
Coordinate descent converges faster with the
Gauss-Southwell rule than random selection

Mark Schmidt
Department of Computer Science
University of British Columbia

Michael Friedlander
Department of Mathematics

University of California, Davis

Abstract

There has been significant recent work on the theory and application of randomized
coordinate-descent algorithms, beginning with the work of Nesterov [SIAM J.
Optim., 22(2), 2012] who showed that a random-coordinate selection rule achieves
the same convergence rate as the Gauss-Southwell selection rule. This suggests
that we should never use the Gauss-Southwell rule, which is typically much more
expensive than random selection. However, this theoretical result disagrees with
the typical empirical behaviours of these algorithms: in applications where both
selection rules are computationally cheap, the Gauss-Southwell selection rule
tends to perform substantially better than random coordinate selection. We give a
simple new analysis of the Gauss-Southwell rule showing that—except in extreme
cases cases—it is always faster than choosing random coordinates. Further, under
extra assumptions we give a refined Gauss-Southwell rule with an even faster
convergence rate.

1 Coordinate Descent Methods

There has been substantial recent interest in applying coordinate descent methods to solve large-scale
optimization problems. The recent renewal in interest on this topic began with the seminal work
of Nesterov [2010, 2012], who gave the first global rate of convergence analysis for coordinate-
descent methods for minimizing convex functions. This analysis suggests that choosing at random the
coordinate to update gives the same performance as choosing the “best” coordinate to update via the
more expensive Gauss-Southwell (GS) rule. (Nesterov further proposed a more clever randomized
scheme). This result gives a compelling motivation to use randomized coordinate descent in contexts
where the GS rule is too expensive, which has lead to large performance improvements on a variety
of problems. However, it also suggests that there is no benefit to using the GS rule in contexts where
it is relatively cheap. But in such contexts, the GS rule tends to substantially outperform randomized
coordinate selection in practice. This would indicate that either (i) the analysis of GS is not tight,
or (ii) there exists a class of functions for which the GS rule is as slow as randomized coordinate
descent. After discussing contexts in which it makes sense to use coordinate descent and the GS rule,
we answer this theoretical question by giving a tighter analysis of the GS rule (under strong-convexity
and standard smoothness assumptions) that yields the same rate as the randomized method for a
restricted class of functions, but is otherwise faster (and in some cases substantially faster). Further,
in Section 5 we propose a variant of the Gauss-Southwell rule that, similar to Nesterov’s more clever
randomized sampling scheme, uses knowledge of the Lipschitz constants of the coordinate-wise
gradients to obtain a faster rate.

2 Problems where we can apply coordinate descent

According to the rates of Nesterov, if we are optimizing n variables then coordinate descent will be
faster than gradient descent if we can perform n coordinate updates with a similar cost to one full

1

gradient iteration. This essentially means that coordinate descent methods are useful for minimizing
convex functions that can be expressed in one of the following two forms:

h1(x) := f(Ax) +

n∑
i=1

gi(xi), or h2(x) :=
∑
i∈V

gi(xi) +
∑

(i,j)∈E

fij(xij).

where f is smooth and cheap, the fij are smooth, {V,G} is a graph, and A is a matrix. (It is
assumed that all functions are convex.)1 The family h1 includes core machine learning problems
like least squares, logistic regression, lasso, and SVMs (when solved in dual form) [Hsieh et al.,
2008]; functions in the family h2 include problems like graph-based label propagation algorithms for
semi-supervised learning [Bengio et al., 2006] and finding most likely assignments in continuous
pairwise graphical models.

In general, the GS rule for these problems is as expensive as a full gradient evaluation, meaning that
we should not apply this within coordinate-descent methods. However, additional structure may make
the GS rule competitive. For example, Dhillon et al. [2011] show that for the first problem class we
can approximate the GS rule by solving a nearest neighbour problem (but their analysis of the GS
rule gives the same convergence rate that is obtained by random selection). For the second problem
structure, if each node in the graph has only O(log n) neighbours, we can track the gradients of all
the fij to implement the GS rule with cost a of O(log n). A similar argument holds for h1 in the case
where A has only O(log n) non-zero values in each column.

3 Existing analysis

We are interested in solving the convex optimization problem
min
x∈Rn

f(x),

where ∇f is coordinate-wise L-Lipschitz continuous, meaning that for each i = 1, . . . , n,
|∇if(x+ αei)−∇if(x)| ≤ L|α|, ∀x ∈ Rn and α ∈ R.

For twice-differentiable functions, this is equivalent to the assumption that the diagonal elements of
the Hessian are bounded in magnitude by L. In contrast, the typical assumption used for gradient
methods is that∇f is Lf -Lipschitz continuous. (Note that L ≤ Lf , and in the extreme case, L may
be up to n times smaller than Lf). The coordinate-descent method with constant stepsize is based on
the iteration

xk+1 = xk − 1

L
∇ikf(xk)eik .

