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Abstract

There has been significant recent work on the
theory and application of randomized coordi-
nate descent algorithms, beginning with the work
of Nesterov [SIAM J. Optim., 22(2), 2012], who
showed that a random-coordinate selection rule
achieves the same convergence rate as the Gauss-
Southwell selection rule. This result suggests
that we should never use the Gauss-Southwell
rule, as it is typically much more expensive than
random selection. However, the empirical be-
haviours of these algorithms contradict this the-
oretical result: in applications where the compu-
tational costs of the selection rules are compa-
rable, the Gauss-Southwell selection rule tends
to perform substantially better than random co-
ordinate selection. We give a simple analy-
sis of the Gauss-Southwell rule showing that—
except in extreme cases—it’s convergence rate is
faster than choosing random coordinates. Fur-
ther, in this work we (i) show that exact coordi-
nate optimization improves the convergence rate
for certain sparse problems, (ii) propose a Gauss-
Southwell-Lipschitz rule that gives an even faster
convergence rate given knowledge of the Lips-
chitz constants of the partial derivatives, (iii) an-
alyze the effect of approximate Gauss-Southwell
rules, and (iv) analyze proximal-gradient variants
of the Gauss-Southwell rule.
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1. Coordinate Descent Methods
There has been substantial recent interest in applying co-
ordinate descent methods to solve large-scale optimiza-
tion problems, starting with the seminal work of Nesterov
(2012), who gave the first global rate of convergence anal-
ysis for coordinate descent methods for minimizing convex
functions. This analysis suggests that choosing a random
coordinate to update gives the same performance as choos-
ing the “best” coordinate to update via the more expen-
sive Gauss-Southwell (GS) rule. (Nesterov also proposed
a more clever randomized scheme, which we consider later
in this paper.) This result gives a compelling argument to
use randomized coordinate descent in contexts where the
GS rule is too expensive. However, it also suggests that
there is no benefit to using the GS rule in contexts where it
is relatively cheap. But in these contexts, the GS rule often
substantially outperforms randomized coordinate selection
in practice. This suggests that either the analysis of GS is
not tight, or that there exists a class of functions for which
the GS rule is as slow as randomized coordinate descent.

After discussing contexts in which it makes sense to use
coordinate descent and the GS rule, we answer this theo-
retical question by giving a tighter analysis of the GS rule
(under strong-convexity and standard smoothness assump-
tions) that yields the same rate as the randomized method
for a restricted class of functions, but is otherwise faster
(and in some cases substantially faster). We further show
that, compared to the usual constant step-size update of the
coordinate, the GS method with exact coordinate optimiza-
tion has a provably faster rate for problems satisfying a cer-
tain sparsity constraint (Section 5). We believe that this is
the first result showing a theoretical benefit of exact coor-
dinate optimization; all previous analyses show that these



Coordinate Descent is Faster with Gauss-Southwell

strategies obtain the same rate as constant step-size up-
dates, even though exact optimization tends to be faster in
practice. Further, in Section 6, we propose a variant of the
GS rule that, similar to Nesterov’s more clever randomized
sampling scheme, uses knowledge of the Lipschitz con-
stants of the coordinate-wise gradients to obtain a faster
rate. We also analyze approximate GS rules (Section 7),
which provide an intermediate strategy between random-
ized methods and the exact GS rule. Finally, we analyze
proximal-gradient variants of the GS rule (Section 8) for
optimizing problems that include a separable non-smooth
term.

2. Problems of Interest
The rates of Nesterov show that coordinate descent can be
faster than gradient descent in cases where, if we are op-
timizing n variables, the cost of performing n coordinate
updates is similar to the cost of performing one full gra-
dient iteration. This essentially means that coordinate de-
scent methods are useful for minimizing convex functions
that can be expressed in one of the following two forms:

h1(x) :=

n∑
i=1

gi(xi) + f(Ax),

h2(x) :=
∑
i∈V

gi(xi) +
∑

(i,j)∈E

fij(xi, xj),

where xi is element i of x, f is smooth and cheap, the fij
are smooth, G = {V,E} is a graph, and A is a matrix.
(It is assumed that all functions are convex.)1 The family
of functions h1 includes core machine-learning problems
such as least squares, logistic regression, lasso, and SVMs
(when solved in dual form) (Hsieh et al., 2008). Family h2
includes quadratic functions, graph-based label propaga-
tion algorithms for semi-supervised learning (Bengio et al.,
2006), and finding the most likely assignments in continu-
ous pairwise graphical models (Rue & Held, 2005).

