Publications

Structured Optimization

  • [abs] [bib] Multiple Scale Methods For Optimization Of Discretized Continuous Functions N. Richardson, N. Marusenko, M. P. Friedlander. arXiv:2512.13993, 2025. [arXiv]
  • [abs] [bib] Factoring over probability simplices: from theory to applications N. Graham. Ph.D. Thesis, UBC, 2025. [UBC cIRcle]
  • [abs] [bib] Cardinality-constrained structured data-fitting problems Z. Fan, H. Fang, M. P. Friedlander. Open J. Math. Optim., 2023. [Journal] [DOI]
  • [abs] [bib] Duality in structured and federated optimization: theory and applications Z. Fan. Ph.D. Thesis, UBC, 2022. [UBC cIRcle]
  • [bib] AtomicSets.jl: The calculus of support functions in Julia M. Kramer. M.Sc. Thesis, UBC, 2022. [UBC cIRcle]
  • [abs] [bib] Polar deconvolution of mixed signals Z. Fan, H. Jeong, B. Joshi, M. P. Friedlander. IEEE Trans. Signal Processing, 2022. [Journal] [GitHub]
  • [bib] First-order methods for structured optimization H. Fang. Ph.D. Thesis, UBC, 2021.
  • [abs] [bib] Atomic decomposition via polar alignment: the geometry of structured optimization Z. Fan, H. Jeong, Y. Sun, M. P. Friedlander. Foundations and Trends in Optimization, 3(4):280–366, 2020. [Journal] [DOI]
  • [abs] [bib] Bundle methods for dual atomic pursuit Z. Fan, Y. Sun, M. P. Friedlander. Asilomar Conf. Signals, Systems, Computers (ACSSC), 2019. [arXiv] [DOI]
  • [abs] [bib] One-shot atomic detection Y. Sun, M. P. Friedlander. IEEE Intern. Workshop Comput. Adv. Multi-Sensor Adaptive Proc. (CAMSAP), 2019. [DOI]
  • [bib] Bundle-type methods for dual atomic pursuit Z. Fan. M.Sc. Thesis, UBC, 2019. [UBC cIRcle]
  • [bib] An accelerated dual method for SPGL1 C. Bao. M.Sc. Thesis, UBC, 2019. [UBC cIRcle]
  • [abs] [bib] Efficient evaluation of scaled proximal operators M. P. Friedlander, G. Goh. Electronic Trans. Numerical Analysis, 46:1–22, 2017. [DOI]
  • [abs] [bib] Low-rank spectral optimization via gauge duality M. P. Friedlander, I. Macêdo. SIAM J. Scientific Computing, 38(3):A1616–A1638, 2016. [DOI] [more]
  • [abs] [bib] Gauge duality and low-rank spectral optimization I. Macêdo. Ph.D. Thesis, UBC, 2015. [UBC cIRcle]
  • [abs] [bib] Recovering compressively sampled signals using partial support information M. P. Friedlander, H. Mansour, R. Saab, Ö. Yılmaz. IEEE Trans. Info. Theory, 58(2):1122–1134, 2012. [Journal Link] [DOI]
  • [abs] [bib] Sparse optimization with least-squares constraints E. van den Berg, M. P. Friedlander. SIAM J. Optimization, 21(4):1201–1229, 2011. [DOI] [more]
  • [abs] [bib] Theoretical and empirical results for recovery from multiple measurements E. van den Berg, M. P. Friedlander. IEEE Trans. Info. Theory, 56(5):2516–2527, 2010. [Code & Data] [DOI] [more]
  • [abs] [bib] Sparco: a testing framework for sparse reconstruction E. van den Berg, M. P. Friedlander, G. Hennenfent, F. Herrmann, R. Saab, Ö. Yılmaz. ACM Trans. Math. Software, 35(4):1–16, 2009. [Code] [more]
  • [abs] [bib] Probing the Pareto frontier for basis pursuit solutions E. van den Berg, M. P. Friedlander. SIAM J. Scientific Computing, 31(2):890–912, 2008. [SPGL1 Software] [DOI] [more]
  • [abs] [bib] An all-at-once approach to nonnegative tensor factorizations M. Garrido. M.Sc. Thesis, UBC, 2008. [UBC cIRcle]
  • [abs] [bib] New insights into one-norm solvers from the Pareto curve G. Hennenfent, E. van den Berg, M. P. Friedlander, F. Herrmann. Geophysics, 73(4):A23–A26, 2008. [DOI]
  • [abs] [bib] Group sparsity via linear-time projection E. van den Berg, M. Schmidt, M. P. Friedlander, K. Murphy. Tech. Rep. TR-2008-09, Dept of Computer Science, UBC, 2008.
  • [bib] Discussion: The Dantzig selector: Statistical estimation when p is much larger than n M. P. Friedlander, M. A. Saunders. Annals of Statistics, 35(6):2385–2391, 2007. [Journal] [Slides] [DOI]
  • [abs] [bib] In pursuit of a root E. van den Berg, M. P. Friedlander. Tech. Rep. TR-2007-19, Dept. of Computer Science, UBC, 2007. [more]

