).

The structures of interest in structured prediction are 
often discrete and combinatorial in nature. As a result, 
while a description of an admissible structure can be rep-
resented efficiently, the number of possible valid structures 
is exponentially larger than these representations. As such, 
viewing structured prediction tasks as classification prob-
lems results in exponentially large numbers of labels. This 
is why classical machine learning has to employ techniques 
such as generalization of support vector machines (SVM) to 
structured SVMs (SSVM) (Yu 2011) and generative models 
(Sohn et al. 2015) to solve structured prediction problems.

The inherently combinatorial nature of structured pre-
diction tasks gives rise to piecewise smooth models, as 
in the case of SVMs. However, predicting a structured 
output involves assignment of probabilities to vectors 
that encode relations between multiple simpler objects or 
labels. Therefore, the combinatorial aspect of the task is 
especially egregious in structured prediction. For example, 
in SSVMs, the number of pieces in the piecewise smooth 
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model is often exponentially large in terms of the dimen-
sion of prediction vectors.

The underlying optimization problem in structured pre-
diction tasks takes the form

where fi ∶ Y ×ℝ
D
→ ℝ are strongly convex functions, Y  

is a finite set, and D is the dimension of the vector of model 
parameters w. In Sections 3 and 4 we will, respectively, 
assume that the functions fi have bounded subgradients or 
Lipschitz continuous gradients. This formulation can be eas-
ily extended to the case in which each function fi is defined 
on a distinct domain Yi . The size of Y  can cause the evalu-
ation of the max operator to be computationally intractable. 
In SVMs and SSVMs, w represents the trainable weights 
of the model, the functions fi represent the margins of the 
points in a dataset from classifying hyperplanes with addi-
tional regularizer terms, and Y  is an exponentially large 
label set. Problems in the form of (1) also arise in other 
machine learning applications.

In this paper, we present two methods for solving the 
above optimization problem following the approaches 
taken in classical convex optimization for nonsmooth 
optimization. The first approach relies on subgradient 
methods, which are among the common techniques for 
optimization of nonsmooth models. We introduce a quan-
tum algorithm based on a subgradient method and the 
quantum minimum finding (QMF) algorithm (Durr and 
Hoyer 1996). Another common technique for dealing with 
nonsmooth models is smooth approximation, for example, 
by using softmax operators. Although these techniques are 
effective at hiding the nonsmooth aspects of the problem 
by replacing a piecewise smooth problem with a single 
smooth approximation, computing that approximation 
can be intractable when the number of pieces is large. In 
our second quantum algorithm, we consider a smoothing 
that combines softmax approximation and quantum Gibbs 
sampling. The quantum Gibbs sampler is used to estimate 
expected values of certain observables of the Boltzmann 
distribution of a many-body system, which in turn provide 
estimations of gradients of the smooth approximation.

The performance advantages of the quantum algorithms 
introduced in this paper are as follows.

(a)	 Both of our quantum algorithms achieve quadratic 
quantum speedups (up to polylogarithmic factors) in 
terms of the size of the label space in structured predic-
tion tasks. This is an important speedup for machine 
learning applications since the techniques for classifi-
cation with a small number of labels do not translate 

(1)min
w∈ℝD

1

n

n
∑

i=1

gi(w), with gi(w) = max
y∈Y

fi(y,w),

into performant methods in tasks with large numbers 
of labels (Bi and Kwok 2013).

(b)	 From the machine learning point of view, optimizing 
the smooth approximation of the objective function in 
(1) itself is of natural interest. The softmax approxima-
tion allows for the optimizer to fit a reasonable model 
to the structured prediction problem while avoiding set-
tling into erroneous minima that are artifacts of limited 
training data. This may result in better generalization 
and more-robust learning (Lee and Mangasarian 2001).

(c)	 Quantum algorithms that achieve quadratic speedups 
for classical optimization problems often do so at the 
expense of much worse scaling in terms of the solu-
tion precision they achieve. For example, quantum 
algorithms for linear programming and semi-definite 
programming incur higher-order polynomial complexi-
ties with respect to solution precision (see Section 1.1). 
The higher-order polynomial scalings in the precision 
of the solution are obstacles to the practical applicabil-
ity of these algorithms. In contrast, our quantum algo-
rithms possess linear scalings (up to polylogarithmic 
factors) in the precision of the solutions they return. 
This scaling agrees with the classical optimal bounds 
for first-order methods in the convex optimization of 
nonsmooth functions (Shamir and Zhang 2013; Nest-
erov 2005).

(d)	 None of our quantum algorithms require QRAM (Gio-
vannetti et al. 2008) access to classical data. Instead, 
classical data may be provided through an online 
stream of single instances (or via mini-batches). Pro-
cessing each sample amounts to reprogramming the 
quantum oracles in QMF and quantum Gibbs sampling 
or equivalently reprogramming a register of qubits that 
obtains a binary encoding of the sample in computa-
tional bases states.

We note that both quantum algorithms require fault-tolerant 
quantum computers for execution as they rely on repeated 
applications of amplitude amplification. Our first algorithm 
is simpler as it employs QMF directly. The conditions for 
our complexity theoretic results are also more general as 
the functions fi are not required to be differentiable (but 
they have bounded subgradients; see Condition 1). How-
ever, the complexity of this algorithm depends logarithmi-
cally on the inverse of the minimum gap attained by the 
functions fi(y, w) (as functions of y) when w varies through 
training. This gap may decrease exponentially fast in real-
world applications and therefore the logarithmic depend-
ence on it may not necessarily be negligible. Our second 
algorithm is more involved as it relies on smooth approxi-
mation and quantum Gibbs sampling. It also requires fi to 
be differentiable with Lipschitz continuous gradients (see 



Quantum Machine Intelligence            (2022) 4:25 	

1 3

Page 3 of 25     25 

Condition 3). However, its complexity does not depend on 
the gap of the functions fi. On the other hand, the complexity 
of this algorithm with respect to the precision, 𝜖, of the solu-
tion, is slightly worse (scaling with 𝜖− 1.5 up to logarithmic 
factors, as opposed to 𝜖− 1 for the first algorithm).

1.1 � Related literature

Stochastic gradient descent (SGD) is a simple and efficient 
algorithm that has become the core algorithm for classi-
cal large-scale convex optimization and its applications in 
machine learning. SGD relies on classical queries to an unbi-
ased estimator of the gradients of the objective function. 
SGD generalizes to non-differentiable convex functions, in 
which case it suffices to have access to unbiased estimators 
of the subgadients (i.e., the expected queried vector has to be 
an element of the subgradient set). SGD can only achieve a 
Õ(1∕𝜖2) convergence rate for nonsmooth functions (Shamir 
and Zhang 2013), making it provably suboptimal for non-
smooth optimization (Harvey et al. 2018). However, vari-
ants of it, such as SGD with suffix averaging (Rakhlin et al. 
2012) or SGD with polynomial-decay averaging (Shamir 
and Zhang 2013; Lacoste-Julien et al. 2012) achieve the 
optimal convergence rate of Õ(1∕𝜖).1

In this paper, we use stochastic (sub-)gradient descent 
with polynomial-decay averaging (SGDP) to solve the 
structured prediction problem (1). We use the QMF of 
Dürr and Høyer (Durr and Hoyer 1996) as a subroutine to 
solve the inner discrete optimization problem in (1) over the 
label space Y  . QMF is based on Grover’s search algorithm 
(Grover 1996). Since QMF has a randomized nature, it may 
fail to return a correct unbiased estimator of the subgradient 
in (1). Our analysis shows that the failure of QMF can be 
overcome if its failure rate is kept at O(𝜖).

A second approach to solving problems in the form of 
(1) is to approximate the piecewise smooth problem with a 
fully smooth one and use variants of gradient descent design 
for smooth problems, such as SAGA (Defazio et al. 2014). 
Each function gi is replaced with an approximation that is 
strongly convex with a Lipschitz continuous gradient. These 
smooth approximations typically rely on replacing the max 
operator with the differentiable softmax operator (Gao and 
Pavel 2017; Beck and Teboulle 2012), that is, each function 
gi is replaced by the smooth approximation

which is at least as computationally difficult as evaluat-
ing the original max operator. This approximation can be 

(2)g
�

i
(w) ∶=

1

�
log

∑

y∈Y

e�fi(y,w),

interpreted from a thermodynamic perspective, wherein each 
g
�

i
 represents the free energy of a system with an energy 

spectrum described by fi. This motivates the use of quantum 
Gibbs samplers for computing such smooth approximations.

It has been speculated for the past 20 years that quan-
tum computers can be used to generate samples from Gibbs 
states (Terhal and DiVincenzo 2000). Since then, many algo-
rithms for Gibbs sampling based on a quantum-circuit model 
have been introduced (Poulin and Wocjan 2009; Temme 
et al. 2011; Kastoryano and Brandao 2016; Chowdhury 
and Somma 2016; van Apeldoorn et al. 2017). The Gibbs 
sampler of van Apeldoorn et al. (2017) has a logarithmic 
dependence on the error of the simulated distribution. The 
sampler of Chowdhury and Somma (2016) similarly has a 
logarithmic error dependence, but assumes a query access 
to the entries of the square root of the problem Hamiltonian. 
These quantum-circuit algorithms use phase estimation and 
amplitude amplification techniques to create a quadratic 
quantum speedup in Gibbs sampling.

Moreover, numerical and experimental heuristics may 
provide even better practical performance for Gibbs sam-
pling. The Gibbs sampler of Temme et al. (2011) has an 
unknown runtime, but has the potential to provide efficient 
heuristics since it relies on a quantum Metropolis algorithm. 
Experimentally, quantum and semi-classical evolutions can 
be used as physical realizations of improved Gibbs sam-
plers. For example, contemporary investigation in quantum 
adiabatic theory focuses on adiabaticity in open quantum 
systems (Sarandy and Lidar 2005; Avron et al. 2012; Albash 
et al. 2012; Bachmann et al. 2016; Venuti et al. 2016). These 
authors prove adiabatic theorems to various degrees of gen-
erality and assumptions. These adiabatic theorems suggest 
the possibility of using controlled adiabatic evolutions of 
quantum many-body systems as samplers of the instantane-
ous steady states of quantum systems. Takeda et al. (2017) 
show that a network of non-degenerate optic parametric 
pulses can produce good estimations of Boltzmann distri-
butions. Another possible approach to improved Gibbs sam-
plers is to design customized Gibbs sampling algorithms 
that rely on Monte Carlo and quantum Monte Carlo methods 
implemented on digital high-performance computing hard-
ware (Matsubara et al. 2017; Okuyama et al. 2017).

Boltzmann distributions arise naturally in machine learning 
computations due to the principle of maximum entropy. Sam-
pling from Boltzmann distributions, although computationally 
challenging, is unavoidable in Markovian models of reason-
ing. For instance, we refer the reader to the Hammersley–Clif-
ford theorem (Wainwright et al. 2008; Koller and Friedman 
2009) in the context of training undirected probabilistic graph-
ical models (UGM). With the success of deep neural networks 
in many practical applications, improving their performance 
by combining them with UGMs has become an active area 
of research. For example, a combination of convolutional 1  Throughout, the notation Õ is used to hide polylogarithmic factors.
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neural networks (CNN) and fully connected conditional ran-
dom fields (a type of UGM), has achieved state of the art 
performance in image segmentation—a critical task in com-
puter vision. In image tagging, another computer vision task, 
combining CNNs with Ising models (as a UGM with binary 
random variables and pairwise interactions), has been found 
to provide improved accuracy (Chen et al. 2015). Kim et al. 
(2011) formulate image segmentation as a correlation cluster-
ing problem and solve it using UGMs with higher-order inter-
actions. Similarly Yu and Joachims (2009) solve the natural 
language processing problem of noun phrase coreference by 
formulating it as a correlation clustering problem.