In general, the GS rule for problem h2 is as expensive as a
full gradient evaluation. However, the structure of G often
allows efficient implementation of the GS rule. For exam-
ple, if each node has at most d neighbours, we can track the
gradients of all the variables and use a max-heap structure
to implement the GS rule in O(d log n) time (Meshi et al.,
2012). This is similar to the cost of the randomized algo-
rithm if d ≈ |E|/n (since the average cost of the random-
ized method depends on the average degree). This condi-
tion is true in a variety of applications. For example, in spa-
tial statistics we often use two-dimensional grid-structured

1We could also consider slightly more general cases like func-
tions that are defined on hyper-edges (Richtárik & Takáč, 2015),
provided that we can still perform n coordinate updates for a sim-
ilar cost to one gradient evaluation.

graphs, where the maximum degree is four and the aver-
age degree is slightly less than 4. As another example, for
applying graph-based label propagation on the Facebook
graph (to detect the spread of diseases, for example), the
average number of friends is around 200 but no user has
more than seven thousand friends.2 The maximum num-
ber of friends would be even smaller if we removed edges
based on proximity. A non-sparse example where GS is
efficient is complete graphs, since here the average degree
and maximum degree are both (n−1). Thus, the GS rule is
efficient for optimizing dense quadratic functions. On the
other hand, GS could be very inefficient for star graphs.

If each column of A has at most c non-zeroes and each row
has at most r non-zeroes, then for many notable instances
of problem h1 we can implement the GS rule inO(cr log n)
time by maintaining Ax as well as the gradient and again
using a max-heap (see Appendix 2). Thus, GS will be ef-
ficient if cr is similar to the number of non-zeroes in A
divided by n. Otherwise, Dhillon et al. (2011) show that
we can approximate the GS rule for problem h1 with no gi
functions by solving a nearest-neighbour problem. Their
analysis of the GS rule in the convex case, however, gives
the same convergence rate that is obtained by random se-
lection (although the constant factor can be smaller by a
factor of up to n). More recently, Shrivastava & Li (2014)
give a general method for approximating the GS rule for
problem h1 with no gi functions by writing it as a maxi-
mum inner-product search problem.

3. Existing Analysis
We are interested in solving the convex optimization prob-
lem

min
x∈Rn

f(x), (1)

where ∇f is coordinate-wise L-Lipschitz continuous, i.e.,
for each i = 1, . . . , n,

|∇if(x+αei)−∇if(x)| ≤ L|α|, ∀x ∈ Rn and α ∈ R,

where ei is a vector with a one in position i and zero in all
other positions. For twice-differentiable functions, this is
equivalent to the assumption that the diagonal elements of
the Hessian are bounded in magnitude byL. In contrast, the
typical assumption used for gradient methods is that ∇f is
Lf -Lipschitz continuous (note that L ≤ Lf ≤ Ln). The
coordinate descent method with constant step-size is based
on the iteration

xk+1 = xk − 1

L
∇ikf(xk)eik .

The randomized coordinate selection rule chooses ik uni-
formly from the set {1, 2, . . . , n}. Alternatively, the GS

2https://recordsetter.com/world-record/
facebook-friends

https://recordsetter.com/world-record/facebook-friends
https://recordsetter.com/world-record/facebook-friends


Coordinate Descent is Faster with Gauss-Southwell

rule
ik = argmax

i
|∇if(xk)|,

chooses the coordinate with the largest directional deriva-
tive. Under either rule, because f is coordinate-wise Lip-
schitz continuous, we obtain the following bound on the
progress made by each iteration:

f(xk+1)

≤ f(xk) +∇ikf(xk)(xk+1 − xk)ik +
L

2
(xk+1 − xk)2ik

= f(xk)− 1

L
(∇ikf(xk))2 +

L

2

[
1

L
∇ikf(xk)

]2
= f(xk)− 1

2L
[∇ikf(xk)]2.

(2)
We focus on the case where f is µ-strongly convex, mean-
ing that, for some positive µ,

f(y) ≥ f(x)+〈∇f(x), y−x〉+µ

2
‖y−x‖2, ∀x, y ∈ Rn,

(3)
which implies that

f(x∗) ≥ f(xk)− 1

2µ
‖∇f(xk)‖2, (4)

where x∗ is the optimal solution of (1). This bound is ob-
tained by minimizing both sides of (3) with respect to y.

