LP/QP Interior Algorithms

® barrier function

® primal barrier method

® perturbed optimality conditions

® Newton's method

® primal-dual method for LPs and QPs
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Interior-point algorithms

The Simplex algorithm:
® “walks” the edges of the polyhedral feasible set
® worst-case complexity is exponential (may need to visit every vertex)

® experience (and some analysis) suggests average polynomial complexity

Interior-point (IP) are a radical departure from the simplex method:

® |P algorithms traverse the interior of the polyhedral set

® (impractical) polynomial algorithm for LP first proposed by Kachian (1979)
® Karmarkar (1984) offered first “practical” polynomial LP algorithm

® AT&T wouldn't release details
® patented the KORBYX, a computer that implemented the method
® appeared in front-page of New York Times
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Eliminate nonnegativity constraints

Apply to the primal LP problem in standard form:

minimize c¢'x subjectto Ax=b, x >0
X

The core difficulty in LP is the prescence of the constraint x > 0
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Eliminate nonnegativity constraints

Apply to the primal LP problem in standard form:

minimize c¢'x subjectto Ax=b, x >0
X

The core difficulty in LP is the prescence of the constraint x > 0

Eliminate nonnegativity constraint via barrier function:

Bu(x) =c'x — ”Z log x;
J

® —logx; — 00 as xj — 0" (def'd as +o0 for x; < 0)

® —p);logx; — 00 as any x; — 0"
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Barrier function

(P) minixmize B,.(x) subjectto Ax=0b

® minimizer of the barrier problem depends on p:

X, solves P,

® minimizer of P, is unique for each u because of convexity of B,
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Example 1: minimize x subjto x>0
X

Bu(x) =x—plogx = x(p)=pn
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Example 2: minimize x; subjto xx+xx+x3=1, x>0
X1,X2,X3

B,.(x) = xo — pulog(x1) — pulog(x2) — plog(xs)
Eliminate x3 = 1 — x; — xo:

minimize  x; — plog(xy) — plog(xe) — plog(l — x1 — x2)
X1,X2

© x(p) = =30
. XQ(,LL) _ 1+2u7\/;+9p2+2u
© () = =30
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Example 2: minimize x; subjto xx+xx+x3=1, x>0
X1,X2,X3

B,.(x) = xo — pulog(x1) — pulog(x2) — plog(xs)
Eliminate x3 = 1 — x; — xo:

minimize  x; — plog(xy) — plog(xe) — plog(l — x1 — x2)

X1,X2
© ) =54
14+2p—+/14+9u2+2
® xo(u) = %
© () = =30

This problem has infinitely many solutions:
X" ={x|x=(x,0,x3), 1 + x3 =1,x >0}

Note that the solution that we converge to isn't basic.
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Primal barrier method

solve a sequence of linearly constrained nonlinear functions:

choose xg > 0, o > 0(= 1), 7 <1
repeat

Xk+1 minimizes By, (x) subj to Ax = b
Hk+1 €= Tk

until gy is “small”

under mild conditions, x, — x*
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Perturbed optimality conditions

primal LP: dual LP:
minimize  ¢'x — p Y log x; maximize by +pu 3, log z;
subject to Ax=b subject to ATy +z=c¢
Optim cond’s: Optim cond’s:
ct+uXlte=Aly Aw = —b

Ax=b (x> 0) —puZle=w

Aly +z=c(z>0)
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Perturbed optimality conditions

primal LP: dual LP:
minimize  ¢'x — p Y log x; maximize by +pu 3, log z;
subject to Ax=b subject to ATy +z=c¢
Optim cond’s: Optim cond’s:
ct+uXlte=Aly Aw = —b

Ax=b (x> 0) —puZle=w

Aly +z=c(z>0)
Tie these optimality cond’s together by identifying x = —w and noting

—1 1
uZ-e=x <= P =X = XZi=p
j
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Perturbed optimality conditions

primal LP: dual LP:
minimize  ¢'x — p Y log x; maximize by +pu 3, log z;
subject to Ax=b subject to ATy +z=c¢
Optim cond’s: Optim cond’s:
ct+uXlte=Aly Aw = —b

Ax=b (x> 0) —puZle=w

Aly +z=c(z>0)
Tie these optimality cond’s together by identifying x = —w and noting

