[Geometry of Linear Programming](#page-0-0)

- extreme points
- vertices
- basic (feasible) solutions

Polyhedron (inequality form)

$$
A = \begin{bmatrix} a_1 & \cdots & a_m \end{bmatrix}^T \text{ is } m \times n, \quad b \in \mathbb{R}^m
$$

$$
\mathcal{P} = \{ \left. x \mid Ax \leq b \right\} = \{ \left. x \mid a_i^T x \leq b_i, \ i = 1, \dots, m \right\}
$$

 P is convex because it's the intersection of halfspaces (the intersection of convex sets is convex)

Extreme points

 $x \in \mathcal{P}$ is an extreme point of $\mathcal P$ if there does not exist two vectors $y, z \in \mathcal{P}$ such that

$$
x = \lambda y + (1 - \lambda)z \quad \text{for any} \quad \lambda \in (0, 1)
$$

Vertices

 $x \in \mathcal{P}$ is a **vertex** of \mathcal{P} if there exists a vector $c \neq 0$ such that $c^{\mathcal{T}}x < c^{\mathcal{T}}y$ for all $y \in \mathcal{P}, y \neq x$

two equivalent points of view:

- $\bullet\,$ given a $\mathsf{vertex}\; x,$ find c such that $c^\mathcal{T} x < c^\mathcal{T} y$ for all $y\in \mathcal{P},\; y\neq x$
- \bullet given a $\mathsf{vector}\;c,$ find x such that $c^\mathcal{T} x < c^\mathcal{T} y$ for all $y \in \mathcal{P},\; y \neq x,$ ie,

minimize $c^T x$ subject to $x \in \mathcal{P}$ x

Active constraints

define β as the set of **active** or **binding** constraints (at x^*):

$$
a_i^T x^* = b_i, \quad i \in \mathcal{B} \qquad \text{(active constraints)}
$$
\n
$$
a_i^T x^* < b_i, \quad i \in \mathcal{N} \qquad \text{(inactive feasible constraints)}
$$
\n
$$
a_i^T x^* > b_i, \quad i \notin \mathcal{B} \cup \mathcal{N} \qquad \text{(inactive infeasible constraints)}
$$

define the subset of active constraints

$$
A_{B} = \bar{A} = \begin{bmatrix} a_{i_1}^T \\ a_{i_2}^T \\ \vdots \\ a_{i_k}^T \end{bmatrix}, \qquad b_{B} = \bar{b} = \begin{bmatrix} b_{i_1} \\ b_{i_2} \\ \vdots \\ b_{i_k} \end{bmatrix}, \qquad B = \{i_1, i_2, \ldots, i_k\}
$$

Basic solutions

x^{*} is a **basic solution** if one of the following equivalent conditions hold:

- \bullet $a_{i_1}, a_{i_2}, \ldots, a_{i_n}$ are linearly independent
- $\bar{A}x^* = \bar{b}$ has a unique solution
- rank $(\bar{A}) = n$

basic feasible solution: x^* is a basic solution and $x^* \in \mathcal{P}$

Theorem: the following are equivalent

- x^* is a vertex
- x^* is an extreme point
- x^* is a basic feasible solution

Example

$$
\begin{bmatrix} -1 & 0 \\ 2 & 1 \\ 0 & -1 \\ 1 & 2 \end{bmatrix} x \le \begin{bmatrix} 0 \\ 3 \\ 0 \\ 3 \end{bmatrix}
$$

- \bullet $(1,1)$ is an extreme point
- $(1,1)$ is a vertex: unique minimum of c^Tx with $c=(-1,-1)$
- $(1, 1)$ is a basic feasible solution: $B = \{2, 4\}$ and rank $\overline{A} = 2$, where

$$
\bar{A} = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}
$$

Equivalence of definitions

Vertex \implies extreme point

Let x^* be a vertex of $\mathcal P$. Then there exists a $c\neq 0$ such that

 $c^{\mathcal{T}}x^* < c^{\mathcal{T}}x$ for all $x \in \mathcal{P}$ and $x \neq x^*$.

Then for all $y, z \in \mathcal{P}$ with $y \neq x^*$ and $z \neq x^*$,

 $c^T x^* < c^T y$ and $c^T x^* < c^T z$.

If $\lambda \in [0,1]$, then

$$
c^T x^* < c^T (\lambda y + (1 - \lambda) z),
$$

and $x^* \neq \lambda y + (1 - \lambda)z$. Therefore x^* is an extreme point.

Extreme point \implies basic feasible solution

Suppose $x^* \in \mathcal{P}$ is an extreme point with

$$
a_i^T x^* = b_i \quad i \in \mathcal{B}, \qquad \text{and} \qquad a_i^T x^* < b_i \quad i \notin \mathcal{B}.
$$

Proceed by contradiction. Suppose x^* is not a basic feasible solution. Thus, a for $i \in \mathcal{B}$ are not linearly independent. Then there exists a $d \neq 0$ with

$$
a_i^T d = 0 \qquad \text{for every} \quad i \in \mathcal{B} \qquad (\text{ie, } \overline{A}d = 0)
$$

and for $\epsilon > 0$ small enough,

$$
y = x^* + \epsilon d \in \mathcal{P}, \quad z = x^* - \epsilon d \in \mathcal{P}.
$$

Summing, we have

$$
x^* = \frac{1}{2}y + \frac{1}{2}z,
$$

which contradicts the assumption that x^* is an extreme point.