3.1. Randomized Coordinate Descent

Conditioning on the σ-field Fk−1 generated by the se-
quence {x0, x1, . . . , xk−1}, and taking expectations of
both sides of (2), when ik is chosen with uniform sampling
we obtain

E[f(xk+1)] ≤ E
[
f(xk)− 1

2L

(
∇ikf(xk)

)2]
= f(xk)− 1

2L

n∑
i=1

1

n

(
∇if(xk)

)2
= f(xk)− 1

2Ln
‖∇f(xk)‖2.

Using (4) and subtracting f(x∗) from both sides, we get

E[f(xk+1)]− f(x∗) ≤
(

1− µ

Ln

)
[f(xk)− f(x∗)]. (5)

This is a special of case of Nesterov (2012, Theorem 2)
with α = 0 in his notation.

3.2. Gauss-Southwell

We now consider the progress implied by the GS rule. By
the definition of ik,

(∇ikf(xk))2 = ‖∇f(xk)‖2∞ ≥ (1/n)‖∇f(xk)‖2. (6)

Applying this inequality to (2), we obtain

f(xk+1) ≤ f(xk)− 1

2Ln
‖∇f(xk)‖2,

which together with (4), implies that

f(xk+1)− f(x∗) ≤
(

1− µ

Ln

)
[f(xk)− f(x∗)]. (7)

This is a special case of Boyd & Vandenberghe (2004,
§9.4.3), viewing the GS rule as performing steepest de-
scent in the 1-norm. While this is faster than known rates
for cyclic coordinate selection (Beck & Tetruashvili, 2013)
and holds deterministically rather than in expectation, this
rate is the same as the randomized rate given in (5).

4. Refined Gauss-Southwell Analysis
The deficiency of the existing GS analysis is that too much
is lost when we use the inequality in (6). To avoid the need
to use this inequality, we instead measure strong-convexity
in the 1-norm, i.e.,

f(y) ≥ f(x) + 〈∇f(x), y − x〉+
µ1

2
‖y − x‖21,

which is the analogue of (3). Minimizing both sides with
respect to y, we obtain

f(x∗) ≥ f(x)− sup
y
{〈−∇f(x), y − x〉 − µ1

2
‖y − x‖21}

= f(x)−
(µ1

2
‖ · ‖21

)∗
(−∇f(x))

= f(x)− 1

2µ1
‖∇f(x)‖2∞,

(8)
which makes use of the convex conjugate (µ1

2 ‖ · ‖
2
1)∗ =

1
2µ1
‖ · ‖2∞ (Boyd & Vandenberghe, 2004, §3.3). Using (8)

in (2), and the fact that (∇ikf(xk))2 = ‖∇f(xk)‖2∞ for
the GS rule, we obtain

f(xk+1)− f(x∗) ≤
(

1− µ1

L

)
[f(xk)− f(x∗)]. (9)

It is evident that if µ1 = µ/n, then the rates implied by (5)
and (9) are identical, but (9) is faster if µ1 > µ/n. In
Appendix 4, we show that

µ

n
≤ µ1 ≤ µ.

Thus, at one extreme the GS rule obtains the same rate as
uniform selection (µ1 ≈ µ/n). However, at the other ex-
treme, it could be faster than uniform selection by a factor
of n (µ1 ≈ µ). This analysis, that the GS rule only obtains
the same bound as random selection in an extreme case,
supports the better practical behaviour of GS.
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4.1. Comparison for Separable Quadratic

We illustrate these two extremes with the simple example
of a quadratic function with a diagonal Hessian ∇2f(x) =
diag(λ1, . . . , λn). In this case,

µ = min
i

λi, and µ1 =

(
n∑
i=1

1

λi

)−1
.

We prove the correctness of this formula for µ1 in Ap-
pendix 4.1. The parameter µ1 achieves its lower bound
when all λi are equal, λ1 = · · · = λn = α > 0, in which
case

µ = α and µ1 = α/n.

