Geometry of Linear Programming

- extreme points
- vertices
- basic (feasible) solutions

Polyhedron (inequality form)

$$A = \begin{bmatrix} a_1 & \cdots & a_m \end{bmatrix}^T \text{ is } m \times n, \quad b \in \mathbb{R}^m$$
$$\mathcal{P} = \{ x \mid Ax \le b \} = \{ x \mid a_i^T x \le b_i, i = 1, \dots, m \}$$

 ${\cal P}$ is convex because it's the intersection of halfspaces (the intersection of convex sets is convex)

Extreme points

 $x \in \mathcal{P}$ is an **extreme point** of \mathcal{P} if there **does not exist** two vectors $y, z \in \mathcal{P}$ such that

$$x = \lambda y + (1 - \lambda) z$$
 for any $\lambda \in (0, 1)$

Vertices

 $x \in \mathcal{P}$ is a **vertex** of \mathcal{P} if there exists a vector $c \neq 0$ such that $c^T x < c^T y$ for all $y \in \mathcal{P}, y \neq x$

two equivalent points of view:

- given a vertex x, find c such that $c^T x < c^T y$ for all $y \in \mathcal{P}$, $y \neq x$
- given a vector c, find x such that $c^T x < c^T y$ for all $y \in \mathcal{P}$, $y \neq x$, ie,

 $\underset{x}{\text{minimize}} \quad c^{T}x \quad \text{subject to} \quad x \in \mathcal{P}$

Active constraints

define \mathcal{B} as the set of **active** or **binding** constraints (at x^*):

$$\begin{array}{ll} a_i^T x^* = b_i, & i \in \mathcal{B} \\ a_i^T x^* < b_i, & i \in \mathcal{N} \\ a_i^T x^* > b_i, & i \notin \mathcal{B} \cup \mathcal{N} \end{array} (\begin{array}{l} \text{(active constraints)} \\ \text{(inactive feasible constraints)} \\ \end{array}$$

define the subset of active constraints

$$A_{\scriptscriptstyle B} = \bar{A} = \begin{bmatrix} a_{i_1}^T \\ a_{i_2}^T \\ \vdots \\ a_{i_k}^T \end{bmatrix}, \qquad b_{\scriptscriptstyle B} = \bar{b} = \begin{bmatrix} b_{i_1} \\ b_{i_2} \\ \vdots \\ b_{i_k} \end{bmatrix}, \qquad \mathcal{B} = \{i_1, i_2, \dots, i_k\}$$

Basic solutions

 x^* is a **basic solution** if one of the following equivalent conditions hold:

- $a_{i_1}, a_{i_2}, \ldots, a_{i_n}$ are linearly independent
- $\bar{A}x^* = \bar{b}$ has a unique solution
- $rank(\bar{A}) = n$

basic feasible solution: x^* is a basic solution and $x^* \in \mathcal{P}$

Theorem: the following are equivalent

- x* is a vertex
- x^* is an extreme point
- x^* is a basic feasible solution

Example

$$\begin{bmatrix} -1 & 0 \\ 2 & 1 \\ 0 & -1 \\ 1 & 2 \end{bmatrix} x \le \begin{bmatrix} 0 \\ 3 \\ 0 \\ 3 \end{bmatrix}$$

- (1,1) is an extreme point
- (1,1) is a vertex: unique minimum of $c^{T}x$ with c = (-1, -1)
- (1,1) is a basic feasible solution: $\mathcal{B}=\{2,4\}$ and rank $ar{A}=2$, where

$$\bar{A} = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$$

Equivalence of definitions

 $Vertex \Longrightarrow extreme \ point$

Let x^* be a vertex of \mathcal{P} . Then there exists a $c \neq 0$ such that

 $c^T x^* < c^T x$ for all $x \in \mathcal{P}$ and $x \neq x^*$.

Then for all $y, z \in \mathcal{P}$ with $y \neq x^*$ and $z \neq x^*$,

 $c^T x^* < c^T y$ and $c^T x^* < c^T z$.

If $\lambda \in [0, 1]$, then

$$c^T x^* < c^T (\lambda y + (1 - \lambda)z),$$

and $x^* \neq \lambda y + (1 - \lambda)z$. Therefore x^* is an extreme point.

Extreme point \Longrightarrow basic feasible solution

Suppose $x^* \in \mathcal{P}$ is an extreme point with

$$a_i^T x^* = b_i$$
 $i \in \mathcal{B}$, and $a_i^T x^* < b_i$ $i \notin \mathcal{B}$.

Proceed by contradiction. Suppose x^* is not a basic feasible solution. Thus, a_i for $i \in \mathcal{B}$ are not linearly independent. Then there exists a $d \neq 0$ with

$$a_i^T d = 0$$
 for every $i \in \mathcal{B}$ (ie, $\overline{A}d = 0$)

and for $\epsilon > 0$ small enough,

$$y = x^* + \epsilon d \in \mathcal{P}, \quad z = x^* - \epsilon d \in \mathcal{P}.$$

Summing, we have

$$x^* = \frac{1}{2}y + \frac{1}{2}z,$$

which contradicts the assumption that x^* is an extreme point.