Scientific and Engineering Applications

  • [abs] [bib] STARK denoises spatial transcriptomics images via adaptive regularization S. Kubal, N. Graham, M. Heitz, A. Warren, M. P. Friedlander, Y. Plan, G. Schiebinger. arXiv:2512.10994, 2025. [arXiv]
  • [abs] [bib] Tracking Cu-fertile sediment sources via multivariate petrochronological mixture modeling of detrital zircons J. E. Saylor, N. Richardson, N. Graham, R. G. Lee, M. P. Friedlander. J. Geophys. Res.: Earth Surface, 130(10):e2025JF008406, 2025.
  • [abs] [bib] Estimates of the dynamic structure factor for the finite temperature electron liquid via analytic continuation of path integral Monte Carlo data T. Chuna, N. Barnfield, J. Vorberger, M. P. Friedlander, T. Hoheisel, T. Dornheim. Phys. Rev. B, 112(12):125112, 2025.
  • [abs] [bib] Dual formulation of the maximum entropy method applied to analytic continuation of quantum Monte Carlo data T. Chuna, N. Barnfield, T. Dornheim, M. P. Friedlander, T. Hoheisel. J. Phys. A: Math. Theor., 58(33):335203, 2025. [GitHub] [DOI]
  • [abs] [bib] Tracing Sedimentary Origins in Multivariate Geochronology via Constrained Tensor Factorization N. Graham, N. Richardson, M. P. Friedlander, J. Saylor. Mathematical Geosciences, 57(4):601-628, 2025. [DOI]
  • [abs] [bib] Endmember modelling of detrital zircon petrochronology data via multivariate Tucker-1 tensor decomposition J. E. Saylor, N. Richardson, N. Graham, R. G. Lee, M. P. Friedlander. EGU General Assembly, EGU25-4081, 2025. [EGU Abstract] [Web App] [GitHub]
  • [abs] [bib] Social resistance M. P. Friedlander, N. Krislock, T. K. Pong. IEEE Comput. Sci. Eng., 8(2):98-103; reprinted in Computing Edge, 2016. [DOI] [Computing Edge]
  • [abs] [bib] Fighting the curse of dimensionality: compressive sensing in exploration seismology F. J. Herrmann, M. P. Friedlander, Ö. Yılmaz. IEEE Signal Processing Magazine, 29(3):88–100, 2012. [DOI]
  • [abs] [bib] Robust inversion via semistochastic dimensionality reduction A. Aravkin, M. P. Friedlander, T. van Leeuwen. Intern. Conf. Acoustics, Speech, and Signal Processing (ICASSP), 2012. [DOI]
  • [abs] [bib] Robust inversion, dimensionality reduction, and randomized sampling A. Aravkin, M. P. Friedlander, F. Herrmann, T. van Leeuwen. Mathematical Programming, 134(1):101–125, 2012, 2012. [DOI]
  • [abs] [bib] Diffuse optical fluorescence tomography using time-resolved data acquired in transmission F. Leblond, S. Fortier, M. P. Friedlander. Multimodal Biomedical Imaging II, vol. 6431. Proc. Intern. Society Optimal Imaging, 2007. [Code] [DOI] [more]

