PublicationsTracing Sedimentary Origins in Multivariate Geochronology via Constrained Tensor FactorizationN. Graham, N. Richardson, M. P. Friedlander, J. SaylorPreprint, May 2024; revised October, 2024Cardinality-constrained structured data-fitting problemsZ. Fan, H. Fang, M. P. FriedlanderOpen J. Math. Optim., 2023From perspective maps to epigraphical projectionM. P. Friedlander, A. Goodwin, T. HoheiselMathematics of Operations Research (48)3: 1213-1809, 2022, 2022Knowledge-injected federated learningZ. Fan, H. Fang, Z. Zhou, J. Pei, M. P. Friedlander, J. Hu, C. Li, Y. ZhangarXiv:2208.07530, 2022Quantum algorithms for structured predictionB. Sephehry, E. Iranmanesh, M. P. Friedlander, P. RonaghQuantum Machine Intelligence, 2022Polar deconvolution of mixed signalsZ. Fan, H. Jeong, B. Joshi, M. P. FriedlanderIEEE Trans. Signal Processing, 2022Online mirror descent and dual averaging: keeping pace in the dynamic caseH. Fang, N J. A. Harvey, V. S. Portella, M. P. FriedlanderJ. Machine Learning Research, 2022A dual approach for federated learningZ. Fan, H. Fang, M. P. FriedlanderarXiv 2201.11183, 2022Fair and efficient contribution valuation for vertical federated learningZ. Fan, H. Fang, Z. Zhou, J. Pei, M. P. Friedlander, Y. ZhangarXiv:2201.02658, 2022Improving fairness for data valuation in horizontal federated learningZ. Fan, H. Fang, Z. Zhou, J. Pei, M. P. Friedlander, C. Liu, Y. ZhangIntern Conf Data Engineering (ICDE), 2022NBIHT: An efficient algorithm for 1-bit compressed sensing with optimal error decay rateM. P. Friedlander, H. Jeong, Y. Plan, O. YιlmazIEEE Trans Info Theory, 2021Fast convergence of the stochastic subgradient method under interpolationH. Fang, Z. Fan, M. P. FriedlanderIntern. Conf. Learning Representations (ICLR), 2021Atomic decomposition via polar alignment: the geometry of structured optimizationZ. Fan, H. Jeong, Y. Sun, M. P. FriedlanderFoundations and Trends in Optimization, 3(4):280–366, 2020Implementing a smooth exact penalty function for equality-constrained nonlinear optimizationR. Estrin, M. P. Friedlander, D. Orban, M. A. SaundersSIAM J. Sci. Comput., 42(3), A1809–A1835, 2020Implementing a smooth exact penalty function for general constrained nonlinear optimizationR. Estrin, M. P. Friedlander, D. Orban, M. A. SaundersSIAM J. Sci. Comput., 42(3), A1836–A1859, 2020A perturbation view of level-set methods for convex optimizationR. Estrin, M. P. FriedlanderOptimization Letters, 2020Online mirror descent and dual averaging: keeping pace in the dynamic caseH. Fang, N J. A. Harvey, V. S. Portella, M. P. FriedlanderIntern. Conf. Machine Learning (ICML), 2020Greed meets sparsity: understanding and improving greedy coordinate descent for sparse optimizationH. Fang, Z. Fan, Y. Sun, M. P. FriedlanderIntern. Conf. Artificial Intelligence and Statistics (AISTATS), 2020Bundle methods for dual atomic pursuitZ. Fan, Y. Sun, M. P. FriedlanderAsilomar Conf. Signals, Systems, Computers (ACSSC), 2019One-shot atomic detectionY. Sun, M. P. FriedlanderIEEE Intern. Workshop Comput. Adv. Multi-Sensor Adaptive Proc. (CAMSAP), 2019Fast training for large-scale one-versus-all linear classifiers using tree-structured initializationH. Fang, M. Cheng, C.-J. Hsieh, M. P. FriedlanderSIAM Intern. Conf. Data Mining (SDM), 2019Polar convolutionM. P. Friedlander, I. Macêdo, T.K. PongSIAM J. Optimization, 29(2):1366–1391, 2019Smooth structured prediction using quantum and classical gibbs samplersB. Sepehry, E. Iranmanesh, M. P. Friedlander, P. RonaghAdiabatic Quantum Computing Conference (AQC), arXiv:1809.04091, 2019Foundations of gauge and perspective dualityA. Y. Aravkin, J. V. Burke, D. Drusvyatskiy, M. P. Friedlander, K. MacPheeSIAM J. Optimization, 28(3):2406–2434, 2018Level-set methods for convex optimizationA. Y. Aravkin, J. V. Burke, D. Drusvyatskiy, M. P. Friedlander, S. RoyMathematical Programming, 174(1-2):359–390, 2018Efficient evaluation of scaled proximal operatorsM. P. Friedlander, G. GohElectronic Trans. Numerical Analysis, 46:1–22, 2017Satisfying real-world goals with dataset constraintsG. Goh, A. Cotter, M. Gupta, M. P. FriedlanderAdvances in Neural Information Processing Systems 29 (NIPS), 2016Social resistanceM. P. Friedlander, N. Krislock, T. K. PongIEEE Comput. Sci. Eng., 8(2):98-103; reprinted in Computing Edge, 2016Low-rank spectral optimization via gauge dualityM. P. Friedlander, I. MacêdoSIAM J. Scientific Computing, 38(3):A1616–A1638, 2016Coordinate descent converges faster with the Gauss-Southwell rule than random selectionJ. Nutini, M. Schmidt, I. H. Laradji, M. P. Friedlander, H. KoepkeIntern. Conf. Machine Learning (ICML), 2015Gauge optimization and