The idea of using Gibbs sampling as a subroutine in quantum 
machine learning has already been considered. Wiebe et al. (2014) 
use Gibbs state preparation to propose an improved framework 
for quantum deep learning. Crawford et al. (2016) and Levit et al. 
(2017) introduce a framework for reinforcement learning that uses 
Gibbs states as function approximators in Q-learning. Quantum 
Gibbs sampling has recently been shown to provide a quadratic 
speedup in solving linear programs (LP) and semi-definite pro-
grams (SDP) (Brandao and Svore 2017; Brandão et al. 2017; van 
Apeldoorn et al. 2017). The speedup in these quantum algorithms 
with respect to the problem size often comes at the expense of 
much worse scaling in terms of solution precision. For example, 
van Apeldoorn et al. (2017) propose a quantum algorithm for 
linear programming that requires Õ(𝜖−5) queries to the input of 
the LP, and an algorithm for SDPs that requires Õ(𝜖−8) queries to 
the input matrices of the SDP, where 𝜖 is an additive error on the 
accuracy of the final solution. Van Apeldoorn and Gilyén (2018) 
later improved the scaling of their result by further analysis and 
reduced the dependence on precision parameters to Õ(𝜖−4) and 
more recently to Õ(𝜖−3.5) (van Apeldoorn and Gilyén 2019). Sev-
eral lower bounds proven in van Apeldoorn et al. (2017) and van 
Apeldoorn and Gilyén (2018) suggest that these results cannot 
be improved significantly further. In particular, the polynomial 
dependence on precision parameters is necessary. In contrast, 
the quantum algorithms proposed in this paper provide (optimal) 
Õ(𝜖−1) scaling in precision of the solutions they return.

1.2 � Summary of results

The two classical optimization approaches discussed above 
for (a) solving the original min-max problem directly with the 
subgradient method, and (b) solving a smooth approximation 
of it using SAGA (Defazio et al. 2014), inspired the design 
and analysis of the two quantum algorithms we present in this 
paper. Our contributions are summarized as follows.

Theorem 1  We show that stochastic subgradient descent with 
polynomial-decay averaging (SGDP), under conditions that 
take the probabilistic errors of quantum minimum finding into 
account, can solve the optimization problem (1) with the same 
optimal convergence rate as SGDP under its original conditions.

Theorem  2  We then derive the query complexity of 
Q-SGDP (SGDP using quantum minimum finding) and 
observe a quadratic speedup in terms of the size of the dis-
crete set Y  . The caveat, however, is that the query com-
plexity reported in this theorem has a factor of log 1

G
 where 

G is the minimum gap attained by the functions fi(y, w) as 
functions of y as w ranges over its various observed values 
throughout the algorithm.

Theorem 3  We show that SAGA, under conditions that 
take the probabilistic errors of quantum Gibbs sampling into 
account, minimizes a smooth approximation of the objective 
function in (1) with the same optimal convergence rate as 
SAGA under its original conditions.

Theorem 4  We then derive the query complexity of Q-SAGA 
(SAGA using quantum Gibbs sampling) for solving the original 
nonsmooth optimization problem (1). We conclude that Q-SAGA 
also achieves a quadratic speedup in terms of |Y| without a 
dependence on the minimum gap, at the expense of a slightly 
worse scaling in terms of 𝜖.

Experiments of Section 5.2  To show the real-world applicability 
of our approach, we formulate image tagging as a structured pre-
diction task. We then train a neural network with leading deep 
layers and a trailing probabilistic graphical model for this task. 
Our numerical results show that this hybrid architecture trained 
with a structured prediction objective function in the form of 
smooth approximation of the objective in (1) can outperform a 
purely deep model with the same number of parameters.

The proofs of all propositions can be found in the 
appendix.

2 � Background

We first present a brief account of SVMs and SSVMs. We 
refer the reader to Ng (2010) for the basics of SVMs and to Yu 
(2011) for SSVMs. We then introduce the more general frame-
work of structured prediction tasks in machine learning. These 
models are of particular interest in scenarios where the numbers 
of labels are very large, for example, when a label can be any 
of the exponentially many binary vectors of a given dimension.

2.1 � SVMs and SSVMs

Let X  be a feature set and Y = {−1, 1} be the label set. We 
are also given a training dataset S ⊆ X × Y. A linear clas-
sifier is then given by two (tunable) parameters w ∈ ℝ

D and 
b ∈ ℝ defining a separating hyperplane wTx + b. For a point 
(x, y) ∈ S  , the positivity of the product y(wTx + b) indicates 
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the correct classification of x. The SVM optimization problem 
can be expressed as

The constraints ensure that every (x, y) ∈ S  is classified cor-
rectly within a confidence margin. If y(wTx + b) is positive, 
one could superficially satisfy y

(

wTx + b
)

≥ 1 by scaling up 
w and b. To avoid this we minimize the objective 1

2
‖w‖2 . In 

other words, the constraints ensure that the distance of S  to 
the classifying hyperplane is at least 1/∥w∥, and the objective 
function asks for this margin to be maximized.

Often, the above optimization problem is infeasible, so we 
would rather solve a relaxation of it by introducing slack vari-
ables ξ(x,y) for every data point in S :

Here, λ is a hyperparameter adjusting the relative impor-
tance of the two terms in the objective. We note that when 
1 − y

(

wTx + b
)

≥ 0 , the minimization of ξ(x,y) in the objec-
tive function turns the first constraint in (4) active, that is, 
�(x,y) = 1 − y

(

wTx + b
)

 . However, when 1 − y
(

wTx + b
)

< 0 , 
the second constraint is active and therefore ξ(x,y) = 0. Thus, 
the optimization problem (4) can be written in the following 
unconstrained form:

For simplicity, we remove the bias b from the rest of our 
analysis and consider it a trainable feature of x.

Let Y  now contain more than just two labels. The score of 
a label y ∈ Y  is then represented by a dot product wT

y
x where 

wy is a vector of model parameters specific to the label y. The 
Crammer–Singer formulation of the multi-label SVM problem is

We can rewrite this in a notation more suitable for introduc-
ing SSVMs as a generalization of SVMs. We first concat-
enate the weight vectors wy into a single vector:

We then introduce the joint feature map

(3)
min
w,b

1

2
‖w‖2

s.t. y
�

wTx + b
�

≥ 1 ∀(x, y) ∈ S.

(4)

min
w,b,�

�

2
‖w‖2 +

∑

(x,y)∈S

�(x,y)

s.t. y
�

wTx + b
�

≥ 1 − �(x,y) ∀(x, y) ∈ S

�(x,y) ≥ 0 ∀(x, y) ∈ S.

(5)min
w,b

�

2
‖w‖2 +

∑

(x,y)∈S

max
�

1 − y
�

wTx + b
�

, 0
�

.

(6)

min
w,�

�

2

∑

y∈Y

‖wy‖
2 +

∑

�(x,y)

s.t. wT
y
x − wT

y�
x ≥ 1 − �(x,y)

∀(x, y) ∈ S,∀y� ∈ Y ⧵ {y}

�(x,y) ≥ 0 ∀(x, y) ∈ S.

(7)wT = (wT
1
,… ,wT

|Y|
).

(8)�(x, y) = (0,… , x,… , 0),

with x being in the y-th position and all other elements 0. 
Lastly, we introduce a notion of distance or loss function 
on Y :

Then, the model can be rewritten as

The above model is that of an SSVM in general, with 
possibly more complicated joint feature maps Φ and loss 
functions Δ. This optimization problem can be written in 
the unconstrained form of minw fSSVM(w) for

which is a min-max optimization problem of the form

where the summands f(x,y)(y�; w) are of the form

Without the regularizer term, problem (10) is therefore 
readily of the mathematical form of the Lagrangian dual 
problems studied in Ronagh et al. (2016) and Karimi and 
Ronagh (2017), and cutting plane or subgradient methods 
could be used to solve them efficiently under the assumption 
of the existence of noise-free discrete optimization oracles. 
It is also a linear problem, and the quantum linear program-
ming technique of van Apeldoorn et al. (2017) could be used 
to provide quadratic speedup in the number of constraints 
and variables of the problem. In most practical cases, how-
ever (see below), the instances are very large, and it would 
not be realistic to assume the entire problem is available 
via an efficient circuit for oracle construction. Stochastic 
gradient descent methods overcome this difficulty (for clas-
sical training data) by randomly choosing training samples 
or mini-batches. This is also our approach in what follows.

2.2 � Structured prediction

We now introduce the general framework of structured pre-
diction as a supervised learning task in machine learning. 

(9)Δ(y�, y) =

{

1 y ≠ y�,

0 otherwise.

(10)

min
w,�

�

2
‖w‖2 +

∑

�(x,y)

s.t. �(x,y) ≥ Δ(y�, y) − wT
�(x, y) + wT

�(x, y�)

∀(x, y) ∈ S,∀y� ∈ Y

�(x,y) ≥ 0 ∀(x, y) ∈ S.

(11)
fSSVM(w) =

�

2
‖w‖2

+
∑

(x,y)∈S

max
y�

�

Δ(y�, y) + wT
�

�(x, y�) −�(x, y)
��

,

(12)min
w

�

f (w) =

�

∑

(x,y)∈S

max
y�

f(x,y)(y
�; w)

��

,

(13)
f(x,y)(y

�; w) =
�

2�S�
‖w‖2

+ Δ(y�, y) + wT
�

�(x, y�) −�(x, y)
�

.
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SSVMs are only one of the mathematical models used to 
solve structured prediction problems. As we will see, the dis-
tinguishing factor between techniques for solving structured 
prediction problems is the choice of an objective function 
similar to (13). We will assume that structured prediction 
problems are equipped with the following elements.

(a)	 A training dataset S ⊆ X × Y .
	   The sets X  and Y  , respectively, contain all possible 

inputs and outputs. The elements of Y  encode a cer-
tain structure (e.g., the syntactic representation of an 
English sentence). In structured prediction, the outputs 
are therefore vectors instead of scalar discrete or real 
values. In particular, the set Y  may be exponentially 
large in the size of the input. This distinguishes struc-
tured prediction from multi-label classification.

(b)	 A score function sw ∶ X × Y → ℝ.
	   The score function sw(x, y) = s(x, y; w) is indicative 

of the suitability of a label y for a given input x, where 
w is a vector of tunable parameters. The predictor for 
the model which is a function mapping the input x and 
parameter w to an output prediction y is therefore

(c)	 A real-valued loss function Δ ∶ Y × Y → ℝ.
	   The goal is to find a predictor hw like (14) that mini-

mizes the empirical risk

	   We assume that the minimum of Δ over its first com-
ponent is uniquely attained along its diagonal, that is,

and without loss of generality, we may assume that Δ 
vanishes on its diagonal

s i n c e  w e  c a n  a l w a y s  s h i f t  i t  t o 
Δ�(y�, y) = Δ(y�, y) − Δ(y, y) . This decreases the empiri-
cal risk by the constant

which is an invariant of S .

Example 1  In the SSVM framework of Section 2.1, the loss 
function Δ is simply the Kronecker delta function, in other 
words Δ(y, y�) = �y,y� , and the score function is linear in the 
training parameters: s(x, y; w) = wTΦ(x, y). Furthermore, if 

(14)hw(x) = argmax
y�

s(x, y�; w).

(15)R(hw) =
1

�S�

∑

(x,y)∈S

Δ(hw(x), y).

(16)y = argmin
y�

Δ(y�, y),

(17)Δ(y, y) = 0, ∀y ∈ Y,

(18)
1

�S�

∑

(x,y)∈S

Δ(y, y),

Φ(x, y) is quadratic in y and Y  is the set of binary vectors 
with a fixed length, then s(x, y; w) corresponds to the energy 
of an Ising model, which appears in many structured predic-
tion tasks as discussed in Section 1. With this score function 
s, the task of prediction using the predictor h corresponds to 
finding the ground state of the Ising model.

