
Geometry of Linear Programming

• extreme points

• vertices

• basic (feasible) solutions
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Polyhedron (inequality form)

A =
[
a1 · · · am

]T
is m × n, b ∈ Rm

P = { x | Ax ≤ b } =
{
x
∣∣ aTi x ≤ bi , i = 1, . . . ,m

}

P is convex because it’s the intersection of halfspaces (the intersection of
convex sets is convex)
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Extreme points

x ∈ P is an extreme point of P if there does not exist two vectors y , z ∈ P
such that

x = λy + (1− λ)z for any λ ∈ (0, 1)
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Vertices
x ∈ P is a vertex of P if there exists a vector c ̸= 0 such that

cTx < cTy for all y ∈ P, y ̸= x

two equivalent points of view:
• given a vertex x , find c such that cTx < cTy for all y ∈ P, y ̸= x

• given a vector c , find x such that cTx < cTy for all y ∈ P, y ̸= x , ie,

minimize
x

cTx subject to x ∈ P
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Active constraints

define B as the set of active or binding constraints (at x∗):

aTi x
∗ = bi , i ∈ B (active constraints)

aTi x
∗ < bi , i ∈ N (inactive feasible constraints)

aTi x
∗ > bi , i /∈ B ∪ N (inactive infeasible constraints)

define the subset of active constraints

AB = Ā =


aTi1
aTi2
...

aTik

 , bB = b̄ =


bi1

bi2
...

bik

 , B = {i1, i2, . . . , ik}
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Basic solutions
x∗ is a basic solution if one of the following equivalent conditions hold:

• ai1 , ai2 , . . . , ain are linearly independent

• Āx∗ = b̄ has a unique solution

• rank(Ā) = n

basic feasible solution: x∗ is a basic solution and x∗ ∈ P

Theorem: the following are
equivalent

• x∗ is a vertex

• x∗ is an extreme point

• x∗ is a basic feasible solution
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Example


−1 0
2 1
0 −1
1 2

 x ≤


0
3
0
3



• (1, 1) is an extreme point

• (1, 1) is a vertex: unique minimum of cTx with c = (−1,−1)

• (1, 1) is a basic feasible solution: B = {2, 4} and rank Ā = 2, where

Ā =

[
2 1
1 2

]
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Equivalence of definitions

Vertex =⇒ extreme point

Let x∗ be a vertex of P. Then there exists a c ̸= 0 such that

cTx∗ < cTx for all x ∈ P and x ̸= x∗.

Then for all y , z ∈ P with y ̸= x∗ and z ̸= x∗,

cTx∗ < cTy and cTx∗ < cTz .

If λ ∈ [0, 1], then
cTx∗ < cT(λy + (1− λ)z),

and x∗ ̸= λy + (1− λ)z . Therefore x∗ is an extreme point.
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Extreme point =⇒ basic feasible solution

Suppose x∗ ∈ P is an extreme point with

aTi x
∗ = bi i ∈ B, and aTi x

∗ < bi i /∈ B.

Proceed by contradiction. Suppose x∗ is not a basic feasible solution. Thus, ai
for i ∈ B are not linearly independent. Then there exists a d ̸= 0 with

aTi d = 0 for every i ∈ B (ie, Ād = 0)

and for ϵ > 0 small enough,

y = x∗ + ϵd ∈ P, z = x∗ − ϵd ∈ P.

Summing, we have
x∗ = 1

2y + 1
2z ,

which contradicts the assumption that x∗ is an extreme point.
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Basic feasible solution =⇒ vertex

Suppose x∗ ∈ P is a basic feasible solution and

aTi x
∗ = bi i ∈ B, and aTi x

∗ < bi i /∈ B.

Take any x ∈ P. For each i ∈ B,

−aTi x ≥ −bi = −aTi x
∗

Summing these all together:

cTx = −
∑
i∈B

aTi x ≥ −
∑
i∈B

bi = cTx∗, c := −
∑
i∈B

ai

with equality only if aTi x = bi , i ∈ B. Since {ai | i ∈ B} are linearly independent,
that holds only when x = x∗. Thus, cTx∗ < cTx for all x ∈ P, x ̸= x∗, so x∗ is
a vertex.
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Unbounded directions

P contains a half-line if there exists d ̸= 0, x0 such that

x0 + αd ∈ P for all α ≥ 0

equivalent conditions for P = { x | Ax ≤ b }:

Ax0 ≤ b, Ad ≤ 0

fact: P unbounded ⇐⇒ P contains a half line

P contains a line if there exists d ̸= 0, x0 such that

x0 + αd ∈ P for all α

equivalent conditions for P = { x | Ax ≤ b }:

Ax0 ≤ b, Ad = 0

fact: P has no extreme points ⇐⇒ P contains a line
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Optimal set of an LP

minimize cTx subject to Ax ≤ b

• optimal value p∗ = min
{
cTx

∣∣ Ax ≤ b
}

(p∗ = ±∞ is possible)

• optimal point: x∗ with Ax∗ ≤ b and cTx∗ = p∗

• optimal set: X ∗ =
{
x
∣∣ Ax ≤ b, cTx = p∗

}
example

minimize c1x1 + c2x2
subject to −2x1 + x2 ≤ 1, x1 ≥ 0, x2 ≥ 0

• c = (1, 1): X ∗ = { (0, 0) }, p∗ = 0

• c = (1, 0): X ∗ = { (0, x2) | 0 ≤ x2 ≤ 1 }, p∗ = 0

• c = (−1,−1): X ∗ = ∅, p∗ = −∞
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Optimal values

• p∗ = −∞ if and only if there exists a feasible half line

{ x0 + αp | α ≥ 0 }

with cTp < 0

Viii
I

• p∗ = +∞ if and only if P = ∅
• p∗ if finite if and only if X ∗ ̸= ∅
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LP solutions on extreme points

p∗ = min
x∈Rn

{ cTx | Ax ≤ b }

if p∗ finite, there exists a feasible extreme point x∗ with cT x∗ = p∗

suppose x̂ is optimal but not extreme. Then corresponding AB (active rows of A)
has a nontrivial nullspace, and there exists d ̸= 0 such that ABd = 0 and either

cTd = 0 or cTd < 0 or cTd > 0
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• suppose cTd < 0

• pick x̃ = x̂ + αd

• then cTx̂ > cTx̃ and ĀB x̃ = AB(x̂ + αd) = AB x̂

• for α small enough, AN x̂ < bN ⇒ AN x̃ ≤ bN

• then x̃ is feasible with lower objective value, contradicting optimality of x̂

• the case with cTd > 0 is similar, except we pick x̃ = x̂ − αd
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• Suppose cTd = 0. Then any adjacent extreme point is equally optimal

• pick x̃ = x̂ + αd

• then cT x̂ = cTx̃ and AB x̂ = AB x̃

• pick α small enough, AN x̂ < bN ⇒ AN x̃ ≤ bN

• then x̃ is feasible with same objective value, and there are infinitely many
solutions on that edge
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