The randomized coordinate selection rule chooses ik uniformly from the set {1, 2, . . . , n}; the GS
rule, on the other hand, chooses the coordinate with largest directional derivative,

ik = arg max
i

|∇if(xk)|.

Under either rule, because f is coordinate-wise Lipschitz continuous, we obtain the following bound
on the progress made by each iteration:

f(xk+1) ≤ f(xk) +∇ikf(xk)(xk+1 − xk)ik +
L

2
(xk+1 − xk)2ik

= f(xk)− 1

L
(∇ikf(xk))2 +

L

2

[
1

L
∇ikf(xk)

]2
= f(xk)− 1

2L
[∇ikf(xk)]2.

(1)

We focus on the case where f is µ-strongly convex meaning that, for some positive µ,

f(y) ≥ f(x) + 〈∇f(x), y − x〉+ µ

2
‖y − x‖2, ∀x, y ∈ Rn. (2)

We can minimize both sides with respect to y to obtain the bound

f(x∗) ≥ f(xk)− 1

2µ
‖∇f(xk)‖2. (3)

1We could also consider slightly more general cases like functions that are defined on hyper-edges, provided
the sparsity in the hyper-graph still allows us to perform n coordinate updates for a similar cost as one gradient
evaluation.

2

3.1 Randomized coordinate descent

Conditioning on the σ-field Fk−1 generated by the sequence {x0, x1, . . . , xk−1}, take expectations
of both sides of (1), where ik is chosen with uniform sampling, to obtain

E[f(xk+1)] ≤ E
[
f(xk)− 1

2L

(
∇ikf(xk)

)2]
= f(xk)− 1

2L

n∑
i=1

1

n

(
∇if(xk)

)2
= f(xk)− 1

2Ln
‖∇f(xk)‖2.

Using (3) and subtracting f(x∗) from both sides we get

E[f(xk+1)]− f(x∗) ≤
(
1− µ

Ln

)
[f(xk)− f(x∗)]. (4)

3.2 Gauss-Southwell

We now consider the progress implied by the GS rule. By the definition of ik,

(∇ikf(xk))2 = ‖∇f(xk)‖2∞ ≥ (1/n)‖∇f(xk)‖2. (5)

Apply this inequality to (1) to obtain

f(xk+1) ≤ f(xk)− 1

2Ln
‖∇f(xk)‖2,

which together with (3), implies that

f(xk+1)− f(x∗) ≤
(
1− µ

Ln

)
[f(xk)− f(x∗)]. (6)

Thus, the (deterministic) GS update yields precisely the same convergence rate as the expected
randomized update given by (4).

4 Refined Gauss-Southwell analysis

The deficiency of the existing GS analysis is that too much is lost when we use the inequality in (5).
To avoid the need to use this inequality, we measure strong-convexity in the 1-norm, i.e.,

f(y) ≥ f(x) + 〈∇f(x), y − x〉+ µ1

2
‖y − x‖21,

which is the analogue of (2). Minimizing both sides with respect to y we get [Nesterov, 2012, §3]

f(x∗) ≥ f(x)− sup
y
{〈−∇f(x), y − x〉 − µ1

2
‖y − x‖21}

= f(x)−
(µ1

2
‖ · ‖21

)∗
(−∇f(x))

= f(x)− 1

2µ1
‖∇f(x)‖2∞,

which uses that the conjugate (µ1

2 ‖ · ‖
2
1)
∗ = 1

2µ1
‖ · ‖2∞. Using this in (1), and the fact that

(∇ikf(xk))2 = ‖∇f(xk)‖2∞ for the GS rule, we obtain

f(xk+1)− f(x∗) ≤
(
1− µ1

L

)
[f(xk)− f(x∗)]. (7)

It is evident that if µ1 = µ/n, then the rates implied by (6) and (7) are identical. However, the
rate implied by (7) is faster if µ1 > µ/n. It follows from Nesterov [2004, Theorem 2.1.9] that the
strong-convexity parameters µ and µ1 can be defined by

µ = inf
x,y

‖∇f(x)−∇f(y)‖
‖x− y‖

and µ1 = inf
x,y

‖∇f(x)−∇f(y)‖∞
‖x− y‖1

.

3

Using the inequalities ‖ · ‖∞ ≤ ‖ · ‖ ≤ ‖ · ‖1,

µ1 ≡ inf
x,y

‖∇f(x)−∇f(y)‖∞
‖x− y‖1

≤ inf
x,y

‖∇f(x)−∇f(y)‖
‖x− y‖

≡ µ.

Similarly, using the inequalities ‖ · ‖1 ≤
√
n‖ · ‖ ≤ n‖ · ‖∞,

µ ≡ inf
x,y

‖∇f(x)−∇f(y)‖
‖x− y‖

≤ inf
x,y

√
n‖∇f(x)−∇f(y)‖∞

1√
n
‖x− y‖1

= nµ1.

We can summarize these relationships between µ and µ1 as
1

n
µ ≤ µ1 ≤ µ.