Thus, uniform selection does as well as the GS rule if all el-
ements of the gradient change at exactly the same rate. This
is reasonable; under this condition, there is no apparent ad-
vantage in selecting the coordinate to update in a clever
way. Intuitively, one might expect that the favourable case
for the Gauss-Southwell rule would be where one λi is
much larger than the others. However, in this case, µ1 is
again similar to µ/n. To achieve the other extreme, sup-
pose that λ1 = β and λ2 = λ3 = · · · = λn = α with
α ≥ β. In this case, we have µ = β and

µ1 =
βαn−1

αn−1 + (n− 1)βαn−2
=

βα

α+ (n− 1)β
.

If we take α → ∞, then we have µ1 → β, so µ1 → µ.
This case is much less intuitive; GS is n times faster than
random coordinate selection if one element of the gradient
changes much more slowly than the others. Appendix 4.1
gives a physical interpretation of µ and µ1 in terms of in-
dependent processes ‘working together’ (Ferger, 1931).

4.2. Fast Convergence with Bias Term

Consider the standard linear-prediction framework,

argmin
x,β

m∑
i=1

[f(aTi x+ β)] +
λ

2
‖x‖2 +

σ

2
β2,

where we have included a bias variable β (an example of
problem h1). Typically, the regularization parameter σ of
the bias variable is set to be much smaller than the regular-
ization parameter λ of the other covariates, to avoid biasing
against a global shift in the predictor. Assuming that there
is no hidden strong-convexity in the sum, this problem has
the structure described in the previous section (µ1 ≈ µ)
where GS has the most benefit over random selection.

5. Rates with Different Lipschitz Constants
Consider the more general scenario where we have a Lips-
chitz constant Li for the partial derivative of f with respect

to each coordinate i,

|∇if(x+αei)−∇if(x)| ≤ Li|α|, ∀x ∈ Rn and α ∈ R,

and we use a coordinate-dependent step-size at each itera-
tion:

xk+1 = xk − 1

Lik
∇ikf(xk)eik . (10)

By the logic of (2), in this setting we have

f(xk+1) ≤ f(xk)− 1

2Lik
[∇ikf(xk)]2, (11)

and thus a convergence rate of

f(xk)− f(x∗) ≤

 k∏
j=1

(
1− µ1

Lij

) [f(x0)− f(x∗)].

(12)
Noting that L = maxi{Li}, we have

k∏
j=1

(
1− µ1

Lij

)
≤
(

1− µ1

L

)k
. (13)

Thus, the convergence rate based on the Li will be faster,
provided that at least one iteration chooses an ik with
Lik < L. In the worst case, however, (13) holds with equal-
ity even if the Li are distinct, as we might need to update a
coordinate with Li = L on every iteration. (For example,
consider a separable function where all but one coordinate
is initialized at its optimal value, and the remaining coordi-
nate has Li = L.) In Section 6, we discuss selection rules
that incorporate the Li to achieve faster rates whenever the
Li are distinct, but first we consider the effect of exact co-
ordinate optimization on the choice of the Lik .

5.1. Gauss-Southwell with Exact Optimization

For problems involving functions of the form h1 and h2,
we are often able to perform exact (or numerically very pre-
cise) coordinate optimization, even if the objective function
is not quadratic (e.g., by using a line-search or a closed-
form update). Note that (12) still holds when using ex-
act coordinate optimization rather than using a step-size of
1/Lik , as in this case we have

f(xk+1) = min
α
{f(xk + αeik)}

≤ f
(
xk − 1

Lik
∇iif(xk)eik

)
≤ f(xk)− 1

2Lik
[∇ikf(xk)]2,

(14)

which is equivalent to (11). However, in practice using ex-
act coordinate optimization leads to better performance. In
this section, we show that using the GS rule results in a
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convergence rate that is indeed faster than (9) for problems
with distinct Li when the function is quadratic, or when the
function is not quadratic but we perform exact coordinate
optimization.

The key property we use is that, after we have performed
exact coordinate optimization, we are guaranteed to have
∇ikf(xk+1) = 0. Because the GS rule chooses ik+1 =
argmaxi |∇if(xk+1)|, we cannot have ik+1 = ik, unless
xk+1 is the optimal solution. Hence, we never choose the
same coordinate twice in a row, which guarantees that the
inequality (13) is strict (with distinct Li) and exact coordi-
nate optimization is faster. We note that the improvement
may be marginal, as we may simply alternate between the
two largest Li values. However, consider minimizing h2
when the graph is sparse; after updating ik, we are guar-
anteed to have ∇ikf(xk+m) = 0 for all future iterations
(k+m) until we choose a variable ik+m−1 that is a neigh-
bour of node ik in the graph. Thus, if the two largest Li
are not connected in the graph, GS cannot simply alternate
between the two largest Li.