2.3 � A min‑max optimization problem

We now present a general mathematical programming model 
motivated by our machine learning discussion above and in Sec-
tions 3 and 4 we propose two quantum algorithms for solving it.

We define the objective function

Here w is a vector of tunable real-valued parameters, n is a 
positive integer, and all fi are strongly convex real-valued func-
tions of w with Lipschitz continuous gradients. Furthermore 
each fi is defined in its first argument y over a finite set Y  . In 
practical machine learning examples, fi could be strongly con-
vex because of the addition of a strongly convex regularizer 
(e.g., L2 regularizer) to an already convex loss function. We are 
interested in solving the optimization problem

Even if the functions fi are differentiable, f is not gener-
ally differentiable because of the max operator involved. 
However, since the max operator preserves convexity, f is 
a convex function.

3 � Nonsmooth optimization

Here we provide a time complexity analysis on the optimization 
of problem (19) using a stochastic variant of the subgradient 
method (Harvey et al. 2018; Shamir and Zhang 2013) that incor-
porates a gradient-averaging scheme known polynomial-decay 
averaging (Shamir and Zhang 2013; Lacoste-Julien et al. 2012).

Our approach is to use stochastic (sub-)gradient descent 
with polynomial-decay averaging (SGDP) to optimize the non-
smooth objective function f with quantum minimum finding 
providing subgradient approximations for SGDP. Because the 
estimates of the subgradients are not exact, we need to revisit 
the convergence of SGDP in the presence of errors in calculat-
ing the subgradients and do so in the following sections.

3.1 � A‑SGDP: Approximate SGDP

We assume the following condition about the function f.

(19)f (w) =
1

n

n
∑

i=1

gi(w), where gi(w) = max
y∈Y

fi(y,w).

(20)w∗ = argmin
w

f (w).
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Condition 1  Each function fi is μ-strongly convex, and as 
a result each gi is also μ-strongly convex. The vector w is 
restricted to a convex set W  . Furthermore, the subgradients 
of fi(y, w) exist and have the bounded norms

where the supremum ranges over every index i, every y ∈ Y  , 
and every w ∈ W  . Finally, each function fi has an efficient 
quantum oracle, that is, one that acts on O(polylog( 1

�
, |Y|)) 

qubits to compute f with an additive error of δ.

(21)sup
w,i,y

�

‖v‖2 ∶ v ∈ �fi(y,w)
�

≤ M,

The algorithm is as follows. We use the SGDP algorithm of 
Shamir and Zhang (2013), where, at each iteration, we com-
pute a maximizer y for a function fi using the quantum mini-
mum finding algorithm (Durr and Hoyer 1996). In the end, we 
return the weighted average of w at each iteration according 
to the polynomial-decay averaging scheme. SGDP, combined 
with the quantum minimum finding algorithm, yields what we 
refer to as the quantum SGDP (Q-SGDP) algorithm.

Before analyzing Q-SGDP, we introduce and analyze the approxi-
mate variant of SGDP, called approximate SGDP (A-SGDP) Algo-
rithm 1, in which we account for a probabilistic rate of failure in find-
ing a maximizer for the discrete optimization of fi over Y .

Example 2  As an illustrative example, we show how the 
A-SGDP algorithm can be applied to solving the SVM prob-
lem (5). Recall that in SVMs the tunable model parameters 
are w and b as in Section 2.1 (and generically denoted by w 
in Algorithm 1 and the rest of the paper). Also recall that for 
SVMs the set of labels is Y = {−1, 1} . Let (xi, yi) ∈ S  be 
the i-th sample as per line 4 of Algorithm 1. We then have

Consequently, in line 5 we obtain

assuming that our estimate of ŷi is free of errors (e.g., if ζ 
= 0). Then, in line 6 we obtain

(22)fi(y,w, b) =

{

1 − yi(w
Txi + b) y = 1,

0 y = −1.

(23)ŷi =

{

1 1 − yi(w
Txi + b) > 0,

−1 otherwise,

(24)�𝜕wgi(w) = 𝜕wgi(w) =

{

−yixi ŷi = 1,

0 otherwise,

where 0 is the vector of all zeroes, and

The remaining steps of Algorithm 1 follow with no particu-
lar specifications for SVMs.

We now analyze the complexity of A-SGDP. Recall that 
a minimizer of f is denoted by w∗ in (20).

Theorem 5  Under Condition 1, given a target accuracy 𝜖 
> 0, A-SGDP finds a point w ∈ W  satisfying |f(w) − f(w∗)| 
≤ 𝜖 with a probability of at least 1/2 in

descent iterations, if the step size at iteration t is chosen as 
�t =

1

�t
 , and the failure probability in solving argmax

y

fi(y,w
t) 

at iteration t is at most � =
1

4T
.

(25)�𝜕bgi(w) = 𝜕bgi(w) =

{

−yi ŷi = 1,

0 otherwise.

(26)T = O
(

M

��

)
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3.2 � Quantum minimum finding

The quantum minimum finding algorithm (QMF) (Durr and 
Hoyer 1996) relies on coherent queries to an oracle imple-
menting a real-valued function f ∶ Y → ℝ on a discrete 
domain Y  of size N. QMF performs several iterations of 
Grover’s search on a comparative oracle between the values 
of f and a classically chosen threshold value to determine a 
next point y ∈ Y  on which f attains a smaller value than the 
threshold. After these iterations, QMF returns an optimizer 
of f with high probability using Õ(

√

N) queries. The success 
probability of QMF can be trivially boosted to any target 1 
− ζ by O(log(1∕�)) repetitions of the algorithm.

We now provide a statement of the query complexity of 
QMF following Durr and Hoyer (1996, Theorem 1). As we 
are interested in the complexity of queries made to the oracles 
of the functions fi, we take into account the number of addi-
tional elementary gates required to implement the mentioned 
comparative oracle. This is also done in van Apeldoorn et al. 
(2017, Theorem 49). Lemma 1 is a statement of QMF query 
complexity using the notation developed in this paper.

Lemma 1  Let i be a fixed index and fi be the corresponding 
function as defined in (1). Let F be a bound on the absolute 
values of fi, that is, F = maxy∈Y |fi(y,w)| , and G be the dif-
ference between the maximum value of the function and 
the second-largest value of fi. Let U be a unitary that imple-
ments fi and acts on q qubits in order to do so. There exists 
a quantum algorithm that returns a (not necessarily unique) 
point ŷi ∈ argmaxy∈Y fi(y,w) , with a probability of at least 
1 − ζ, in

queries to the oracle of fi, and using

additional other quantum gates.

3.3 � Q‑SGDP: Quantum SGDP

We may now analyze the complexity of Q-SGDP, which is the result 
of combining A-SGDP and the quantum minimum finding algo-
rithm. The query complexity of Q-SGDP can be found using the 
asymptotic number of descent steps reported in Theorem 5 as follows.

Theorem 6  Under Condition 1, given a target accuracy 𝜖 
> 0, Q-SGDP finds a point w ∈ W  satisfying |f(w) − f(w∗)| 
≤ 𝜖 with a probability of at least 1/2 in

(27)O
�

√

�Y� log(1∕�)
�

(28)O
�

√

�Y� log(F∕G) log(1∕�)
�

queries to the quantum oracles of fi and using

additional quantum gates. Here F is a bound on the absolute 
values of fi for all i, y, and w and G is the minimum gap 
attained by the functions fi for different values of y ∈ Y  
throughout the runtime.

4 � Smooth optimization

In Section 3, we considered the subgradient method for 
minimizing the nonsmooth objective function (19). In 
convex optimization, smooth approximation of nons-
mooth objective functions is a common method for design-
ing improved gradient-based solvers (Beck and Teboulle 
2012). We construct such a smooth approximation of the 
function f, and find the minimum of the approximation.

One approach to smoothing the max of a set of func-
tions is softmax smoothing (Beck and Teboulle 2012). For 
a finite set Y  and β > 0, the softmax approximation of the 
max operator over a set of values Y  is defined as

This is the negative free energy of a physical system with 
an energy spectrum {−y : y ∈ Y }. We now apply smoothing 
to the range of every summand fi in (19) and the resultant 
summation is called the smooth approximation of f at inverse 
temperature β, denoted by fβ(w):

We note that fβ(w) converges uniformly to f(w) in the limit 
of � → ∞ (refer to (129) below). So, on one hand, β can 
be interpreted as the thermodynamic inverse temperature at 
equilibrium for each energy function −fi and, on the other 
hand, as a parameter controlling the amount of smoothing 
imposed on f. That is, when β is large, a better approxima-
tion of f is obtained, but with a larger Lipschitz constant for 
the gradient of f (i.e., less smoothness). Consequently, we 
approximate w∗ in (20) with

To perform gradient-based convex optimization on fβ, 
we calculate its gradient via

(29)T = Õ
�

M
√

�Y�

𝜇𝜖

�

(30)Õ
�

M
√

�Y�

𝜇𝜖
log

F

G

�

(31)max
y∈Y

�y =
1

�
log

∑

y∈Y

exp(�y).

(32)f �(w) =
1

n

∑

i

max
y∈Y

� fi(y,w).

(33)w
�

∗ = argmin
w

f �(w).
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where Y is a random variable on Y  with its probability dis-
tribution function being the Boltzmann distribution of a sys-
tem with the configuration set Y  , energy function −fi(y, w), 
and inverse temperature β:

4.1 � Quantum Gibbs sampling

We now describe the above problem in terms of Hermitian 
matrices we intend to simulate on a quantum computer. For 
each i, we assume that the range of fi(−,w) ∶ Y → ℝ corre-
sponds (with an opposite sign) to the spectrum of a diagonal 
Hermitian matrix with the functions −fi(y, w) forming the 
diagonal entries and we denote this matrix by Hi(w). We 
assume we have access to oracles for Hi(w) and its partial 
derivatives. The oracles act on two registers via

and

where k ranges over the elements of Y  and z is any compu-
tational basis state. Here and in what follows, ∂j is used as 
an abbreviation of the notation of partial derivatives with 
respect to the vector w, that is, ∂j = ∂/∂wj. The notation 
∂jHi(w) stands for the diagonal matrix with partial deriva-
tives ∂jfi(y, w) forming its diagonal.

The operator max� would then simply be the negative free 
energy of Hi(w):

Applying stochastic gradient descent for minimizing (19) 
would require calculation of the gradients of fi(y,w) with 
respect to w, which is equal to Tr(Aρ) where � =

exp(−�H)

Tr(exp(−�H))
 

is the Gibbs state’s density matrix and A is the observable 
associated with the partial derivatives

This is exactly the type of quantity studied in van Apel-
doorn et al. (2017). They show that for N × N diagonal 
matrices H and A, such that ∥A∥ ≤ 1 (in the operator norm) 
and given an inverse temperature β, the quantity Tr(Aρ) can 
be approximated up to an additive error of at most 𝜃 with 
high probability. We need to slightly modify the result of van 
Apeldoorn et al. (2017) for our application and for reference 
we first state their result.

(34)∇wf
�(w) =

1

n

∑

i

�Y (∇wfi(Yi,w)),

(35)ℙ(Y = y) =
exp(�fi(y, w))

∑

y�∈Y exp(�fi(y
�, w))

, y ∈ Y.

(36)�k⟩�z⟩ ↦ �k⟩�z⊕ (Hi(w))kk⟩

(37)�k⟩�z⟩ ↦ �k⟩�z⊕ (𝜕jHi(w))kk⟩ ∀j,

(38)max
y∈Y

� fi(y,w) =
1

�
log Tr(exp(−�Hi(w))).

(39)�kmax
y

� fi(y,w) = Tr
[(

−�kHi(w)
)

�
]

.