Thus, in extreme cases the GS rule obtains the same rate as uniform selection (µ1 ≈ µ/n), but on
the other extreme it could be faster by a factor of n (µ1 ≈ µ). That GS only obtains the same rate
as random selection in an extreme case seems to explain why the GS rule behaves much better in
practice.

We illustrate these two extremes with the simple example of a quadratic function with a diagonal
Hessian∇2f(x) = diag(λ1, . . . , λn). In this case,

µ = min
i

λi, and µ1 =

∏n
i=1 λi∑n

k=1

∏
i6=k λi

.

The parameter µ1 achieves its lower bound when all λi are equal, λ1 = · · · = λn = α > 0, in which
case

µ = α and µ1 = α/n.
Thus, uniform selection does as well as the GS rule if all elements of the gradient change at
exactly the same rate. This is intuitive, since under this condition there is no apparent advantage in
picking the coordinate to update in a clever way. At the other extreme, suppose that λ1 = β and
λ2 = λ3 = · · · = λn = α with α ≥ β. In this case we have

µ = β, and µ1 =
βαn−1

αn−1 + (n− 1)βαn−2
=

βα

α+ (n− 1)β
.

If we take α→∞ then we have µ1 → β so µ1 → µ. This case is much less intuitive; GS is n times
faster than random coordinate selection if one element of the gradient changes much more slowly
than the others.

5 Extensions

If there is a different Lipschitz constant Li with respect to each coordinate and we choose the
coordinate to update proportional to these constants, Nesterov [2010] shows the rate

E[f(xk+1)]− f(x∗) ≤

(
1− µ∑N

i=1 Li

)
[f(x0)− f(x∗)],

which is faster than the rate (4) for uniform sampling. Under our analysis this may or may not be faster
than the GS rule. For example, if µ1 = µ/n and any Li differ then this Lipschitz sampling scheme
is faster than our rate for GS. At the other extreme, in our example above with α and β the GS and
Lipschitz sampling rates are the same when n = 2, with a rate of (1− β/(α+ β)). But, the GS rate
will be faster for any α > β when n > 2, since the Lipschitz sampling rate is (1−β/((n−1)α+β))
which is slower than the GS rate of (1−β/(α+(n− 1)β)). Further, following a similar argument to
Section 4, we could use the refined Gauss-Southwell rule ik = arg maxi

|∇if(x
k)|√

Li
to obtain a rate of

f(xk+1)− f(xk) ≤ (1− µL1)[f(x0)− f(x∗)].
where µL1 is the strong-convexity constant with respect to the norm ‖x‖L1 =

∑n
i=1

√
Li|xi|. If all Li

are equal, then µL1 = µ1/L and we obtain (7). But otherwise, this refined GS rule gives a faster rate.

Our analysis applies in a straightforward way to block updates by using mixed norms ‖ · ‖p,q. We
expect that it could also be used with an approximate GS rule [Dhillon et al., 2011], for proxi-
mal/accelerated/parallel methods [Fercoq and Richtárik, 2013], for primal-dual rates of dual coordi-
nate ascent Shalev-Schwartz and Zhang [2013], and without strong-convexity under general error
bounds [Luo and Tseng, 1993].

4

References
Y. Bengio, O. Delalleau, and N. Le Roux. Label propagation and quadratic criterion. Semi-supervised

learning, pages 193–216, 2006.
I. S. Dhillon, P. K. Ravikumar, and A. Tewari. Nearest neighbor based greedy coordinate descent.

Advances in Neural Information Processing Systems, 2011.
O. Fercoq and P. Richtárik. Accelerated, parallel and proximal coordinate descent. arXiv preprint

arXiv:1312.5799, 2013.
C.-J. Hsieh, K.-W. Chang, C.-J. Lin, S. S. Keerthi, and S. Sundararajan. A dual coordinate descent

method for large-scale linear svm. International Conference on Machine Learning, 2008.
Z.-Q. Luo and P. Tseng. Error bounds and convergence analysis of feasible descent methods: a

general approach. Annals of Operations Research, 46(1):157–178, 1993.
Y. Nesterov. Introductory Lectures on Convex Optimization. Kluwer Academic, Dordrecht, The

Netherlands, 2004.
Y. Nesterov. Efficiency of coordinate descent methods on huge-scale optimization problems. CORE

Discussion Paper, 2010.
Y. Nesterov. Efficiency of coordinate descent methods on huge-scale optimization problems. SIAM J.

Optim., 22(2):341–362, 2012.
S. Shalev-Schwartz and T. Zhang. Stochastic dual coordinate ascent methods for regularized loss

minimization. Journal of Machine Learning Research, 14:567–599, 2013.

5

	Coordinate Descent Methods
	Problems where we can apply coordinate descent
	Existing analysis
	Randomized coordinate descent
	Gauss-Southwell

	Refined Gauss-Southwell analysis
	Extensions