Basic feasible solution \implies vertex

Suppose $x^* \in \mathcal{P}$ is a basic feasible solution and

$$
a_i^T x^* = b_i \quad i \in \mathcal{B}
$$
, and $a_i^T x^* < b_i \quad i \notin \mathcal{B}$.

Take any $x \in \mathcal{P}$. For each $i \in \mathcal{B}$,

$$
-a_i^T x \geq -b_i = -a_i^T x^*
$$

Summing these all together:

$$
c^T x = -\sum_{i \in \mathcal{B}} a_i^T x \ge -\sum_{i \in \mathcal{B}} b_i = c^T x^*, \qquad c := -\sum_{i \in \mathcal{B}} a_i
$$

with equality only if $a_i^T x = b_i, i \in \mathcal{B}$. Since $\{a_i \mid i \in \mathcal{B}\}$ are linearly independent, that holds only when $x=x^*$. Thus, $\,c^{\,T}\!x^* < c^{\,T}\!x$ for all $x \in \mathcal{P}, \, x \neq x^*$, so x^* is a vertex.

Unbounded directions

P contains a **half-line** if there exists $d \neq 0$, x_0 such that

 $x_0 + \alpha d \in \mathcal{P}$ for all $\alpha > 0$ equivalent conditions for $\mathcal{P} = \{ x \mid Ax \leq b \}$: $Ax_0 < b$, $Ad < 0$

fact: P unbounded $\iff P$ contains a half line

P contains a line if there exists $d \neq 0$, x_0 such that

 $x_0 + \alpha d \in \mathcal{P}$ for all α

equivalent conditions for $\mathcal{P} = \{ x \mid Ax \leq b \}$:

$$
Ax_0\leq b,\quad Ad=0
$$

fact: P has no extreme points \iff P contains a line

Optimal set of an LP

minimize $c^{\mathcal{T}}x$ subject-to $Ax \leq b$

- optimal value $p^* = \min \Set{ c^T x | Ax \leq b } (p^* = \pm \infty \text{ is possible})$
- optimal point: x^* with $Ax^* \leq b$ and $c^{\mathsf{T}} x^* = p^*$
- optimal set: $X^* = \{ x \mid Ax \leq b, c^T x = p^* \}$

example

$$
\begin{array}{ll}\text{minimize} & c_1x_1 + c_2x_2\\ \text{subject to} & -2x_1 + x_2 \le 1, \quad x_1 \ge 0, \ x_2 \ge 0 \end{array}
$$

•
$$
c = (1,1)
$$
: $X^* = \{(0,0)\}, p^* = 0$

•
$$
c = (1,0)
$$
: $X^* = \{ (0, x_2) | 0 \le x_2 \le 1 \}, p^* = 0$

• $c = (-1, -1)$: $X^* = \emptyset$, $p^* = -\infty$

Optimal values

• $p^* = -\infty$ if and only if there exists a feasible half line

 $\{x_0 + \alpha p \mid \alpha \geq 0\}$

with $c^{\, \mathcal{T}} p < 0$

- $p^* = +\infty$ if and only if $\mathcal{P} = \emptyset$
- p^* if finite if and only if $X^* \neq \emptyset$

LP solutions on extreme points

$$
p^* = \min_{x \in \mathbb{R}^n} \{ c^T x \mid Ax \leq b \}
$$

if ρ^* finite, there exists a feasible extreme point x^* with $c^\mathsf{T} x^* = \rho^*$

suppose \hat{x} is optimal but not extreme. Then corresponding A_B (active rows of A) has a nontrivial nullspace, and there exists $d \neq 0$ such that $A_{\beta} d = 0$ and either

$$
c^T d = 0 \quad \text{or} \quad c^T d < 0 \quad \text{or} \quad c^T d > 0
$$

- \bullet suppose $c^{\mathsf{T}}d < 0$
- pick $\tilde{x} = \hat{x} + \alpha d$
- $\bullet\,$ then $\,c^{\,T}\!\hat{x}>c^{\,T}\!\tilde{x}$ and $\,\bar{A}_{\scriptscriptstyle B}\tilde{x}=A_{\scriptscriptstyle B}(\hat{x}+\alpha d)=A_{\scriptscriptstyle B}\hat{x}$
- for α small enough, $A_N \hat{x} < b_N \Rightarrow A_N \tilde{x} \leq b_N$
- then \tilde{x} is feasible with lower objective value, contradicting optimality of \hat{x}

• the case with $c^Td > 0$ is similar, except we pick $\tilde{x} = \hat{x} - \alpha d$

- \bullet Suppose $c^T d = 0$. Then any adjacent extreme point is equally optimal
- pick $\tilde{x} = \hat{x} + \alpha d$
- then $c^T \hat{x} = c^T \tilde{x}$ and $A_{\scriptscriptstyle B} \hat{x} = A_{\scriptscriptstyle B} \tilde{x}$
- pick α small enough, $A_{N} \hat{x} < b_{N} \Rightarrow A_{N} \tilde{x} < b_{N}$
- then \tilde{x} is feasible with same objective value, and there are infinitely many solutions on that edge