Proposition 1 (Corollary 12 in van Apeldoorn et  al. 
(2017))  Let A,H ∈ ℝ

n×n be diagonal matrices with ∥A∥ ≤ 1. 
An additive 𝜃-approximation of Tr(Aρ) can be computed 
using O(

√

n∕�) queries to A and H, and Õ(
√

n∕𝜃) other 
gates.2

For our application, we need to include the contribu-
tion of the operator norms of A and H in the complexity. 
We also require control over the success probability of the 
approximation obtained in the above statement, which can 
be boosted using the powering lemma for fully polynomial 
randomized approximation schemes (Jerrum et al. 1986). 
Given these considerations, the complexity of quantum 
Gibbs sampling from classical functions is as follows.

Proposition 2 (Quantum Gibbs sampling)  Let A,H ∈ ℝ
n×n 

be diagonal matrices with ∥A∥ ≤ Δ and ∥H∥ ≤ K, and ρ be 
the Gibbs state of H at inverse temperature β. An additive 
𝜃-approximation of Tr(Aρ) can be computed with a success 
probability of at least 1 − ζ using O(

√

nΔ�K

�
log

1

�
) queries to 

A and H, with the number of other quantum gates being 
almost of the same order.

We now impose boundedness conditions on the functions 
fi in (38) before applying the quantum Gibbs sampling algo-
rithm to compute the partial derivatives (39).

Condition 2  Let Y  be a finite set and f ∶ Y ×ℝ
D
→ ℝ be a 

real-valued function. We assume that (1) there exist Δ > 0 such 
that ∥∂kf∥ ≤ Δ for all w ∈ ℝ

D , y ∈ Y  , and k = 1,…,D; and, 
(2) there exist quantum oracles acting on O(polylog( 1

�
, |Y|)) 

qubits to compute f and ∂kf with an additive error of δ.

We can now derive the computational complexity of 
using quantum Gibbs sampling to estimate the partial deriv-
atives in (39).

Theorem 7  Let fi ∶ Y ×ℝ
D
→ ℝ be a real-valued func-

tion satisfying Condition 2. Then the gradients of (38) with 
respect to the parameter vector w can be calculated in

queries to the oracles of fi with the number of other gates 
being almost of the same order. Here F is a bound on the val-
ues of all fi, and 1 − ζ is the probability that all dimensions 
of the gradient estimate have an additive error of at most 𝜃.

(40)O
�

D
√

�Y�Δ�F

�
log

D

�

�

2  In the rest of this paper, such a characterization of the number of 
quantum gates will be referred to as being “almost of the same order”.
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4.2 � A‑SAGA: Approximate SAGA​

Stochastic average gradient (SAG) (Schmidt et al. 2017) and 
its variant SAGA (Defazio et al. 2014) are two optimization 
methods that are specifically designed for minimizing the 
sum of finitely many smooth functions. SAG and SAGA usu-
ally perform better than standard stochastic gradient descent 
(SGD) (Robbins and Monro 1985). The general idea behind 
SAG and SAGA is to store the gradients for each of the n 
functions in a cache, and use their summation to obtain an 
estimation of the full gradient. Whenever we evaluate the 
gradient for one (or some) of the functions, we update the 
cache with the new gradients. Although the gradients in the 
cache are for previously visited points, if the step size is 
small enough, and the functions are smooth, the gradients 
in the cache will not be too far from the current gradients; 
thus, using them will reduce the error of estimation of the 
full gradient, leading to an improved convergence rate.

Our approach is to use SAGA to minimize the smooth, strongly 
convex objective function fβ(w) to approximate the minimum of 
the original nonsmooth objective function f. The quantum Gibbs 
sampler will provide approximations of the derivatives of the 
functions max�

y
fi(y,w) (but not exactly), as stated in Theorem 7. 

Consequently, we need to revisit the convergence of SAGA in 
the presence of errors in calculating the gradients and do so in the 
following sections. In this section, the notation 〈−, −〉 is used to 
represent the inner products of vectors of real numbers.

Condition 3  Each function fi is μ-strongly convex, resulting 
in each gi(w) = maxy fi(y,w) being μ-strongly convex. The 
vector w is restricted to a convex set W  . Furthermore, the 
gradients of fi(y, w) are ℓ-Lipschitz smooth, and the partial 
derivatives are bounded by

where the maximum ranges over every index i, every y ∈ Y  , 
every w ∈ W  , and every j-th component of w.

We note that Condition 3 has important differences with Con-
dition 1. In Condition 3, the functions fi have Lipschitz continuous 
gradients, whereas in Condition 1 there were no such restrictions. 
Also, in Condition 3, we impose a bound Δ on the partial deriva-
tives, whereas in Condition 1, M is a bound on the subgradients.

In the approximate SAGA algorithm (A-SAGA) presented 
in Algorithm 2, we have an estimate of the gradient with an 
additive error of at most 𝜃/33 in each partial derivative appear-
ing in the gradient. Here the update rule for SAGA from 
Defazio et al. (2014, Equation (1)) has been modified to take 
into account an approximation error Θt+ 1 in step t + 1, where 
the vector Θt+ 1 comprises all the additive errors (that arise 
from the Gibbs sampler in the following section4). That is,

(41)Δ = max
w,i,j,y

‖

‖

‖

�j[fi(y,w)]
‖

‖

‖

,

(42)Θt+1 = Υt+1
j

− Υt
j
+

1

n

n
∑

i=1

Υt
i
.

3  The division by 3 was chosen to simplify the formulae.
4  In fact, the Gibbs sampler is used to calculate each directional 
derivative up to an additive error. Therefore, the approximation errors 
in all the terms in the square brackets in line 7 of Algorithm 2 con-
tribute to the bound on Θ. More precisely, if the Gibbs sampler calcu-
lates the derivatives with error �

3
 , then ∥Θt+ 1∥ ≤ 𝜃.

Note that for all vectors Υt
i
 , every element has an absolute 

value of at most 𝜃/3. Based on the definition of Θt+ 1 from 
(42), we can conclude that every element of the vector Θt+ 1 
is at most 𝜃.
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Following the approach of Defazio et al. (2014) we find a 
bound for ∥wt − w∗∥ using the Lyapunov function �  defined 
as

by proving the inequality �[� t+1] ≤ (1 −
1

�
)� t . The next the-

orem proves a similar inequality in the case that an additive 
error on the gradients exists.

Theorem 8  Let the precision of a subroutine calculating the 
gradients of gi at every point be

Then there exists a choice of step sizes γ in line 7 of 
Algorithm  2, c in (43), and τ > 0 such that for all t, 
�[� t+1] ≤ (1 −

1

�
)� t.

Remark 1  As shown in the proof of this theorem in the 
appendix (refer to (89)), the step size γ does not depend on 
the strong convexity parameter μ. This is a desirable prop-
erty called “adaptivity to strong convexity”.

The next theorem provides the time complexity of opti-
mizing the smooth approximation fβ via A-SAGA, depending 
on the condition number L/μ, where L is the Lipschitz con-
stant of the gradient of fβ. We let w�

∗ denote the minimizer of 
the smooth function fβ.

Theorem 9  Under Condition 3, and given 𝜖 as a target precision, 
A-SAGA finds a point w such that �

�

‖w − w
�

∗‖
2
�

≤ � using

iterations.

Remark 2  The number of gradient evaluations in Theorem 9 
is O

(

log
1

�

)

 in terms of 𝜖 only. Also, based on (89), we have 
𝜃 = O(𝜖).

4.3 � Using A‑SAGA to optimize the nonsmooth 
objective function

In this section, we analyze the inverse temperature β at 
which sampling from the quantum Gibbs sampler has to hap-
pen in order for w�

∗ to be a sufficiently good approximation 
of the original optimum w∗.

(43)

�
t ∶= � (wt, {�t

i
}n
i=1

)

∶=
1

n

∑

i

gi(�
t
i
) − f (w∗)

−
1

n

∑

i

�

∇gi(w∗),�
t
i
− w∗

�

+ c�
�

wt − w∗
�

�

2
,

(44)� = min

�

1
√

D
,

�‖wt−w∗‖
2

2
√

D
�

3

34L
+2‖wt−w∗‖

�

�

.

(45)O
((

n +
�DΔ2+�

�

)(

log
n

�(�DΔ2+�)

))

Lemma 2  To solve the original problem (20) with 
𝜖-approximation, it suffices to optimize the smooth approxi-
mation (32) for 𝛽 >

log |Y|

𝜖
 with precision � − log |Y|

�
.

Lemma 3  In solving problem (33) with A-SAGA we have

The above two lemmas are useful for achieving an 
approximation of the optimal value of f by doing so for fβ.

Theorem 10  Under Condition 3, A-SAGA applied to the 
function fβ at � =

2 log |Y|

�
 requires

iterations to find a point w at which the original function 
value f is 𝜖-close to its minimum in expectation, that is, 
�
[

f (w) − f (w∗)
]

≤ � , provided 𝜖 is sufficiently small.

Remark 3  The number of gradient evaluations in Theo-
rem 10 is O

(

1

�
log

1

�

)

 in terms of 𝜖. We note that in terms of 
the precision factor, the optimal scaling for optimizing (19) 
is O( 1

�
) (Shamir and Zhang 2013; Nesterov 2005), matching 

the theoretical optimal bound. Our result is close to optimal 
(up to a logarithmic factor).

It is also interesting to observe that based on (89), we 
have � = O(

√

�) , which means that to optimize f, we do not 
need as much precision as for optimizing  f � . Surprisingly, 
the error in gradient evaluations could be orders of mag-
nitude larger than the desired precision and the algorithm 
would still converge with the same rate as in SAGA.

Finally, it is easy to use the previous theorem and the 
definition of strong convexity to show convergence of 
A-SAGA to an approximation of the optimal solution of f.

Corollary 1  With the same conditions as Theorem 10, 
A-SAGA finds a point w at which �

[

w − w∗

]

≤ � , provided 
𝜖 is sufficiently small, using

iterations.

Example 3  A special case of practical importance is when 
the functions fi are a linear function in w plus an L2 regular-
izer. In this case our objective function to minimize is

(46)�
[

f �(wt) − f �(w∗)
]

≤
L

2
C0

(

1 −
1

�

)t

.

(47)O
((

DΔ2 log |Y|

��
+

�

�

)(

log
n

�

))

(48)O
((

DΔ2 log |Y|

��
+

�

�

)(

log
n

��

))

(49)f (w) = �
‖w‖2

2
+

1

n

n
∑

i=1

maxy∈Y{ai,yw + bi,y}.
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Let W = �
D(0, 1) be the unit ball centred at the origin 

of ℝD , where D is the dimension of w. For the linear func-
tions, the Lipschitz constant of the gradients is 0, as the 
gradient does not change. For the regularizer � ‖w‖2

2
 , the Lip-

schitz constant of the gradient is λ. Therefore, ℓ = λ. For the 
bound on the partial derivatives of the functions, we have 
Δ = � +maximaxjmaxy |ai,y,j| , where ai,y,j is the j-th element 
of the vector ai,y.

A further special case is when the functions fi minus the 
regularizer remain linear in w but are quadratic in y, e.g., the 
energy function of an Ising model (refer also to Example 1)

where Y = {−1, 1}m , Ji ∈ ℝ
m×m , and hi ∈ ℝ

m , for an Ising 
model with m particles. Here the vector w includes all the 
elements of the matrices Ji and vectors hi for all i. In this 
case W  is the unit ball of dimension D = nm(m + 1) around 
the origin. Similar to the previous example we still have ℓ 
= λ. For the bound on the gradient of the functions, we have 
Δ = λ + 1, where we use the fact that the elements of y are 
in {− 1, 1}.

4.4 � Comparison of SAGA and A‑SAGA​

We now compare our previous result to the case wherein 
exact gradients are available. That is, we optimize fβ using 
SAGA, and use it to approximate the optimal solution of f.