By using this property, in Appendix 5.1 we show that the
GS rule with exact coordinate optimization for problem h2
under a chain-structured graph has a convergence rate of
the form

f(xk)− f(x∗) ≤ O
(
max{ρG2 , ρG3 }k

)
[f(x0)− f(x∗)],

where ρG2 is the maximizer of
√

(1− µ1/Li)(1− µ1/Lj)
among all consecutive nodes i and j in the chain, and ρG3 is
the maximizer of 3

√
(1− µ1/Li)(1− µ1/Lj)(1− µ1/Lk)

among consecutive nodes i, j, and k. The implication of
this result is that, if the large Li values are more than two
edges from each other in the graph, then we obtain a much
better convergence rate. We conjecture that for general
graphs, we can obtain a bound that depends on the largest
value of ρG2 among all nodes i and j connected by a path
of length 1 or 2. Note that we can obtain similar results
for problem h1, by forming a graph that has an edge be-
tween nodes i and j whenever the corresponding variables
are both jointly non-zero in at least one row of A.

6. Rules Depending on Lipschitz Constants
If the Li are known, Nesterov (2012) showed that we can
obtain a faster convergence rate by sampling proportional
to the Li. We review this result below and compare it to
the GS rule, and then propose an improved GS rule for this
scenario. Although in this section we will assume that the
Li are known, this assumption can be relaxed using a back-
tracking procedure (Nesterov, 2012, §6.1).

6.1. Lipschitz Sampling

Taking the expectation of (11) under the distribution pi =
Li/

∑n
j=1 Lj and proceeding as before, we obtain

E[f(xk+1)]− f(x∗) ≤
(

1− µ

nL̄

)
[f(xk)− f(x∗)],

where L̄ = 1
n

∑n
j=1 Lj is the average of the Lipschitz con-

stants. This was shown by Leventhal & Lewis (2010) and
is a special case of Nesterov (2012, Theorem 2) with α = 1
in his notation. This rate is faster than (5) for uniform sam-
pling if any Li differ.

Under our analysis, this rate may or may not be faster
than (9) for the GS rule. On the one extreme, if µ1 = µ/n
and any Li differ, then this Lipschitz sampling scheme is
faster than our rate for GS. Indeed, in the context of the
problem from Section 4.1, we can make Lipschitz sam-
pling faster than GS by a factor of nearly n by making one
λi much larger than all the others (recall that our analy-
sis shows no benefit to the GS rule over randomized se-
lection when only one λi is much larger than the others).
At the other extreme, in our example from Section 4.1
with many large α and one small β, the GS and Lipschitz
sampling rates are the same when n = 2, with a rate of
(1− β/(α+ β)). However, the GS rate will be faster than
the Lipschitz sampling rate for any α > β when n > 2,
as the Lipschitz sampling rate is (1− β/((n− 1)α + β)),
which is slower than the GS rate of (1−β/(α+(n−1)β)).

6.2. Gauss-Southwell-Lipschitz Rule

Since neither Lipschitz sampling nor GS dominates the
other in general, we are motivated to consider whether
faster rules are possible by combining the two approaches.
Indeed, we obtain a faster rate by choosing the ik that min-
imizes (11), leading to the rule

ik = argmax
i

|∇if(xk)|√
Li

,

which we call the Gauss-Southwell-Lipschitz (GSL) rule.
Following a similar argument to Section 4, but using (11)
in place of (2), the GSL rule obtains a convergence rate of

f(xk+1)− f(x∗) ≤ (1− µL)[f(xk)− f(x∗)],

where µL is the strong-convexity constant with respect to
the norm ‖x‖L =

∑n
i=1

√
Li|xi|. This is shown in Ap-

pendix 6.2, where we also show that

max
{ µ

nL̄
,
µ1

L

}
≤ µL ≤

µ1

mini{Li}
.

Thus, the GSL rule is always at least as fast as the fastest
of the GS rule and Lipschitz sampling. Indeed, it can be
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more than a factor of n faster than using Lipschitz sam-
pling, while it can obtain a rate closer to the minimum Li,
instead of the maximumLi that the classic GS rule depends
on.

