UBC CPSC 406 2022-T2

Homework 5

The first six exercises are from Beck, Introduction to Nonlinear Optimization.

  1. (Convexity of set operations) Exercise 6.1

  2. (Convex hull) Exercise 6.4

  3. (Normal cone) Exercise 6.10

  4. (Convex functions) Exercise 7.1 (i–ii)

  5. (Affine functions) Exercise 7.3

  6. (Strict convexity) Exercise 7.7

  7. (Entropy) Show that f(x)=i=1nxilogxif(x) = -\sum_{i=1}^n x_i\log x_i is concave over the probability simplex Δˉn={xR+ni=1nxi=1}\bar\Delta_n=\{ x\in \mathbb R^n_+\mid \sum_{i=1}^n x_i = 1 \}.

  8. (Log-Sum-Exp) Show that f(x)=log(i=1meaiTx)f(x) = \log\left(\sum_{i=1}^m e^{a_i^T x}\right) is convex in Rn\mathbb R^n, where a1,,amRna_1,\ldots,a_m\in\mathbb R^n.