Theorem 11  Under Condition 3, and given 𝜖 as a target 
precision, SAGA uses

gradient evaluations to find a point in the 𝜖-neighbourhood 
of w�

∗ defined in (33) and

gradient evaluations to find an 𝜖-approximation of the opti-
mal value of f.

It is clear that the scaling in (51) with respect to all 
parameters is similar to Theorem 9 and the scaling in (52) 
is similar to Theorem 10, except for an extra n term added 
in the first parentheses.

Remark 4  We summarize the results of Theorems 9, 10, and 
11 by observing that with O(𝜖) and O(

√

�) additive errors in 
gradient evaluations in the A-SAGA algorithm, its scaling 

(50)f (w) = �
‖w‖2

2
+

1

n

n
∑

i=1

maxy∈Y{yJiy
T + hiy

T},

(51)O
((

n +
�DΔ2+�

�

)(

log
n

�(�n+�DΔ2+�)

))

(52)O
((

n +
DΔ2 log |Y|

��
+

�

�

)(

log
n

�

))

for optimizing fβ and f remains similar to SAGA, which does 
not assume any errors in gradient evaluations.

In the next section we introduce a quantum algorithm 
we call Q-SAGA. We note that A-SAGA (or Approximate 
SAGA) introduced in Algorithm 2 and discussed above is 
SAGA with approximate gradients, and Q-SAGA (or Quan-
tum SAGA) is the specific case of A-SAGA wherein the 
approximate gradients are obtained from quantum Gibbs 
sampling.

4.5 � Q‑SAGA: a quantum algorithm for optimizing 
the smooth approximation

In Theorems 9 and 10, we have assumed that the additive 
error in calculating the partial derivatives is always at most 
𝜃/3. Using the quantum Gibbs sampler from Section 4.1, we 
can guarantee such an upper bound only with a non-zero prob-
ability of failure. As shown in Theorem 7, the gradients of the 
function max�

y
fi(y,w) can be estimated with additive errors 

of at most 𝜃 in all partial derivatives appearing in the gradient 
with a hight probability. We now propose a quantum algo-
rithm, called Q-SAGA, for optimizing the smooth approxima-
tion function fβ(w) (by combining Theorems 7 and 9) and for 
optimizing the original function f (by combining Theorems 
7 and 10), using a quantum Gibbs sampler. Here β is a fixed 
inverse temperature. The higher this value is, the more accu-
rate the approximation of f(w) via fβ(w) will be.

Lemma 4  Under Conditions 2 and 3, each gradient evalu-
ation takes

queries to the oracle for one of the fi with the number of 
other quantum gates being almost of the same order, where 
1 − ζ is the probability of the Gibbs sampler returning a 
gradient estimate whose additive errors in all partial deriva-
tives are at most 𝜃 as in (44).

Theorem 12  Under Conditions 2 and 3, given sufficiently 
small 𝜖 > 0 as a target precision, Q-SAGA finds a point w 
satisfying �

�

‖w − w
�

∗‖
2
�

≤ � , with a probability of at least 
3/4, in

queries to the oracle for one of the fi with the number of 
other quantum gates being almost of the same order, when 
fβ is sufficiently smooth (i.e., the condition number L/μ is 
sufficiently small), and otherwise, in

(53)O
�

D1.5
�FΔ

��

�

1

�DΔ2+�
+
√

�

�

√

�Y� log(�Y�) log
D

�

�

(54)O
�

nD1.5
�FΔ

(�DΔ2+�)��

√

�Y� log(�Y�)
�

log
n

�

�

log
�

Dn log
n

�

��
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queries to the oracle for one of the fi with the number of 
other quantum gates being almost of the same order. In both 
cases, the complexity is Õ( 1

𝜖
) in terms of 𝜖 only.

Theorem 13  Under Conditions 2 and 3, given sufficiently 
small 𝜖 > 0 as a target precision, Q-SAGA finds a point w 
such that �

�

‖w − w∗‖
2
�

≤ � , with a probability of at least 
3/4 in

queries to the oracle for one of the fi with the number of 
other quantum gates being almost of the same order. This is 
Õ(

1

𝜖1.5
) in terms of 𝜖 only.

5 � Numerical experiments

5.1 � Synthetic benchmark

We compare the optimization of the function f, as defined in 
(19), with its smooth approximation fβ, as defined in (32). To 
exclude the effects of sampler errors and noise, we restrict 
our experiments to small instances (i.e., we restrict the size 
of the sets Y  ) in order to be able to find the value of the 
softmax operator and its gradient exactly. Also, for simplic-
ity, we restrict our experiments to the case where each fi is a 
linear function of w plus an L2 regularizer:

Adding of the L2 regularizer guarantees the strong convex-
ity of f.

The elements y ∈ Y  are used as indices for their corre-
sponding ai,y and bi,y vectors. All coefficient vectors ai,y and 
bi,y are randomly generated according to the Cauchy distri-
bution, and all vectors b′

i
 are randomly generated according 

to a uniform distribution. The reason we choose the Cauchy 
distribution for ai,y and bi,y is its thick tail, which results in 
having occasional extreme values for the coefficients. The 
reason we choose the uniform distribution for b′

i
 as opposed 

to normal or Cauchy distributions is to avoid the functions fi 
having a similar minimum, which makes the problem easy.

We generate a random objective function with D = 10 
parameters, that is, w ∈ ℝ

10 , where w is initialized to the 
vector w = (10, 10,… , 10)T . We use 200 summand functions 
fi, that is, n = 200. We set λ = 2 and Y = {1, 2,… , 100} . We 

(55)O
�

D1.5
�FΔ

�2�

√

�Y� log(�Y�)
�

log
n

�

�

log
�

Dn log
n

�

��

(56)
O

��

D2.5Δ3F
√

�Y�(log2 �Y�)(logD)

�2�1.5

�

×
�

log
n

�

�

log
�

DΔ2 log �Y�

��

�

log
n

�

���

(57)
fi(y,w) =

�

2
‖w‖2 + aT

i,y
(w − b�

i
) + bi,y

y ∈ Y, � ∈ ℝ
+,w ∈ ℝ

D.

generate the vectors b′
i
 from the uniform distribution over 

the set [0,10000]10.
We benchmark four gradient descent schemes: (1) sto-

chastic gradient descent (SGD) applied to the smooth 
approximation fβ; (2) SGD applied to the original nonsmooth 
function f (SubSGD); (3) stochastic subgradient descent with 
polynomial-decay averaging (SGDP) (Shamir and Zhang 
2013) applied to the original nonsmooth function f; and (4) 
SAGA (Defazio et al. 2014) applied to the smooth approxi-
mation fβ.

All methods have two tunable hyperparameters in com-
mon: (1) γ0, the initial step size gradient descent or its vari-
ations; and (2) cγ, a constant indicative of a schedule on γ 
through the assignment of �t =

�0

1+tc
�

 at iteration t. SGD and 
SAGA are applied to the smooth approximation fβ and, as 
such, the inverse temperature β is a tunable hyperparmeter 
in these methods. In contrast, SubSGD and SGDP are 
applied to the original nonsmooth objective function. SGDP 
also has an additional hyperparmeter η, which is used to 
define the polynomial-decay averaging scheme. For each 
algorithm, we tune the hyperparameters via a grid search 
with respect to a quantity we call hyperparameter utility that 
is explained below. We use the following values to form a 
grid in each case:

We run each algorithm 20 times with different seeds for 
random number generation in the algorithm, which rand-
omizes the choice of index i at each iteration of the algo-
rithm, wherein we perform 1000 iterations, and track the 
progress on the original nonsmooth objective function f. 
We emphasize that the objective function remains the same 
over the 20 runs and the seeds are not used to regenerate 
the random objective function. We empirically observed 
that 1000 iterations were enough to see the progress of each 

(58)� ∈ {10−7, 10−5,… , 100};

(59)�0 ∈ {10−7, 10−5,… , 100};

(60)c
�
∈ {0} ∪ {10−4, 10−3,… , 102}; and

(61)� ∈ {1, 2,… , 7}.

Table 1   The tuned hyperparameter values

Algorithm β γ0 cγ η 

Smooth SGD 10− 4 10− 2 101 N/A
Nonsmooth SGD N/A 10− 2 101 N/A
SGDP N/A 10− 3 0 5
SAGA​ 10− 4 10− 3 0 N/A
β-10-SAGA​ 10− 7 − 10− 6 10− 3 0 N/A
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optimization algorithm and 20 trials were enough to achieve 
a qualitative understanding of the error bars.

For each of the gradient descent schemes mentioned 
above, and each hyperparameter setting, we calculate the 
average objective value over all 20 runs and all 1000 itera-
tions. For each algorithm we calculate the following quan-
tities: (1) total descent—the difference between the initial 
objective value and the best value found over all 20 trials; 
(2) absolute ascent—the sum of the values of all ascents 
between any two consecutive iterations over all iterations of 
all 20 trials; and (3) hyperparameter utility—the absolute 
ascent divided by the total descent.

For each algorithm, we choose the hyperparameter setting 
that minimizes the average objective value over 20 runs and 
1000 iterations subject to the constraint that its hyperparam-
eter utility is less than 0.01. We use this constraint to avoid 
unstable hyperparameter settings. For instance, a very large 
step size might reduce the objective value very quickly in the 
beginning but fail to converge to a good solution.

The value of the hyperparameters found by the grid 
search for each algorithm is reported in Table 1. Other than 
the four methods discussed above, a final row called β-10-
SAGA has been included, a description of which follows.

We can see that for SAGA, we have cγ = 0, resulting in a 
constant step size consistent with the theoretical proof of 
convergence of SAGA. For SGD and SubSGD, we obtain cγ 
= 10, which is also consistent with the theoretical step sizes 
of 1

�t
 and �

�(t+�)
 , respectively (Shamir and Zhang 2013). Note 

that by the contribution of the regularizer r(w) = �‖w‖2

2
 , we 

have μ ≥ λ = 1. For SGDP, we see that the polynomial-decay 
averaging manages to work with a constant step size, 
whereas to prove its theoretical convergences, a step size of 

�

�(t+�)
 is used.

The five gradient descent schemes, SGD, SubSGD, 
SGDP, SAGA, and β-10-SAGA, are compared in Fig. 1. 
The objective function value is recorded over 20 trials of 
each gradient descent scheme. For each gradient descent 
iteration, the average objective value is shown using dashed 
and dotted lines, alongside the standard deviation, shown 
using shaded regions.

We see that SGD and SubSGD perform poorly (at least 
for stable choices of hyperparameters, e.g., their having 
small step sizes). SGDP results in a great improvement, 
yet SAGA further outperforms it. This is despite the fact 
that SAGA optimizes the original nonsmooth function in 
O(

1

�
log

1

�
) once applied to the smooth approximation fβ, 

whereas SGDP converges theoretically in the provably 
optimal rate of O( 1

�
).

We observe that the objective function value is around 
8 × 106. Hence 1

n

∑

maxfi ≈ maxfi ≈ 8 × 106 . Therefore, at 
β = 10− 4, we have �maxfi ≈ 800 . In this regime, the Boltz-
mann distribution from which we need to sample is very 
close to the delta function concentrated on the (possibly 
degenerate) ground states.

In an alternative SAGA experiment, called β-10-
SAGA, we have β start from 10− 7 and in every 10 itera-
tions increase it by 10− 8, resulting in a final value of 1.1 × 
10− 6. As shown in Fig. 1, β-10-SAGA performs slightly 
worse than SAGA, although it is still better than SGDP. 
However, �maxfi starts from around 0.8 and approaches 8 
in the end, which is a more suitable temperature regime 
for a quantum Gibbs sampler.