Algorithms for Machine Learning

  • [abs] [bib] Communication-efficient algorithms for decentralized multi-task learning Y. Kuang. M.Sc. Thesis, UBC, 2025. [UBC cIRcle]
  • [abs] [bib] Decentralized Optimization with Topology-Independent Communication Y. Lin, Y. Kuang, A. Alacaoglu, M. P. Friedlander. arXiv:2509.14488, 2025.
  • [abs] [bib] Scalable Data-Driven Basis Selection for Linear Machine Learning Interatomic Potentials T. Torabi, M. Militzer, M. P. Friedlander, C. Ortner. arXiv:2504.16418, 2025. [arXiv]
  • [abs] [bib] Knowledge-injected federated learning Z. Fan, H. Fang, Z. Zhou, J. Pei, M. P. Friedlander, J. Hu, C. Li, Y. Zhang. arXiv:2208.07530, 2022. [arXiv] [GitHub] [DOI]
  • [abs] [bib] Online mirror descent and dual averaging: keeping pace in the dynamic case H. Fang, N J. A. Harvey, V. S. Portella, M. P. Friedlander. J. Machine Learning Research, 2022.
  • [abs] [bib] A dual approach for federated learning Z. Fan, H. Fang, M. P. Friedlander. arXiv 2201.11183, 2022. [arXiv] [GitHub] [DOI]
  • [abs] [bib] Improving fairness for data valuation in horizontal federated learning Z. Fan, H. Fang, Z. Zhou, J. Pei, M. P. Friedlander, C. Liu, Y. Zhang. Intern Conf Data Engineering (ICDE), 2022. [IEEE] [arXiv] [DOI]
  • [abs] [bib] Fair and efficient contribution valuation for vertical federated learning Z. Fan, H. Fang, Z. Zhou, J. Pei, M. P. Friedlander, Y. Zhang. arXiv:2201.02658, 2022. [arXiv] [DOI]
  • [abs] Fast convergence of the stochastic subgradient method under interpolation H. Fang, Z. Fan, M. P. Friedlander. Intern. Conf. Learning Representations (ICLR), 2021.
  • [abs] [bib] Online mirror descent and dual averaging: keeping pace in the dynamic case H. Fang, N J. A. Harvey, V. S. Portella, M. P. Friedlander. Intern. Conf. Machine Learning (ICML), 2020. [arXiv] [video] [DOI]
  • [abs] [bib] Greed meets sparsity: understanding and improving greedy coordinate descent for sparse optimization H. Fang, Z. Fan, Y. Sun, M. P. Friedlander. Intern. Conf. Artificial Intelligence and Statistics (AISTATS), 2020.
  • [abs] [bib] Fast training for large-scale one-versus-all linear classifiers using tree-structured initialization H. Fang, M. Cheng, C.-J. Hsieh, M. P. Friedlander. SIAM Intern. Conf. Data Mining (SDM), 2019. [DOI]
  • [abs] [bib] Satisfying real-world goals with dataset constraints G. Goh, A. Cotter, M. Gupta, M. P. Friedlander. Advances in Neural Information Processing Systems 29 (NIPS), 2016. [DOI]
  • [abs] [bib] Coordinate descent converges faster with the Gauss-Southwell rule than random selection J. Nutini, M. Schmidt, I. H. Laradji, M. P. Friedlander, H. Koepke. Intern. Conf. Machine Learning (ICML), 2015. [Preprint] [NIPS PDF] [ICML PDF] [ICML Supplementary] [DOI]
  • [abs] [bib] Fast dual variational inference for non-conjugate latent gaussian models M. E. Khan, A. Aravkin, M. P. Friedlander, M. Seeger. Intern. Conf. Machine Learning (ICML), 2013.
  • [abs] [bib] Tail bounds for stochastic approximation M. P. Friedlander, G. Goh. arXiv:1304.5586, 2013. [arXiv] [DOI]
  • [abs] [bib] Hybrid deterministic-stochastic methods for data fitting M. P. Friedlander, M. Schmidt. SIAM J. Scientific Computing, 34(3):A1380–A1405, 2012. [more]
  • [abs] [bib] Optimizing costly functions with simple constraints: a limited-memory projected quasi-Newton algorithm M. Schmidt, E. van den Berg, M. P. Friedlander, K. Murphy. Intern. Conf. Artificial Intelligence and Statistics (AISTATS), 2009. [Slides] [Software]
  • [abs] [bib] Computing nonnegative tensor factorizations M. P. Friedlander, K. Hatz. Optimization Methods and Software, 23(4):631–647, 2008. [Journal Link] [DOI] [more]

