[LP/QP Interior Algorithms](#page-0-0)

- barrier function
- primal barrier method
- perturbed optimality conditions
- Newton's method
- primal-dual method for LPs and QPs

Interior-point algorithms

The Simplex algorithm:

- "walks" the edges of the polyhedral feasible set
- worst-case complexity is exponential (may need to visit every vertex)
- experience (and some analysis) suggests average polynomial complexity

Interior-point (IP) are a radical departure from the simplex method:

- IP algorithms traverse the interior of the polyhedral set
- (impractical) polynomial algorithm for LP first proposed by Kachian (1979)
- Karmarkar (1984) offered first "practical" polynomial LP algorithm
	- AT&T wouldn't release details
	- patented the KORBYX, a computer that implemented the method
	- appeared in front-page of New York Times

Eliminate nonnegativity constraints

Apply to the primal LP problem in standard form:

$$
\underset{x}{\text{minimize}} \quad c^T x \quad \text{subject to} \quad Ax = b, \ x \ge 0
$$

The core difficulty in LP is the prescence of the constraint $x \geq 0$

Eliminate nonnegativity constraints

Apply to the primal LP problem in standard form:

$$
\underset{x}{\text{minimize}} \quad c^T x \quad \text{subject to} \quad Ax = b, \ x \ge 0
$$

The core difficulty in LP is the prescence of the constraint $x \geq 0$

Eliminate nonnegativity constraint via barrier function:

$$
B_{\mu}(x) = c^{T}x - \mu \sum_{j} \log x_{j}
$$

- \bullet $-$ log $x_j \to \infty$ as $x_j \to 0^+$ (def'd as $+\infty$ for $x_j \leq 0)$
- $\bullet \ \, -\mu \sum_j \log x_j \to \infty$ as any $x_j \to 0^+$

Barrier function

 (P_μ) minimize $B_\mu(x)$ subject to $Ax=b$ x • minimizer of the barrier problem depends on μ :

```
x_\mu solves P_\mu
```
minimizer of P_μ is unique for each μ because of convexity of B_μ

Example 1: minimize x subj to $x \ge 0$ $B_{\mu}(x) = x - \mu \log x \implies x(\mu) = \mu$

Example 2: minimize x_2 subj to $x_1 + x_2 + x_3 = 1, x \ge 0$ x_1, x_2, x_3 $B_{\mu}(x) = x_2 - \mu \log(x_1) - \mu \log(x_2) - \mu \log(x_3)$

Eliminate $x_3 = 1 - x_1 - x_2$:

minimize $x_2 - \mu \log(x_1) - \mu \log(x_2) - \mu \log(1 - x_1 - x_2)$ X_1, X_2

- $x_1(\mu) = \frac{1 x_2(\mu)}{2}$ $\bullet\;{}$ $\;$ $\;$ $\times_2(\mu)=\frac{1+2\mu-1}{2}$ $\sqrt{1+9\mu^2+2\mu}$ 2
- $x_3(\mu) = \frac{1 x_2(\mu)}{2}$

Example 2: minimize x_2 subj to $x_1 + x_2 + x_3 = 1, x \ge 0$ x_1, x_2, x_3 $B_{\mu}(x) = x_2 - \mu \log(x_1) - \mu \log(x_2) - \mu \log(x_3)$

Eliminate $x_3 = 1 - x_1 - x_2$:

minimize $x_2 - \mu \log(x_1) - \mu \log(x_2) - \mu \log(1 - x_1 - x_2)$ x_1, x_2

• $x_1(\mu) = \frac{1 - x_2(\mu)}{2}$ $\bullet\;{}$ $\;$ $\;$ $\times_2(\mu)=\frac{1+2\mu-1}{2}$ $\sqrt{1+9\mu^2+2\mu}$ 2 • $x_3(\mu) = \frac{1 - x_2(\mu)}{2}$

This problem has infinitely many solutions:

$$
X^* = \{ x \mid x = (x_1, 0, x_3), x_1 + x_3 = 1, x \ge 0 \}
$$

Note that the solution that we converge to isn't basic.

Primal barrier method

solve a sequence of linearly constrained **nonlinear** functions:

```
choose x_0>0,~\mu_0>0(\approx 1),~\tau<1repeat
x_{k+1} minimizes B_{\mu_k}(x) subj to Ax=b\mu_{k+1} \leftarrow \tau \mu_kuntil \mu_k is "small"
```
under mild conditions, $x_k \to x^*$

Perturbed optimality conditions

primal LP:

minimize $c^{\mathcal{T}}x - \mu \sum_j \log x_j$ subject to $Ax = b$

Optim cond's:

$$
c + \mu X^{-1} e = A^T y
$$

$$
Ax = b (x > 0)
$$

dual LP: maximize $\quad b^{\mathsf{T}}\! y + \mu \sum_j \log z_j$ subject to $A^Ty+z=c$

Optim cond's: $Aw = -b$ $-\mu Z^{-1}e=w$ $A^Ty+z=c\,\,(z>0)$

Perturbed optimality conditions

primal LP:

minimize $c^{\mathcal{T}}x - \mu \sum_j \log x_j$ subject to $Ax = b$

Optim cond's:

$$
c + \mu X^{-1} e = A^T y
$$

$$
Ax = b (x > 0)
$$

dual LP:

maximize $\quad b^{\mathsf{T}}\! y + \mu \sum_j \log z_j$ subject to $A^Ty+z=c$

Optim cond's: $Aw = -b$

$$
-\mu Z^{-1} e = w
$$

$$
A^{T}y + z = c \ (z > 0)
$$

Tie these optimality cond's together by identifying $x \equiv -w$ and noting

$$
\mu Z^{-1} e = x \iff \mu \frac{1}{z_j} = x_j \iff x_j z_j = \mu
$$

Perturbed optimality conditions

primal LP:

minimize $c^{\mathcal{T}}x - \mu \sum_j \log x_j$ subject to $Ax = b$

Optim cond's:

dual LP:

maximize $\quad b^{\mathsf{T}}\! y + \mu \sum_j \log z_j$ subject to $A^Ty+z=c$

$c+\mu X^{-1}e=A^{\mathsf{T}}y$ $Ax = b (x > 0)$ Optim cond's: $Aw = -b$ $-\mu Z^{-1}e=w$ $A^Ty+z=c\,\,(z>0)$