5.2 � Image tagging as a structured prediction task

In this section we consider the computer vision task of 
image tagging to demonstrate an application of the smooth 
min-max objective functions (32). In image tagging, given 
an image we would like to assign all the relevant tags (pos-
sibly more than one) from a predefined set of tags (e.g., 
“cat”, “dog”, “river”, “nature”).

We formulate this problem as a structured prediction 
problem and train a model on a dataset of pairs of images 
and tags. To achieve this, we choose three objective func-
tions to benchmark:

1.	 The smoothed structural support vector machine 
(S3VM):

(62)
fS3VM(w; �) =

1

2
�‖w‖2

+
∑

(x,y)∈S

max
y�

�
�

Δ(y�, y) + s(x, y�; w) − s(x, y; w)
�

.

Fig. 1   The average objective value of five algorithms, SGD, Sub-
SGD, SGDP, SAGA, and β-10-SAGA, tracked as a function of gradi-
ent descent iterations
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This objective function is the smooth approximation of 
(11) using the softmax operator (31). Here, s is a score 
function, as explained in Section 2.2.

2.	 The conditional log-likelihood (CL) objective function:

Similar to S3VM, this objective function is in the form 
of the smooth min-max objective function (32) but does 
not incorporate the loss function Δ.

3.	 The Jensen risk bound (JRB) objective function:

This objective function incorporates the score function 
s and the loss function Δ in a different way. Here YB is a 
random variable that follows a Boltzmann distribution 
with energy −s(x,y;w) at inverse temperature β. More 
details about the derivation of the CL and JRB objective 
functions can be found in Gimpel and Smith (2010).

Recall the notation used in Section 2.1. In our image 
tagging task, let X  be the set of all possible images, and 
Y = {−1, 1}� be the set of all possible labels. The labels 
are ℓ-dimensional binary vectors, with each compo-
nent representative of the presence or absence of a tag 
in the image. We would like to find the feature function 
Φ(x,y;w0) with parameter w0. Let �0 ∶ X ×W0 → ℝ

� be a 
feature function, where the first argument from X  is an 
image, the second argument from W0 is a parameter, and 
the output is a real vector with � ∈ ℕ dimensions. The 
function Φ0(x;w0) serves as a base feature function in the 
construction of Φ(x,y;w0). The function Φ0(x;w0) can be 
any function. In our experiments, we use a convolutional 
neural network (CNN) as a feature extractor for this pur-
pose, with w0 denoting its weights.

One way to define Φ based on Φ0 is as follows: we design Φ0 
(i.e., the CNN) such that the dimension of its output is identical 

(63)
fCL(w;�) =

1

2
�‖w‖2

+
∑

(x,y)∈S

max
y�

�
�

s(x, y�; w) − s(x, y; w)
�

.

(64)
fJRB(w;�) =

1

2
�‖w‖2

+
∑

(x,y)∈S

log�YB

�

� exp(Δ(YB, y))
�

.

to the size of the labels: η = ℓ. Let “triu” denote the vectorized 
upper triangle of its square matrix argument. We then define

where ⚬ is the element-wise product. Note that Φ0(x; w0) 
⚬ y is well-defined because η = ℓ and the two vectors 
Φ0(x; w0) and y have identical dimensions. The result is 
�(x, y; w

0
) ∈ ℝ

d for some d ∈ ℕ . Let w ∈ ℝ
d be the param-

eter vector of our structured prediction model. We then 
define the score function s as

One can then interpret 𝜃1 as a control parameter on the 
relationship between pairs of labels yi and yj. The parameter 
vector 𝜃2 controls the effect of the features extracted from 
the CNN. The parameter vector 𝜃3 controls the bias of the 
values of yi, as some tags are less likely to be present and 
some are more likely. Note that the formula s(x, y; w) in (66) 
is quadratic in y.

We choose the function Δ to be the Hamming distance

for two reasons. Firstly, the error in the predictions made in 
image tagging is also calculated using the Hamming distance 
between the true label and the predicted label. Secondly, the 
Hamming distance is a linear function of y′ , and therefore 
Δ(y�, y) + s(x, y�; w) remains quadratic in y′ . This simplifies 
the gradient calculations of both fS3VM and fJRB to expecta-
tions with respect to the Boltzmann distribution of an Ising 
model rather than more complicated distributions.

5.2.1 � Numerical results

We use the MIRFLICKR dataset (Huiskes and Lew 2008), 
which consists of 25,000 images and 38 tags. We randomly 

(65)�(x, y;w0) =

⎛

⎜

⎜

⎝

triu(yyT )

�0(x;w0) ◦ y

y

⎞

⎟

⎟

⎠

,

(66)

s(x, y; w) = wT
�(x, y; w0) =

(

�
T
1
�
T
2
�
T
3

)

�(x, y; w0)

= �
T
1
triu(yyT ) + �

T
2

[

�0(x; w0) ◦ y
]

+ �
T
3
y.

(67)Δ(y�, y) = Hamming(y�, y)

Fig. 2   Image tagging archi-
tecture. The image x is fed to 
a neural network to extract 
features. The features then are 
passed to an Ising model the 
ground state of which deter-
mines the prediction
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select 20,000 images for the training set, 2500 images for 
the validation set, and the remaining 2500 images for the 
test set. This dataset consists of an extended tag set with 
more than 1000 words. For this demonstration, we restrict 
our numerical experiments to the smaller set of 38 tags to 
ensure fast convergence of Monte Carlo simulations. How-
ever, we note that the extended set of labels in this dataset is 
well within reach of Monte Carlo simulations using today’s 
high-performance computing platforms.

We train a pre-trained AlexNet (Krizhevsky et  al. 
2012), a CNN, on the training data, to predict the tags. 
This is done on an Ubuntu machine with 32 AMD Ryzen 
CPU cores, 128 GB of memory, and an Nvidia Titan V 
GPU. We train AlexNet using the binary cross entropy 
objective function between its output layer and the true 
labels. We call this model a baseline. We fix the baseline, 
which acts as a feature extractor, and feed its output fea-
tures to an Ising model which acts as a predictor. We then 
train the weights of the Ising model with three different 
objective functions, namely fCL, fS3VM, and fJRB. This is 
inspired by Chen et al. (2015), wherein the output of an 
AlexNet network is fed to an Ising model in a very similar 
fashion, and trained using the fCL objective function. The 
architecture of the model is shown in Fig. 2.

In the training mode, we use the standard stochastic gradi-
ent descent algorithm, with a parameter λ adjusting the L2 
regularizer of λ∥w∥2/2 that is added to the objective func-
tions, and a parameter γ as the step size, which is kept con-
stant during the training. We consider four training epochs, 
where, in each epoch, we go through each data point of the 
training data exactly once, in a random order. In this experi-
ment, we use single-spin flip Gibbs sampling at a constant 
inverse temperature β as our sampling subroutine to compute 
a Monte Carlo estimation of the objective function’s gradi-
ent. Due to our choice of using only a subset of tags to train 
and test over, our Ising model instances consist of 38 vari-
ables and a fully connected architecture. For each instance, 
we perform 200 sweeps and collect 200 samples. In total, we 
have three hyperparameters, namely γ, λ, and β. We tune the 
hyperparameters by performing a grid search over the values

(68)� = {10−8, 10−7, 10−6, 10−5},

A last architecture considered is that of an extension of 
the baseline with a fully connected feedforward layer with 
sigmoid activations. This model has been added in order 
to compare the extensions of the baseline with undirected 
architectures (e.g., the Ising model) versus a feedforward 
layer using a similar number of parameters. The Ising model 
has a fully connected graph with 

(

38

2

)

+ 38 = 741 parame-
ters and we use a fully connected feedforward layer with 
38 nodes, which amounts to 382 + 38 = 1482 parameters. 
We use the Adam algorithm for optimization (Kingma and 
Ba 2014) implemented in the PyTorch library (Paszke et al. 
2017) with 300 epochs. We tune the step size parameter γ 
using a grid search over the values

while all other hyperparameters of Adam are left at their 
default values (β1 = 0.9, β2 = 0.999).

In Table 2, we summarize the performance of the various 
methods and values of tuned hyperparameters. The baseline 
architecture is that of AlexNet. The three subsequent lines 
report the performance of extensions of the baseline with an 
Ising model trained using objective functions (62) to (64). 
The last row is an extension of the baseline with a single 
feedforward fully connected (labelled “baseline + FC”) 
layer with sigmoid activations and the binary cross entropy 
objective. The performance of each method is measured 
via the average Hamming distance between the predicted 
labels and the true labels in terms of the number of bits. 
Therefore, the validation and test error values reported in 
the second and third columns are the average numbers of 
wrong tags (including the missing tags and the incorrect 
additional tags).

We observe that all three extensions of the baseline 
with an Ising model improve the baseline validation errors 
with the S3VM objective function, resulting in the greatest 
improvement of ∼0.03 tags. The same observation holds for 
the test errors, although the improvement is smaller in this 
case, at ∼0.015 for S3VM. In contrast, the last row of the 
table shows that the extension of AlexNet with an additional 

(69)� = {0.0, 10−6, 10−4, 10−2}, and

(70)� = {3−1, 30, 31, 32}.

(71)� = {10−5, 10−4, 10−3, 10−2, 10−1},

Table 2   Image tagging results Model Validation Error Test Error γ λ β βeff 

baseline 2.6844 2.7052 N/A N/A N/A N/A
baseline + S3VM 2.6568 2.6900 10− 7 0.0 31 [60.3720, 133.0482] 
baseline + CL 2.6696 2.6996 10− 6 10− 6 31 [53.0406, 118.1979] 
baseline + JRB 2.6580 2.6956 10− 7 10− 6 31 [55.4559, 122.7675] 
baseline + FC 2.7236 2.7656 10− 2 0.0 N/A N/A
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trailing fully connected layer not only increases the training 
and test errors, but it increases the difference of these two 
quantities from 0.0208 to 0.042, which hints to a slightly 
worsened generalization.

We observe that, in all cases, the values of λ are either 
0 or very small and therefore high regularization was not 
required in this case study. However, this might be an 
artifact of having small numbers of parameters in our 
model ( 

(

38

2

)

+ 38 = 741 ), making the model immune to 
over-fitting. In the final column of Table 2, we report the 
range of the effective thermodynamic β denoted by βeff for 
each method. The effective β is the product of the nominal 
value β and the absolute value of the ground state energy 
of the Ising model over different images. The interval 
reported in this table is the range of βeff over the images 
in the test set. The large values of effective β suggest that 
the softmax operators are very close to maximization and 
the smoothing effect is only material at the close proxim-
ity of those values of w where decision boundaries are 
degenerate.

The main takeaway of the results in Table 2 is that rows 
2, 3, and 4 of the table show that the concatenation of the 
Ising model (as an example of an undirected probabilistic 
graphical model) to the baseline neural network improved 
the prediction accuracy of the model. However, the last 
row shows that this improvement cannot be merely attrib-
uted to the larger number of model parameters, since a 

similar increase in the number of parameters via a fully 
connected layer does not provide a similar advantage. It 
remains to be practically verified whether slight improve-
ments observed in this table would become more signifi-
cant for larger image tagging tasks.

In Fig.  3, we see three examples from the test set. 
Finally, we wish to remark that we would have needed 
to solve much larger problems and perform many more 
sweeps of Monte Carlo simulations had we used the com-
plete set of tags. The fully connected architecture is not 
imposed by the problem we are solving. The use of much 
sparser connectivity graphs could result in viable feature 
extractors as well. These are future areas of development 
that can be explored using quantum computing and clas-
sical high-performance computing platforms.