Convex and Variational Analysis

  • [abs] [bib] Average-case thresholds for exact regularization of linear programs M. P. Friedlander, S. Kubal, Y. Plan, M. S. Scott. arXiv:2510.13083, 2025.
  • [abs] [bib] From perspective maps to epigraphical projection M. P. Friedlander, A. Goodwin, T. Hoheisel. Math. Oper. Res. 48(3): 1711-1740, 2023. [Journal]
  • [abs] [bib] A perturbation view of level-set methods for convex optimization R. Estrin, M. P. Friedlander. Optimization Letters, 2020. [Journal] [DOI]
  • [abs] [bib] Polar convolution M. P. Friedlander, I. Macêdo, T. K. Pong. SIAM J. Optimization, 29(2):1366–1391, 2019. [DOI]
  • [abs] [bib] Foundations of gauge and perspective duality A. Aravkin, J. V. Burke, D. Drusvyatskiy, M. P. Friedlander, K. MacPhee. SIAM J. Optimization, 28(3):2406–2434, 2018. [DOI]
  • [abs] [bib] Level-set methods for convex optimization A. Aravkin, J. V. Burke, D. Drusvyatskiy, M. P. Friedlander, S. Roy. Mathematical Programming, 174(1-2):359–390, 2018. [Journal] [DOI]
  • [abs] [bib] Gauge optimization and duality M. P. Friedlander, I. Macêdo, T. K. Pong. SIAM J. Optimization, 24(4):1999–2022, 2014.
  • [abs] [bib] Variational properties of value functions A. Aravkin, J. V. Burke, M. P. Friedlander. SIAM J. Optimization, 23(3):1689–1717, 2013. [DOI]
  • [abs] [bib] Exact regularization of convex programs M. P. Friedlander, P. Tseng. SIAM J. Optimization, 18(4):1326–1350, 2007. [Data & Code] [DOI] [more]
  • [abs] [bib] Exact regularization of linear programs M. P. Friedlander. Tech. Rep. TR-2005-31, Dept. of Computer Science, UBC, 2005. [Data] [more]

Quantum Algorithms

  • [abs] [bib] Quantum algorithms for structured prediction B. Sephehry, E. Iranmanesh, M. P. Friedlander, P. Ronagh. Quantum Machine Intelligence, 2022. [Journal] [DOI]
  • [abs] [bib] Smooth structured prediction using quantum and classical Gibbs samplers B. Sephehry, E. Iranmanesh, M. P. Friedlander, P. Ronagh. Adiabatic Quantum Computing Conference (AQC), arXiv:1809.04091, 2019.

Statistical Signal Processing

  • [abs] [bib] NBIHT: An efficient algorithm for 1-bit compressed sensing with optimal error decay rate M. P. Friedlander, H. Jeong, Y. Plan, O. Yιlmaz. IEEE Trans Info Theory, 2021. [DOI]
  • [abs] [bib] On minimizing distortion and relative entropy M. P. Friedlander, M. R. Gupta. IEEE Trans. Info. Theory, 52(1):238–245, 2006. [DOI]
  • [abs] [bib] Maximum entropy classification applied to speech M. R. Gupta, M. P. Friedlander, R. M. Gray. Asilomar Conf. Signals, Systems, Computers (ACSSC), vol. 2, 1480–1483, 2000. [DOI]