1 1
puZ-le=x <= p— =X <= Xz =/
Zj
write both optimality conditions simultaneously as
Aly+z=c, z>0
Ax=b, x>0

X;zj = [, =1,...,n
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Newton’s method

Ax — b
Fulx,y,z) = Aly+z—c¢
Xz — pe

An approximate LP solution (x,y,z), with (x, z) > 0 satisfies
FH(X7Y> Z) = 0

Apply Newton's method for root finding to these equations, eg,

Xk+1 Xk Px
Y1 | = |Yk| T [Py
Zk+1 Zk Py
where p is a Newton step:
A 0 0 Px b — Ax
Jp=—-F = 0 AT 1| |p)| =|c—ATyk—z

Zk 0 Xl |p: pe — Xz
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Primal-dual method for LPs

choose xg > 0, yp, 20 >0, 7 < 1

Yo XOTZO, k<0

while v, > € do

fue = T(x] 26)/n

Solve Jxp = —Fy for p = (p*, p¥, p?)
xk

B85 = min {17 995 min J}

Uler<oy  pf

8 — mi n 7
r=minq1, 995 min ——

ilpr<0y  pf

Xk41 — X + Bip*
Yk+1 < Yk + Bip”
Zky1 2k + BEp*

k+— k+1

end

[Newton step]
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Linear Algebra

The main work is in computing the step directions (px, p,, p,) via

A 0 0 Px b — Axk o
0 /17_ / Py| = [C— /17]/k — Zk| =: | Hd
Zk 0 Xi| |p: pe — Xizk ru
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Linear Algebra

The main work is in computing the step directions (px, p,, p,) via

A 0 0 Px b — Axk o
0 /17_ / Py| = [C— /17]/k — Zk| =: | Hd
Z 0 Xk Pz pe — Xizk m

It's common to eliminate p, and solve the block 2-by-2 system

RN /5 R PR
A Py ry — Xk_lrH
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Quadratic Programming (QP)

minimize %XTQX—I— cTx
subjectto Ax=b, x>0

This is a much more general problem than LP. (Setting @ = 0 gives an LP.)
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Quadratic Programming (QP)

minimize %XTQX—I— cTx
subjectto Ax=b, x>0

This is a much more general problem than LP. (Setting @ = 0 gives an LP.)

Example: The “distance” between two polyhedra
Pr={x|Aix< b} and Pr={x|Ax<bh}
is defined by the solution of the quadratic program

minimize  1{|x; — x2[|3
X1,X2

subject to A;x3 < by and Ayxx < by

12/14



Primal-dual approach for QPs

QP: LP:

minimize  3x7Qx 4+ ¢'x — u Y, log x; minimize c’x — ) logx
subjectto Ax=b subjectto ATy +z=c
Optim cond'’s: Optim cond'’s:
Ax+c+uXte=ATy c+uXle=ATy

Ax = b (x > 0) Ax =b (x> 0)
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Primal-dual approach for QPs

QP: LP:
minimize  3x7Qx + c'x — pY;logx; minimize  c'x — 37, logx;
subjectto Ax=b subjectto ATy +z=c
Optim cond'’s: Optim cond'’s:
Ax+c+uXte=ATy c+uXle=ATy

Ax=b (x> 0) Ax=b (x> 0)

Define z such that x;z; = . The optimality conditions become

Aly+z=c, z>0

T —
—@Qx+A'y+z=c¢c, z>0 Ax=b, x>0
Ax=b, x>0 _ .
) Xjizi=p, j=1,....n
Xjzi=w, Jj=1,...,n
GZj = 1 A b
AX—b F/_L(vavz): ATy+Z_C
Fu(x,y,z) = ~Qx+Aly+z—c Xz — pe

Xz — pe
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Newton’s method for QPs

F;t()(vj/v‘z) =

Ax — b
Aly +z4+ Qx—c
Xz — e

An approximate LP solution (x,y,z), with (x, z) > 0 satisfies

F;t()<7)/a2) = 0

Apply Newton's method for root finding to these equations, eg,

Xk+1
Ykr1| =
Zk+1
where p is a Newton step:
A 0
Jkp = —F < -Q AT

Xk
Yk

Zk

+ «

Px
Py
Pz

Px
by
Py

b—AXk
= |c+ Qi — Alyx — z
pe — Xz
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