6 � Conclusion

In this paper, we introduced quantum algorithms for solv-
ing the min-max optimization problem that appears in 
machine learning applications. We first studied the vari-
ant A-SGDP of the subgradient descent with polynomial-
decay averaging (SGDP) (Shamir and Zhang 2013) which 
takes into account incorrect calculations of the subgradi-
ents as long as they are bounded. This allows the quantum 
minimum finding algorithm of Durr and Hoyer (1996) 

Fig. 3   Sample tags generated by the different models. In test images 7520, 10177, and 21851 of the dataset we see that S3VM has respectively 
decreased, increased, and did not affect the error, compared to the baseline
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to find the subgradients used in the subgradient method 
efficiently while leaving room for a small probability of 
failure. The combination of A-SGDP and the quantum 
minimum finding algorithm results in the quantum algo-
rithm Q-SGDP for solving the original (nonsmooth) min-
max optimization problem without resorting to smooth 
approximations. Despite an almost-linear scaling in terms 
of the precision factor 𝜖, this quantum algorithm provides 
a speedup in terms of the size of the discrete optimization 
space Y  . We showed that Q-SGDP solves the original 
min-max problem in Õ( 1

𝜖

√

�Y� log
1

G
) , in which the value 

G is the minimum gap we encounter during the runtime of 
the algorithm which is unknown beforehand.

Secondly, we studied a variant of SAGA (which we 
call A-SAGA) that takes into account an additive error 
on the calculation of gradients. This has allowed us to 
use a quantum Gibbs sampler as a subroutine of A-SAGA 
to provide estimations of the gradients and optimize the 
smooth approximation of the min-max problem. We call 
the conjunction of A-SAGA with the quantum Gibbs sam-
pler Q-SAGA. We have shown that A-SAGA can give an 
approximation of the solution of the smooth approxima-
tion of the original min-max problem in O(log 1

�
) gradient 

evaluations, provided the additive error is in O(𝜖). This 
scaling is, in fact, optimal (Defazio et al. 2014; Schmidt 
et al. 2017). We then used A-SAGA to solve the original 
min-max problem in Õ( 1

𝜖
) gradient evaluations. We remark 

that the best algorithms (Shamir and Zhang 2013; Nest-
erov 2005) for solving the original min-max problem use 
O(

1

�
) gradient evaluations. This is the case if the gradients 

are calculated exactly. We conclude that in the presence 
of additive errors in estimating the gradients, our result is 
close to optimal.

Consequently, the quantum algorithm Q-SAGA solves 
the smooth approximation of the original min-max problem 
in Õ( 1

𝜖
) queries to the associated quantum oracles. We also 

analyzed the usage of Q-SAGA, not to solve the smooth pre-
diction problem, but to approximate a solution to the origi-
nal min-max problem. In order to do this, the temperature 
has to be assigned proportional to 𝜖. In total, this results 
in Õ( 1

𝜖1.5

√

�Y�) queries to the associated oracles. Despite a 
slightly worse scaling in precision, this algorithm does not 
have the dependence on the minimum gap G as in Q-SGDP.

Finally, we have provided results from several numerical 
experiments. In particular, we compared the performance of 
SGD in two cases: with all sampling subroutines performed at 
a constant temperature, and with the temperature decreasing 
across iterations according to a schedule. We observed that the 
scheduled temperature slightly improves the performance of 
SGD. We believe that studying the temperature schedule would 
be an interesting avenue of research. In particular, it would be 
beneficial to gain an understanding of the best practices in 

scheduling temperature during SGD. It would also be interest-
ing to provide a theoretical analysis of the effect of the temper-
ature schedule in SGD. As we have seen in our experiments, 
using a temperature schedule seems not to be consistent with 
SAGA since the cache of old gradients then comes from other 
temperatures. Another avenue of future research would be to 
adapt or modify SAGA so as to overcome this issue.

Our successful image tagging experiments used only 38 
English words as candidate tags. The MIRFLICKR dataset 
provides a thousand English words as candidate tags, but 
conducting an experiment of this size was not feasible with 
the computational resources available to us. Our goal is to 
pursue efficient Gibbs sampling approaches in quantum and 
high-performance computation in order to achieve similar 
results in larger image tagging tasks. In fact, our work pro-
poses a general approach for quantum machine learning 
using a quantum Gibbs sampler. In this approach, the net-
work architecture consists of a leading directed neural net-
work serving as a feature extractor, and a trailing undirected 
neural network responsible for smooth prediction based on 
the feature vectors.

Appendix 

A.1. Proof of Theorem 5

Because the failure probability in solving the argmax
y

fi(y,w
t) 

in each iteration is ζ = 1/(4T), the probability of not having 
any failure in T iterations is at least 3/4 as we can verify

Conditioned on not seeing any failure, we can directly use 
Theorem 4 of Shamir and Zhang (2013) to conclude that 
with the step size �t =

1

�t
 we need T = O(�1.5

M

��
) to satisfy 

�
[

|f (wT ) − f (w∗)|
]

≤
�

4
 . Using Markov inequality, we can 

conclude that

Hence the probability that |f(wT) − f(w∗)| ≤ 𝜖 is higher than 
1/2 as we can verify

Finally hiding the dependence of complexity on η, we get 
the result.

(72)
T
∏

t=1

(1 − �) = (1 −
1

4T
)T ≥ 1 − T

1

4T
= 1 −

1

4
=

3

4
.

(73)ℙ
[

|f (wT ) − f (w∗)| ≤ �|No failure in T iterations
]

≥
3

4
.

(74)

ℙ
[

|f (wT ) − f (w∗)| ≤ �
]

= ℙ
[

|f (wT ) − f (w∗)| ≤ �|No failure in T iterations
]

×ℙ[No failure in T iterations] ≥
(

3

4

)2

≥
1

2
.
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A.2. Proof of Theorem 6

By multiplying the number of iterations from Theorem 5 by 
the query complexity found in Lemma 1, we obtain a scaling of

where F is a bound on the absolute values of fi. Using the 
value of ζ, the result follows.

A.3. Proof of Proposition 2

This proposition is proven similarly to Corrollary 12 of van 
Apeldoorn et al. (2017) except that before applying Lemma 9 
of van Apeldoorn et al. (2017), the success probability has to be 
boosted. We restate Lemma 9 of van Apeldoorn et al. (2017).

Lemma 5  Suppose we have a unitary U acting on q qubits 
such that U|0…0〉 = |0〉|ψ〉 + |Φ〉, with 〈0| ⊗ I|Φ〉 = 0 and 
‖�‖

2 = p ≥ pmin for some known bound pmin . Let μ ∈ (0, 1] 
be the allowed multiplicative error in our estimation of p. 

Then, with O
�

1

�
√

pmin

�

 uses of U and U− 1, and using 

O

�

q

�
√

pmin

�

 gates on the q qubits, we obtain a p̃ such that 

|p − p̃| ≤ 𝜇p with a probability of at least 4/5.

We note that this lemma provides a multiplicative approxima-
tion of p and, as such, it is a fully polynomial randomized approx-
imation scheme as defined in Jerrum et al. (1986). Therefore, 
for any target rate ζ, the powering lemma (Jerrum et al. 1986, 
Lemma 6.1) asserts that with O(log(1∕�)) repetitions of the 
algorithm and choosing the median of the returned values as the 
approximation p̃ , its success probability can be boosted to 1 − ζ.

A.4. Proof of Theorem 7

With Hi
w
 diagonal real-valued matrices realizing fi(−, w) and 

A = �Hi
w
 , the boundedness of derivatives, ‖f �

i
(w)‖ for all w, is 

equivalent to ∥A∥ ≤ Δ. In order to estimate all partial derivatives 
in the gradient with an additive error of at most 𝜃 successfully 
with a probability of at least 1 − ζ, we may calculate each of the 
partial derivatives with a success probability of at least 1 − ζ/D, 
because (1 − �

D
)D ≥ 1 −

�

D
D = 1 − � . By the previous corol-

lary, each partial derivative is therefore calculated in 
O
�√

�Y�Δ�F

�
log

D

�

�

 and, since there are D such partial deriva-
tives, the result follows.

A.5. Proof of Theorem 8

Defazio et al. (2014)   prove three lemmas. Following their 
convention, all expectations are taken with respect to the 

(75)O
�

�
1.5M

��

√

�Y� log(F∕G) log(1∕� )
�

,

choice of j at iteration t + 1 and conditioned on wt and each 
g�
i
(�t

i
) and additive errors Υt

j
 , unless otherwise stated. In the 

following formulae we have used the prime notation as an 
alternative to ∇ to denote gradients.

Lemma 6  Let f (w) = 1

n

∑n

i=1
gi(w) . Suppose each gi is 

μ-strongly convex and has Lipschitz continuous gradients 
with the constant L. Then for all w and w∗:

Lemma 7  For all ϕi and w∗:

The last lemma in Defazio et al. (2014) is only true if the 
error in the A-SAGA update rule is disregarded. We there-
fore restate this lemma as follows.

Lemma 8  For any �t
i
 , w∗, wt, and α > 0, with vt+ 1 as defined 

in SAGA, if

it holds that

We are now ready to state the proof of Theorem 8.

Proof Theorem 8  The first three terms in � t+1 can be bounded 
in a way similar to the proof of Defazio et  al. (2014, 
Theorem 1):

The last term is bounded by the inequality

by the optimality of w∗ and non-expansiveness of the projec-
tion operator ΠW  . We can now bound the expected value of 

(76)
⟨f �(w),w∗ − w⟩ ≤

L−�

L

�

f (w∗) − f (w)
�

−
�

2

�

�

w∗ − w�
�

2
−

1

2Ln

∑

i

�

�

�

g�
i
(w∗) − g�

i
(w)

�

�

�

2

−
�

L
⟨f �(w∗),w − w∗⟩.

(77)

1

n

∑

i

�

�

�

g�
i
(�i) − g�

i
(w∗)

�

�

�

2

≤ 2L

�

1

n

∑

i

gi(�i) − f (w∗) −
1

n

∑

i

�

g�
i
(w∗),�i − w∗

�

�

.

(78)X = g�
j
(�t

j
) − g�

j
(wt) + f �(w∗) −

1

n

∑

i

g�
i
(�t

i
),

(79)�[X] = f �(wt) − f �(w∗), and

(80)
�‖X‖2 ≤ (1 + �

−1)�
�

�

�

g�
j
(�t

j
) − g�

j
(w∗)

�

�

�

2

+ (1 + �)�
�

�

�

g�
j
(wt) − g�

j
(w∗)

�

�

�

2

− ��
�

f �(wt) − f �(w∗)
�

�

2
.

(81)

�

�

1

n

∑

i

gi(�
t+1
i

)

�

=
1

n
f (wt) +

�

1 −
1

n

�

1

n

∑

i

gi(�
t
i
), and

(82)

�

�

−
1

n

∑

i

�

g�
i
(w∗),�

t+1
i

− w∗

�

�

= −
1

n
⟨f �(w∗),w

t − w∗⟩

−
�

1 −
1

n

�

1

n

∑

i

�

g�
i
(w∗),�

t
i
− w∗

�

.

(83)
c‖
‖

wt+1 − w∗
‖

‖

2
= c‖

‖

ΠW(v
t+1) − ΠW[w∗ − �f �(w∗)]

‖

‖

2
≤ c‖

‖

vt+1 − w∗ + �f �(w∗)
‖

‖

2
,
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the right-hand side of this inequality in terms of X and ∥wt 
− w∗∥ by expanding the quadratics.

Using Jensen’s inequality applied to the square root function, 
in the second inequality below, and then using 

√

x ≤
1

2
+

x

2
 , 

we have

We now apply Lemma 8 and the assumption that 
‖Θt+1

‖ ≤ �

√

D.