An interesting property of the GSL rule for quadratic func-
tions is that it is the optimal myopic coordinate update.
That is, if we have an oracle that can choose the coordinate
and the step-size that decreases f by the largest amount,

f(xk+1) = argmin
i,α
{f(xk + αei)}, (15)

this is equivalent to using the GSL rule and the update
in (10). This follows because (11) holds with equality in the
quadratic case, and the choice αk = 1/Lik yields the opti-
mal step-size. Thus, although faster schemes could be pos-
sible with non-myopic strategies that cleverly choose the
sequence of coordinates or step-sizes, if we can only per-
form one iteration, then the GSL rule cannot be improved.

For general f , (15) is known as the maximum improvement
(MI) rule. This rule has been used in the context of boost-
ing (Rätsch et al., 2001), graphical models (Della Pietra
et al., 1997; Lee et al., 2006; Scheinberg & Rish, 2009),
Gaussian processes (Bo & Sminchisescu, 2008), and low-
rank tensor approximations (Li et al., 2015). Using an ar-
gument similar to (14), our GSL rate also applies to the MI
rule, improving existing bounds on this strategy. However,
the GSL rule is much cheaper and does not require any spe-
cial structure (recall that we can estimate Li as we go).

A further interesting property of the GSL rule is that it
has a stronger connection to the nearest neighbour problem
than the GS rule. In particular, in Appendix 6.2 we show
that under weak conditions the GSL rule is equivalent to
a normalized nearest neighbour problem for the standard
empirical risk minimization framework with a linear pre-
dictor, F (x) =

∑n
i=1 f(aTi x), for a twice-differentiable

loss f . This includes problems like least squares and logis-
tic regression, and note that this equivalence is not true for
the classic GS rule. Surprisingly, this strategy allows us to
compute the GSL rule in this context even if we do not the
know the Li.

7. Approximate Gauss-Southwell
In many applications, computing the exact GS rule is too
inefficient to be of any practical use. However, a compu-
tationally cheaper approximate GS rule might be available.
Approximate GS rules under multiplicative and additive er-
rors were considered by Dhillon et al. (2011) in the convex
case, but in this setting the convergence rate is similar to
the rate achieved by random selection. In this section, we
give rates depending on µ1 for approximate GS rules.

7.1. Multiplicative Errors

In the multiplicative error regime, the approximate GS rule
chooses an ik satisfying

|∇ikf(xk)| ≥ ‖∇f(xk)‖∞(1− εk),

for some εk ∈ [0, 1). In this regime, our basic bound on
the progress (2) still holds, as it was defined for any ik. We
can incorporate this type of error into our lower bound (8)
to obtain

f(x∗) ≥ f(xk)− 1

2µ1
‖∇f(xk)‖2∞

≥ f(xk)− 1

2µ1(1− εk)2
|∇ikf(xk)|2.

This implies a convergence rate of

f(xk+1)−f(x∗) ≤
(

1− µ1(1− εk)2

L

)
[f(xk)−f(x∗)].

Thus, the convergence rate of the method is nearly identical
to using the exact GS rule for small εk (and it degrades
gracefully with εk). This is in contrast to having an error
in the gradient (Friedlander & Schmidt, 2012), where the
error ε must decrease to zero over time.

7.2. Additive Errors

In the additive error regime, the approximate GS rule
chooses an ik satisfying

|∇ikf(xk)| ≥ ‖∇f(xk)‖∞ − εk,

for some εk ≥ 0. In Appendix 7.2, we show that under this
rule, we have

f(xk)− f(x∗) ≤(
1− µ1

L

)k [
f(x0)− f(x∗) +

√
f(x0)− f(x∗)Ak

]
,

where

Ak =

√
2L1

L

k∑
i=1

(
1− µ1

L

)−i
εi,

where L1 is the Lipschitz constant of ∇f with respect to
the 1-norm. However, note that L1 could be substantially
larger than L, so in Appendix 7.2 we also give a bound with
a worse dependence on εk that does not rely on L1. This
regime is closer to the case of having an error in the gradi-
ent, as to obtain convergence the εk must decrease to zero.
This result implies that a sufficient condition for the algo-
rithm to obtain a linear convergence rate is that the errors
εk converge to zero at a linear rate. Further, if the errors
satisfy εk = O(ρk) for some ρ < (1 − µ1/L), then the
convergence rate of the method is the same as if we used an
exact GS rule. On the other hand, if εk does not decrease to
zero, we may end up repeatedly updating the same wrong
coordinate and the algorithm will not converge (though we
could switch to the randomized method if this is detected).
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8. Proximal-Gradient Gauss-Southwell
One of the key motivations for the resurgence of interest in
coordinate descent methods is their performance on prob-
lems of the form