Nonlinear Programming

  • [abs] [bib] Implementing a smooth exact penalty function for equality-constrained nonlinear optimization R. Estrin, M. P. Friedlander, D. Orban, M. A. Saunders. SIAM J. Sci. Comput., 42(3), A1809–A1835, 2020. [Journal] [DOI] [more]
  • [abs] [bib] Implementing a smooth exact penalty function for general constrained nonlinear optimization R. Estrin, M. P. Friedlander, D. Orban, M. A. Saunders. SIAM J. Sci. Comput., 42(3), A1836–A1859, 2020. [Journal] [DOI] [more]
  • [bib] Optimization with costly subgradients G. Goh. Ph.D. Thesis, UBC, 2017.
  • [abs] [bib] A primal-dual regularized interior-point method for convex quadratic programs M. P. Friedlander, D. Orban. Mathematical Programming Computation, 4(1):71–107, 2012. [Preprint] [Code] [DOI] [more]
  • [abs] [bib] Nonlinearly constrained optimization via sequential regularized linear programming M. Crowe. M.Sc. Thesis, UBC, 2010. [UBC cIRcle]
  • [abs] [bib] A Levenberg-Marquardt method for large-scale bound-constrained nonlinear least-squares S. Shan. M.Sc. Thesis, UBC, 2008. [UBC cIRcle]
  • [abs] [bib] Global and finite termination of a two-phase augmented Lagrangian filter method for general quadratic programs M. P. Friedlander, S. Leyffer. SIAM J. Scientific Computing, 30(4):1706–1726, 2008. [DOI]
  • [abs] [bib] A filter active-set trust-region method M. P. Friedlander, N. I. M. Gould, S. Leyffer, T. S. Munson. Preprint ANL/MCS-P1456-0907, Argonne National Laboratory, 2007. [Preprint]
  • [bib] Incomplete factorization preconditioners for least squares and linear and quadratic programming J. Sirovljevic. M.Sc. Thesis, UBC, 2007. [UBC cIRcle]
  • [abs] [bib] A two-sided relaxation scheme for mathematical programs with equilibrium constraints V. Demiguel, M. P. Friedlander, F. J. Nogales, S. Scholtes. SIAM J. Optimization, 16(1):587–609, 2005. [DOI]
  • [abs] [bib] A globally convergent linearly constrained Lagrangian method for nonlinear optimization M. P. Friedlander, M. A. Saunders. SIAM J. Optimization 15(3):863–897, 2005. [DOI]

  • [abs] [bib] Convex optimization for generalized sparse recovery E. van den Berg. Ph.D. Thesis, UBC, 2009. [UBC cIRcle]

Selected Publications

  • [abs] [bib] Multiple Scale Methods For Optimization Of Discretized Continuous Functions N. Richardson, N. Marusenko, M. P. Friedlander. arXiv:2512.13993, 2025. [arXiv]
  • [abs] [bib] Average-case thresholds for exact regularization of linear programs M. P. Friedlander, S. Kubal, Y. Plan, M. S. Scott. arXiv:2510.13083, 2025.
  • [abs] [bib] From perspective maps to epigraphical projection M. P. Friedlander, A. Goodwin, T. Hoheisel. Math. Oper. Res. 48(3): 1711-1740, 2023. [Journal]
  • [abs] [bib] Polar deconvolution of mixed signals Z. Fan, H. Jeong, B. Joshi, M. P. Friedlander. IEEE Trans. Signal Processing, 2022. [Journal] [GitHub]
  • [abs] [bib] Online mirror descent and dual averaging: keeping pace in the dynamic case H. Fang, N J. A. Harvey, V. S. Portella, M. P. Friedlander. J. Machine Learning Research, 2022.
  • [abs] [bib] Atomic decomposition via polar alignment: the geometry of structured optimization Z. Fan, H. Jeong, Y. Sun, M. P. Friedlander. Foundations and Trends in Optimization, 3(4):280–366, 2020. [Journal] [DOI]
  • [abs] [bib] Polar convolution M. P. Friedlander, I. Macêdo, T. K. Pong. SIAM J. Optimization, 29(2):1366–1391, 2019. [DOI]
  • [abs] [bib] Social resistance M. P. Friedlander, N. Krislock, T. K. Pong. IEEE Comput. Sci. Eng., 8(2):98-103; reprinted in Computing Edge, 2016. [DOI] [Computing Edge]
  • [abs] [bib] Low-rank spectral optimization via gauge duality M. P. Friedlander, I. Macêdo. SIAM J. Scientific Computing, 38(3):A1616–A1638, 2016. [DOI] [more]
  • [abs] [bib] Gauge optimization and duality M. P. Friedlander, I. Macêdo, T. K. Pong. SIAM J. Optimization, 24(4):1999–2022, 2014.
  • [abs] [bib] Probing the Pareto frontier for basis pursuit solutions E. van den Berg, M. P. Friedlander. SIAM J. Scientific Computing, 31(2):890–912, 2008. [SPGL1 Software] [DOI] [more]
  • [abs] [bib] Exact regularization of convex programs M. P. Friedlander, P. Tseng. SIAM J. Optimization, 18(4):1326–1350, 2007. [Data & Code] [DOI] [more]
  • [abs] [bib] A globally convergent linearly constrained Lagrangian method for nonlinear optimization M. P. Friedlander, M. A. Saunders. SIAM J. Optimization 15(3):863–897, 2005. [DOI]

Selected Talks