Basic feasible solution \implies vertex

Suppose $x^* \in \mathcal{P}$ is a basic feasible solution and

$$a_i^T x^* = b_i$$
 $i \in \mathcal{B}$, and $a_i^T x^* < b_i$ $i \notin \mathcal{B}$.

Take any $x \in \mathcal{P}$. For each $i \in \mathcal{B}$,

$$-a_i^T x \ge -b_i = -a_i^T x^*$$

Summing these all together:

$$c^T x = -\sum_{i \in \mathcal{B}} a_i^T x \ge -\sum_{i \in \mathcal{B}} b_i = c^T x^*, \qquad c := -\sum_{i \in \mathcal{B}} a_i$$

with equality only if $a_i^T x = b_i$, $i \in \mathcal{B}$. Since $\{a_i \mid i \in \mathcal{B}\}$ are linearly independent, that holds only when $x = x^*$. Thus, $c^T x^* < c^T x$ for all $x \in \mathcal{P}$, $x \neq x^*$, so x^* is a vertex.

Unbounded directions

 \mathcal{P} contains a **half-line** if there exists $d \neq 0$, x_0 such that

 $\begin{array}{ll} x_0+\alpha d\in \mathcal{P} & \mbox{for all} & \alpha\geq 0 \end{array}$ equivalent conditions for $\mathcal{P}=\{\,x\mid Ax\leq b\,\} \text{:} \\ & Ax_0\leq b, \quad Ad\leq 0 \end{array}$

fact: $\mathcal P$ unbounded $\Longleftrightarrow \mathcal P$ contains a half line

 \mathcal{P} contains a **line** if there exists $d \neq 0$, x_0 such that

 $x_0 + \alpha d \in \mathcal{P}$ for all α

equivalent conditions for $\mathcal{P} = \{ x \mid Ax \leq b \}$:

$$Ax_0 \leq b$$
, $Ad = 0$

fact: \mathcal{P} has no extreme points $\iff \mathcal{P}$ contains a line

Optimal set of an LP

minimize $c^T x$ subject to $Ax \leq b$

- optimal value $p^* = \min \{ c^T x \mid Ax \le b \}$ $(p^* = \pm \infty \text{ is possible})$
- optimal point: x^* with $Ax^* \leq b$ and $c^Tx^* = p^*$
- optimal set: $X^* = \{ x \mid Ax \leq b, c^T x = p^* \}$

example

minimize
$$c_1 x_1 + c_2 x_2$$

subject to $-2x_1 + x_2 \le 1$, $x_1 \ge 0$, $x_2 \ge 0$

•
$$c = (1,1)$$
: $X^* = \{ (0,0) \}, p^* = 0$

•
$$c = (1,0)$$
: $X^* = \{ (0, x_2) \mid 0 \le x_2 \le 1 \}, p^* = 0$

• c = (-1, -1): $X^* = \emptyset$, $p^* = -\infty$

Optimal values

• $p^* = -\infty$ if and only if there exists a feasible half line

 $\{x_0 + \alpha p \mid \alpha \ge 0\}$

with $c^T p < 0$

- $p^* = +\infty$ if and only if $\mathcal{P} = \emptyset$
- p^* if finite if and only if $X^* \neq \emptyset$

LP solutions on extreme points

$$p^* = \min_{x \in \mathbb{R}^n} \{ c^T x \mid Ax \le b \}$$

if p^* finite, there exists a feasible extreme point x^* with $c^T x^* = p^*$

suppose \hat{x} is optimal but not extreme. Then corresponding $A_{\scriptscriptstyle B}$ (active rows of A) has a nontrivial nullspace, and there exists $d \neq 0$ such that $A_{\scriptscriptstyle B}d = 0$ and either

$$c^{T}d = 0$$
 or $c^{T}d < 0$ or $c^{T}d > 0$

- suppose $c^T d < 0$
- pick $\tilde{x} = \hat{x} + \alpha d$
- then $c^T \hat{x} > c^T \tilde{x}$ and $\bar{A}_{\scriptscriptstyle B} \tilde{x} = A_{\scriptscriptstyle B} (\hat{x} + \alpha d) = A_{\scriptscriptstyle B} \hat{x}$
- for α small enough, $A_{\scriptscriptstyle N}\hat{x} < b_{\scriptscriptstyle N} \Rightarrow A_{\scriptscriptstyle N}\tilde{x} \le b_{\scriptscriptstyle N}$
- then \tilde{x} is feasible with lower objective value, contradicting optimality of \hat{x}

• the case with $c^T d > 0$ is similar, except we pick $\tilde{x} = \hat{x} - \alpha d$

- Suppose $c^{T}d = 0$. Then any adjacent extreme point is equally optimal
- pick $\tilde{x} = \hat{x} + \alpha d$
- then $c^T \hat{x} = c^T \tilde{x}$ and $A_{\scriptscriptstyle B} \hat{x} = A_{\scriptscriptstyle B} \tilde{x}$
- pick α small enough, $A_N \hat{x} < b_N \Rightarrow A_N \tilde{x} \le b_N$
- then \tilde{x} is feasible with same objective value, and there are infinitely many solutions on that edge