We now apply Lemmas 6 and 7 to respectively bound 
−2c�⟨f �(wt),wt − w∗⟩ and �‖‖

‖

g�
j
(�t

j
) − g�

j
(w∗)

‖

‖

‖

2

:

As in Defazio et al. (2014, Theorem 1), we pull out a 1
�
 factor 

of � t and use the above inequalities, taking into account the 
contributions from the three error terms above:

(84)

c��
�

vt+1 − w∗ + �f �(w∗)
�

�

2
= c��

�

wt − w∗ + �X + �Θt+1
�

�

2

= c�
�

wt − w∗
�

�

2
+
�

2c�
��

�X + �Θt+1
,wt − w∗

��

+ c��
�

�X + �Θt+1
�

�

2
�

= c�
�

wt − w∗
�

�

2
+
�

−2c�
�

f �(wt) − f �(w∗),w
t − w∗

�

+ 2c��
��

Θt+1
,wt − w∗

��

+c�2�‖X‖2 + 2c�2�
�

⟨Θt+1
,X⟩

�

+ c�2�
�

�

�

Θt+1�
�

�

2

�

(85)
�
�

⟨Θt+1,X⟩
�

≤ �

√

D�[‖X‖] ≤ �

√

D

�

�
�

‖X‖2
�

≤
�

√

D

2
+

�

√

D�‖X‖2

2
.

(86)

c��
�

vt+1 − w∗ + �f �(w∗)
�

�

2

≤ c�
�

wt − w∗
�

�

2
+
�

− 2c�
�

f �(wt) − f �(w∗),w
t − w∗

�

+ 2c��
��

Θt+1
,wt − w∗

��
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�

c�2(1 + �

√

D)
�
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√
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wt − w∗
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�

+ 2c��
√
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�
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√
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√
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�
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j
(�t

j
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�

2
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√
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�
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�
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j
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�
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√

D + c�2�2D
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�
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2
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�

wt − w∗
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2

+

�

�
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√

D)(1 + �)c�2 −
c�

L

�

�
�

�

�

g�
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�
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√

D)��
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f �(wt) − f �(w∗)
�

�

2

+2
�
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D
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�
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�

c�2L
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gi(�
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i
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t
i
− w∗
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(88)
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According to a lemma that will follow (Lemma 9), we can 
ensure that all round parentheses in the first three lines are 
non-positive by setting the parameters according to

With this setting of the parameters,

Using the non-negativity of the expressions in square brack-
ets completes the proof.

In the following lemma we derive an appropriate value 
for the parameters that we used in Theorem 8 such that 
all the necessary inequalities in the proof of Theorem 8 
are satisfied.

Lemma 9  Let � = (1 + �

√

D) . In order to satisfy all the 
inequalities

it is sufficient to have

Proof  In what follows, we enumerate the steps required to 
satisfy all inequalities in the statement. Having lower and 
upper bounds on the value of δ is useful to this end. To 
impose an upper bound on δ, we assume

resulting in

For (94), using the upper bound from (97) we have

(89)
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Hence we can satisfy (94) by setting

For (91) we consider the two cases of L
𝜇
> 2 and L

�
≤ 2 . 

When L
𝜇
> 2,

It therefore suffices to have

Alternatively, if L
�
≤ 2,

where in the last line we used L
�
≤ 2 and in the last inequality 

we made the assumption that

resulting in �

1+�
≥

1

2
 . Consequently, to satisfy (91) it suffices 

to have

By combining (101) and (104), we set

For (92) we require that

in which the inequality is strict (in order to assure 1
�
 is strictly 

positive). Plugging in the values of c from (105) and γ from 
(99), and the upper bound on δ from (97), we have

So, in order to satisfy (106), it suffices to have 8
𝛼n

−
1

n
< 0 , 

resulting in α > 8. We may therefore set

(98)(1 + �)�� −
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L
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L
.
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(108)

in order to leave room for 1
�
 to be larger in the next step. Note 

that this automatically satisfies (103). With this setting of α, 
the left-hand side of (92) is equal to

To satisfy (92), it is sufficient to require that

For (93) we need

where the inequality is strict. To satisfy this, we set

By combining (110) and (112), we set

To satisfy (93), using (112), we can instead satisfy

Cancelling a γ term and using the value of γ from (99), we 
would like to satisfy

Using (96), we have

To satisfy (115), we may assume

and (96). Therefore, we set

This completes the proof of the lemma.
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A.6. Proof of Theorem 9

As in Defazio et  al. (2014, Corollary 1), we note that 
c‖
‖

wt − w∗
‖

‖

2
≤ �

t . Therefore, by chaining the expectations

where

Therefore, we should have

Using the inequality log(1 − x) ≤ −x , it suffices that

From (89), we know that

where we have used the fact that � ≤
1

√

D
 . So, we get

In Beck and Teboulle (2012) the authors prove that 
max
y∈Y

� fi(y,w) has Lipschitz continuous gradients with param-

eter βDΔ2 + ℓ, so the function fβ has Lipschitz continuous 
gradients with parameter L = βDΔ2 + ℓ. We also note that 
C0 = O(1∕c) = O(n∕L) = O(

n

�DΔ2+�
) . Therefore, when fβ is 

sufficiently smooth, that is,

we have

and otherwise

We can combine these two bounds into one to complete the 
proof:
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+ logC0

)

.

(125)L

�
=

�DΔ2+�

�
≤

n

34
,

(126)t = O
(

n
(

log
1

�
+ log n − log(�DΔ2 + �)

))

,

(127)

t = O

(

�DΔ2 + �

�

(

log
1

�
+ log n − log(�DΔ2 + �)

)

)

.

(128)

t = O

((

n +
�DΔ2 + �

�

)

(

log
1

�
+ log n − log(�DΔ2 + �)

)

)

.

A.7. Proof of Lemma 2

The softmax operator max� is an upper bound on the max 
function satisfying

for any function υ (Nielsen and Ke 2016). Using this ine-
quality and the optimality of w∗ and w�

∗ , it follows that

Therefore, 0 ≤ f �(w
�

∗) − f (w∗) ≤
log |Y|

�
 . So, in order to solve 

the original problem within an error of 𝜖, that is, f(wt) 
− f(w∗) ≤ 𝜖, it is sufficient to have log |Y|

𝛽
< 𝜖 , and

Therefore fβ(wt) − f(w∗) ≤ 𝜖, and using the fact that f(wt) 
≤ fβ(wt), we can conclude that f(wt) − f(w∗) ≤ 𝜖, completing 
the proof.

A.8. Proof of Lemma 3

By the descent lemma (Nesterov 2013, Lemma 1.2.4), we have

The smoothness of the function fβ, the optimality of w∗, and 
the convexity of W  imply that 〈∇fβ(w∗),w − w∗〉 ≤ 0, and 
therefore

The result now follows from Theorem 8.

A.9. Proof of Theorem 10

Based on Lemma 2, it suffices to find a point at which the 
value of fβ is in the 

(

� −
log |Y|

2�

)

-neighbourhood of its optimal 
value. Using Lemma 3, we need

Following the same steps as in Theorem 9, we conclude that

Using the inequality log(1 − x) ≤ −x , it suffices that

(129)max
y∈Y

�(y) ≤ max
y∈Y

�
�(y) ≤ max

y∈Y
�(y) +

log |Y|

�
,

(130)

f (w∗) ≤ f (w�

∗
) ≤ f �(w�

∗
) ≤ f �(w∗) ≤ f (w∗) +

log |Y|

�
.

(131)f �(wt) − f �(w
�

∗) ≤ � −
log |Y|

�
.

(132)f �(w) − f �(w∗) ≤ ⟨∇f �(w∗),w − w∗⟩ +
L

2
‖w − w∗‖

2.

(133)f �(w) − f �(w∗) ≤
L

2
‖w − w∗‖

2.

(134)

�
[

f (wt) − f (w∗)
]

≤
L

2
C0

(

1 −
1

�

)t

≤ � −
log |Y|

2�
=

�

2
.

(135)t ≥
log

2

�
+log

C0L

2

− log
(

1−
1

�

) .
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From (89), we know that

where we have used the fact that � ≤
1

√

D
.

We recall that max
y∈Y

� fi(y,w) has Lipschitz continuous gra-

dients with parameter βDΔ2 + ℓ (see Beck and Teboulle 
(2012)), so the function fβ has Lipschitz continuous gradi-
ents with parameter L = βDΔ2 + ℓ. Hence,

Since � =
2 log |Y|

�
 , for sufficiently small 𝜖, the second term 

dominates and we have

Replacing the values of L, μ, and τ in the formulae, we get

Note that C0L = O(
L

c
) = O(n) , so the time complexity is 

t = O
(

(
DΔ2 log |Y|

��
+

�

�
)
(

log
1

�
+ log n

))

 , proving the claim.

A.10. Proof of Lemma 4

Each iteration of SAGA requires finding all partial deriva-
tives of fi for a random choice of i with precision. Since 𝜖 is 

small, based on (89), we have � = O

�

1
√

D

��

1

�DΔ2+�
+
√

�

�

. We 

also note that Δ, which is a bound on the partial derivatives 
of maxy fi(y,w) , is also a bound on the partial derivatives of 
maxy

� fi(y,w) , because ∇wmaxy
� fi(y,w) = �(∇w[fi(Yi,w)]) . 

From (129) we know that F log |Y| is a bound on f �
i

 . By 
replacing the values of θ, F, Δ in the cost of gradient calcula-
tion the result follows.

A.11. Proof of Theorem 11

To optimize fβ using SAGA with exact gradient evaluations, 
instead of the parameters from (89), we set

according to Defazio et al. (2014), with no assignment of 𝜃 
(since there are no additive errors after all). The rest of the 
proof follows the same steps as in the proof of Theorem 9, 
Theorem 10, and its corollary.

(136)t ≥ �

(

log
2

�
+ log

C0L

2

)

.

(137)� = max
{

2n,
2

��

}

≤ max
{

2n,
68L

�

}

,

(138)� ≤ max
{

2n,
68(�DΔ2+�)

�

}

.

(139)� ≤
68(�DΔ2+�)

�
.

(140)t ≥
68(

2 log |Y|

�
DΔ2+�)

�

(

log
2

�
+ log

C0L

2

)

.

(141)
� =

1

2(�n+L)
, c =

1

2�(1−��)n
, � =

2�n+L

L
, and

1

�
= ��

A.12. Proof of Theorem 12

Since 𝜖 is small, and β, M, and ℓ are fixed, we can simplify 
the result of Lemma 4 and conclude that each gradient could 
be estimated in O

�

D1.5
�F

√

�Y� log(�Y�)Δ

��(�DΔ2+�)
log

D

�

�

 queries to the 
oracle for one of the fi and the same order of other quantum 
gates. In T iterations of Q-SAGA, if ζ = 1/(4T), the probabil-
ity of all gradient evaluations satisfying the additive 𝜃 upper 
bound is larger than (1 − �)T ≥ 1 −

(

1

4T

)

T ≥
3

4
 . The result 

follows from Theorem 9.

A.13. Proof of Theorem 13

By replacing the value of β from Theorem 10, each gradient 
evaluation costs

queries to the oracle for one of the fi and the same order of 
other quantum gates according to Lemma 4. Using the fact 
that 𝜖 is small, this simplifies to O

�

D1.5F
√

�Y� log(�Y�)Δ

�

√

�
log

D

�

�

 . 

From Theorem  10,  we know that  we need 
O
(

(
DΔ2 log |Y|

��
+

�

�
)
(

log
n

�

))

 gradient evaluations. Using the 

fact that 𝜖 is small, this simplifies to O
(

(
DΔ2 log |Y|

��
)
(

log
n

�

))

 . 
By multiplying the number of gradient estimations with the 
complexity of each, we get a total complexity of

As with the proof of Theorem 12 we should satisfy a failure 
probability of at most O( 1

T
) and get a total complexity of 

O

��

D1.5F
√

�Y� log(�Y�)Δ

�

√

�
logD

��

DΔ2 log �Y�

��

��

log
n

�

�

log
�

DΔ2 log �Y�

��
log

n

�

��

, which, 

after simplification, completes the proof.
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