min
x∈Rn

F (x) ≡ f(x) +

n∑
i=1

gi(xi),

where f is smooth and convex and the gi are convex,
but possibly non-smooth. This includes problems with
`1-regularization, and optimization with lower and/or up-
per bounds on the variables. Similar to proximal-gradient
methods, we can apply the proximal operator to the coor-
dinate update,

xk+1 = prox 1
L gik

[
xk − 1

L
∇ikf(xk)eik

]
,

where

proxαgi [y] = argmin
x∈Rn

1

2
‖x− y‖2 + αgi(x).

With random coordinate selection, Richtárik & Takáč
(2014) show that this method has a convergence rate of

E[F (xk+1)− F (x∗)] ≤
(

1− µ

nL

)
[F (xk)− F (x∗)],

similar to the unconstrained/smooth case.

There are several generalizations of the GS rule to this sce-
nario. Here we consider three possibilities, all of which are
equivalent to the GS rule if the gi are not present. First,
the GS-s rule chooses the coordinate with the most neg-
ative directional derivative. This strategy is popular for
`1-regularization (Shevade & Keerthi, 2003; Wu & Lange,
2008; Li & Osher, 2009) and in general is given by (see
Bertsekas, 1999, §8.4)

ik = argmax
i

{
min
s∈∂gi

|∇if(xk) + s|
}
.

However, the length of the step (‖xk+1 − xk‖) could be
arbitrarily small under this choice. In contrast, the GS-r
rule chooses the coordinate that maximizes the length of
the step (Tseng & Yun, 2009; Dhillon et al., 2011),

ik = argmax
i

{∣∣∣∣xki − prox 1
L gi

[
xki −

1

L
∇if(xk)

]∣∣∣∣} .
This rule is effective for bound-constrained problems, but
it ignores the change in the non-smooth term (gi(xk+1

i ) −
gi(x

k
k)). Finally, the GS-q rule maximizes progress assum-

ing a quadratic upper bound on f (Tseng & Yun, 2009),

ik = argmin
i

{
min
d

{
f(xk) +∇if(xk)d+

L

2
d2

+ gi(x
k
i + d)− gi(xki )

}}
.

While the least intuitive rule, the GS-q rule seems to have
the best theoretical properties. Further, if we useLi in place
of L in the GS-q rule (which we call the GSL-q strategy),
then we obtain the GSL rule if the gi are not present. In
contrast, using Li in place of L in the GS-r rule (which we
call the GSL-r strategy) does not yield the GSL rule as a
special case.

In Appendix 8, we show that using the GS-q rule yields a
convergence rate of

F (xk+1)− F (x∗) ≤ min

{(
1− µ

Ln

)
[f(xk)− f(x∗)],(

1− µ1

L

)
[f(x0)− f(x∗)] + εk

}
,

where εk is bounded above by a measure of the non-
linearity of the gi along the possible coordinate updates.
Note that εk goes to zero as k increases and we conjecture
that the above bound holds with εk = 0. In contrast, in
Appendix 8 we show that the above rate does not hold with
εk = 0 for the GS-s or GS-r rule, even if you replace the
minimum by a maximum. Thus, any bounds for the GS-s
and GS-r rules would be slower than the expected rate un-
der random selection, while the GS-q rule leads to a better
bound.

9. Experiments
We compared the efficacy of different coordinate selection
rules on the following simple instances of h1. In Appendix
9, we report experimental results on an instance of h2.

`2-regularized sparse least squares: Here we consider the
problem

min
x

1

2n
‖Ax− b‖2 +

λ

2
‖x‖2,

an instance of problem h1. We set A to be an m by n ma-
trix with entries sampled from a N (0, 1) distribution (with
m = 1000 and n = 1000). We then added 1 to each en-
try (to induce a dependency between columns), multiplied
each column by a sample from N (0, 1) multiplied by ten
(to induce different Lipschitz constants across the coordi-
nates), and only kept each entry of A non-zero with prob-
ability 10 log(n)/n (a sparsity level that allows the Gauss-
Southwell rule to be applied with cost O(log3(n)). We set
λ = 1 and b = Ax + e, where the entries of x and e
were drawn from a N (0, 1) distribution. In this setting, we
used a step-size of 1/Li for each coordinate i, which cor-
responds to exact coordinate optimization.