dualityM. P. Friedlander, I. Macêdo, T. K. PongSIAM J. Optimization, 24(4):1999–2022, 2014Variational properties of value functionsA. Aravkin, J. V. Burke, M. P. FriedlanderSIAM J. Optimization, 23(3):1689–1717, 2013Fast dual variational inference for non-conjugate latent gaussian modelsM. E. Khan, A. Y. Aravkin, M. P. Friedlander, M. SeegerIntern. Conf. Machine Learning (ICML), 2013Tail bounds for stochastic approximationM. P. Friedlander, G. GoharXiv:1304.5586, 2013Hybrid deterministic-stochastic methods for data fittingM. P. Friedlander, M. SchmidtSIAM J. Scientific Computing, 34(3):A1380–A1405, 2012A primal-dual regularized interior-point method for convex quadratic programsM. P. Friedlander, D. OrbanMathematical Programming Computation, 4(1):71–107, 2012Recovering compressively sampled signals using partial support informationM. P. Friedlander, H. Mansour, R. Saab, Ö. YılmazIEEE Trans. Info. Theory, 58(2):1122–1134, 2012Fighting the curse of dimensionality: compressive sensing in exploration seismologyF. J. Herrmann, M. P. Friedlander, Ö. YılmazIEEE Signal Processing Magazine, 29(3):88–100, 2012Robust inversion via semistochastic dimensionality reductionA. Aravkin, M. P. Friedlander, T. van LeeuwenIntern. Conf. Acoustics, Speech, and Signal Processing (ICASSP), 2012Robust inversion, dimensionality reduction, and randomized samplingA. Aravkin, M. P. Friedlander, F. Herrmann, T. van LeeuwenMathematical Programming, 134(1):101–125, 2012, 2012Sparse optimization with least-squares constraintsE. van den Berg, M. P. FriedlanderSIAM J. Optimization, 21(4):1201–1229, 2011Theoretical and empirical results for recovery from multiple measurementsE. van den Berg, M. P. FriedlanderIEEE Trans. Info. Theory, 56(5):2516–2527, 2010Optimizing costly functions with simple constraints: a limited-memory projected quasi-Newton algorithmM. Schmidt, E. van den Berg, M. P. Friedlander, K. MurphyIntern. Conf. Artificial Intelligence and Statistics (AISTATS), 2009Sparco: a testing framework for sparse reconstructionE. van den Berg, M. P. Friedlander, G. Hennenfent, F. Herrmann, R. Saab, Ö. YılmazACM Trans. Math. Software, 35(4):1–16, 2009Probing the Pareto frontier for basis pursuit solutionsE. van den Berg, M. P. FriedlanderSIAM J. Scientific Computing, 31(2):890–912, 2008Computing nonnegative tensor factorizationsM. P. Friedlander, K. HatzOptimization Methods and Software, 23(4):631–647, 2008New insights into one-norm solvers from the Pareto curveG. Hennenfent, E. van den Berg, M. P. Friedlander, F. HerrmannGeophysics, 73(4):A23–A26, 2008Group sparsity via linear-time projectionE. van den Berg, M. Schmidt, M. P. Friedlander, K. MurphyTech. Rep. TR-2008-09, Dept of Computer Science, UBC, 2008Global and finite termination of a two-phase augmented Lagrangian filter method for general quadratic programsM. P. Friedlander, S. LeyfferSIAM J. Scientific Computing, 30(4):1706–1726, 2008Discussion: The Dantzig selector: Statistical estimation when p is much larger than nM. P. Friedlander, M. A. SaundersAnnals of Statistics, 35(6):2385–2391, 2007Exact regularization of convex programsM. P. Friedlander, P. TsengSIAM J. Optimization, 18(4):1326–1350, 2007A filter active-set trust-region methodM. P. Friedlander, N. I. M. Gould, S. Leyffer, T. S. MunsonPreprint ANL/MCS-P1456-0907, Argonne National Laboratory, 2007In pursuit of a rootE. van den Berg, M. P. FriedlanderTech. Rep. TR-2007-19, Dept. of Computer Science, UBC, 2007Diffuse optical fluorescence tomography using time-resolved data acquired in transmissionF. Leblond, S. Fortier, M. P. FriedlanderMultimodal Biomedical Imaging II, vol. 6431. Proc. Intern. Society Optimal Imaging, 2007On minimizing distortion and relative entropyM. P. Friedlander, M. R. GuptaIEEE Trans. Info. Theory, 52(1):238–245, 2006A two-sided relaxation scheme for mathematical programs with equilibrium constraintsV. Demiguel, M. P. Friedlander, F. J. Nogales, S. ScholtesSIAM J. Optimization, 16(1):587–609, 2005A globally convergent linearly constrained Lagrangian method for nonlinear optimizationM. P. Friedlander, M. A. SaundersSIAM J. Optimization 15(3):863–897, 2005Maximum entropy classification applied to speechM. R. Gupta, M. P. Friedlander, R. M. GrayAsilomar Conf. Signals, Systems, Computers (ACSSC), vol. 2, 1480–1483, 2000Selected TalksPolar deconvolution of mixed signals, One-World Optimization Seminar. October, 26, 2020Polar Duality in three liftings, McGill University, Montreal. November 28, 2017Algorithms for sparse optimization, Google Research, Mountain View. May 19, 2015Robust inversion and randomized sampling, International Symposium on Mathematical Programming (ISMP), Berlin. August 23, 2012