`2-regularized sparse logistic regression: Here we con-
sider the problem

min
x

1

n

n∑
i=1

log(1 + exp(−biaTi x)) +
λ

2
‖x‖2.
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Figure 1. Comparison of coordinate selection rules for 4 instances of problem h1.

We set the ai to be the rows of A from the previous prob-
lem, and set b = sign(Ax), but randomly flipping each bi
with probability 0.1. In this setting, we compared using a
step-size of 1/Li to using exact coordinate optimization.

Over-determined dense least squares: Here we consider
the problem

min
x

1

2n
‖Ax− b‖2,

but, unlike the previous case, we do not set elements of A
to zero and we make A have dimension 1000 by 100. Be-
cause the system is over-determined, it does not need an ex-
plicit strongly-convex regularizer to induce global strong-
convexity. In this case, the density level means that the
exact GS rule is not efficient. Hence, we use a balltree
structure (Omohundro, 1989) to implement an efficient ap-
proximate GS rule based on the connection to the nearest
neighbour problem discovered by Dhillon et al. (2011). On
the other hand, we can compute the exact GSL rule for this
problem as a nearest neighbour problem.

`1-regularized underdetermined sparse least squares:
Here we consider the non-smooth problem

min
x

1

2n
‖Ax− b‖2 + λ‖x‖1.

We generate A as we did for the `2-regularized sparse
least squares problem, except with the dimension 1000 by
10000. This problem is not globally strongly-convex, but
will be strongly-convex along the dimensions that are non-
zero in the optimal solution.

We plot the objective function (divided by its initial value)
of coordinate descent under different selection rules in Fig-
ure 1. Even on these simple datasets, we see dramatic dif-
ferences in performance between the different strategies.
In particular, the GS rule outperforms random coordinate
selection (as well as cyclic selection) by a substantial mar-
gin in all cases. The Lipschitz sampling strategy can nar-
row this gap, but it remains large (even when an approx-
imate GS rule is used). The difference between GS and
randomized selection seems to be most dramatic for the `1-
regularized problem; the GS rules tend to focus on the non-
zero variables while most randomized/cyclic updates focus

on the zero variables, which tend not to move away from
zero.3 Exact coordinate optimization and using the GSL
rule seem to give modest but consistent improvements. The
three non-smooth GS-∗ rules had nearly identical perfor-
mance despite their different theoretical properties. The
GSL-q rule gave better performance than the GS-∗ rules,
while the the GSL-r variant performed worse than even
cyclic and random strategies. We found it was also pos-
sible to make the GS-s rule perform poorly by perturbing
the initialization away from zero. While these experiments
plot the performance in terms of the number of iterations,
in Appendix 9 we show that the GS-∗ rules can also be ad-
vantageous in terms of runtime.

10. Discussion
It is clear that the GS rule is not practical for every problem
where randomized methods are applicable. Nevertheless,
we have shown that even approximate GS rules can ob-
tain better convergence rate bounds than fully-randomized
methods. We have given a similar justification for the use
of exact coordinate optimization, and we note that our ar-
gument could also be used to justify the use of exact coor-
dinate optimization within randomized coordinate descent
methods (as used in our experiments). We have also pro-
posed the improved GSL rule, and considered approxi-
mate/proximal variants. We expect our analysis also ap-
plies to block updates by using mixed norms ‖ · ‖p,q , and
could be used for accelerated/parallel methods (Fercoq &
Richtárik, 2013), for primal-dual rates of dual coordinate
ascent (Shalev-Shwartz & Zhang, 2013), for successive
projection methods (Leventhal & Lewis, 2010), for boost-
ing algorithms (Rätsch et al., 2001), and for scenarios with-
out strong-convexity under general error bounds (Luo &
Tseng, 1993).

3To reduce the cost of the GS-s method in this context, She-
vade & Keerthi (2003) consider a variant where we first compute
the GS-s rule for the non-zero variables and if an element is suf-
ficiently large then they do not consider the zero variables .
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