Tie these optimality cond's together by identifying $x \equiv -w$ and noting

$$
\mu Z^{-1}e = x \iff \mu \frac{1}{z_j} = x_j \iff x_j z_j = \mu
$$

write both optimality conditions simultaneously as

$$
ATy + z = c, \quad z > 0
$$

\n
$$
Ax = b, \quad x > 0
$$

\n
$$
x_j z_j = \mu, \quad j = 1, ..., n
$$

Newton's method

$$
F_{\mu}(x, y, z) = \begin{bmatrix} Ax - b \\ A^{T}y + z - c \\ Xz - \mu e \end{bmatrix}
$$

An approximate LP solution (x, y, z) , with $(x, z) > 0$ satisfies

$$
F_{\mu}(x,y,z)=0
$$

Apply Newton's method for root finding to these equations, eg,

$$
\begin{bmatrix} x_{k+1} \\ y_{k+1} \\ z_{k+1} \end{bmatrix} = \begin{bmatrix} x_k \\ y_k \\ z_k \end{bmatrix} + \alpha \begin{bmatrix} p_x \\ p_y \\ p_y \end{bmatrix}
$$

where p is a Newton step:

$$
J_k p = -F_k \quad \Longleftrightarrow \quad \begin{bmatrix} A & 0 & 0 \\ 0 & A^T & I \\ Z_k & 0 & X_k \end{bmatrix} \begin{bmatrix} p_x \\ p_y \\ p_z \end{bmatrix} = \begin{bmatrix} b - Ax_k \\ c - A^T y_k - z_k \\ \mu e - X_k z_k \end{bmatrix}
$$

Primal-dual method for LPs

choose
$$
x_0 > 0
$$
, y_0 , $z_0 > 0$, $\tau < 1$
\n $\gamma_0 \leftarrow x_0^T z_0$, $k \leftarrow 0$
\nwhile $\gamma_k > \epsilon$ do
\n $\mu_k = \tau(x_k^T z_k)/n$
\nSolve $J_k p = -F_k$ for $p = (p^x, p^y, p^z)$
\n $\beta_k^x = \min\left\{1, .995 \min_{\{j|p_j^x < 0\}} -\frac{x_j^k}{p_j^x}\right\}$
\n $\beta_k^z = \min\left\{1, .995 \min_{\{j|p_j^x < 0\}} -\frac{z_j^k}{p_j^z}\right\}$
\n $x_{k+1} \leftarrow x_k + \beta_k^x p^x$
\n $y_{k+1} \leftarrow y_k + \beta_k^z p^y$
\n $z_{k+1} \leftarrow z_k + \beta_k^z p^z$
\n $k \leftarrow k + 1$
\nend

[Newton step]

Linear Algebra

The main work is in computing the step directions (p_x, p_y, p_z) via

$$
\begin{bmatrix} A & 0 & 0 \ 0 & A^T & I \ Z_k & 0 & X_k \end{bmatrix} \begin{bmatrix} p_x \\ p_y \\ p_z \end{bmatrix} = \begin{bmatrix} b - Ax_k \\ c - A^T y_k - z_k \\ \mu e - X_k z_k \end{bmatrix} =: \begin{bmatrix} r_p \\ r_d \\ r_\mu \end{bmatrix}
$$

Linear Algebra

The main work is in computing the step directions (p_x, p_y, p_z) via

$$
\begin{bmatrix} A & 0 & 0 \ 0 & A^T & I \ Z_k & 0 & X_k \end{bmatrix} \begin{bmatrix} p_x \\ p_y \\ p_z \end{bmatrix} = \begin{bmatrix} b - Ax_k \\ c - A^T y_k - z_k \\ \mu e - X_k z_k \end{bmatrix} =: \begin{bmatrix} r_p \\ r_d \\ r_\mu \end{bmatrix}
$$

It's common to eliminate p_z and solve the block 2-by-2 system

$$
\begin{bmatrix} -X_k^{-1}Z_k & A^T \ A & A^T \end{bmatrix} \begin{bmatrix} p_x \\ p_y \end{bmatrix} = \begin{bmatrix} r_p \\ r_d - X_k^{-1}r_\mu \end{bmatrix}
$$

Quadratic Programming (QP)

minimize
$$
\frac{1}{2}x^T Qx + c^T x
$$

subject to $Ax = b, x \ge 0$

This is a much more general problem than LP. (Setting $Q = 0$ gives an LP.)

Quadratic Programming (QP)

minimize $\frac{1}{2}x^TQx + c^T x$ subject to $Ax = b$, $x > 0$

This is a much more general problem than LP. (Setting $Q = 0$ gives an LP.)

Example: The "distance" between two polyhedra

 $P_1 = \{ x \mid A_1x \leq b_1 \}$ and $P_2 = \{ x \mid A_2x \leq b_2 \}$

is defined by the solution of the quadratic program

minimize $\frac{1}{2} ||x_1 - x_2||_2^2$ $X1, X2$ subject to $A_1x_1 \leq b_1$ and $A_2x_2 \leq b_2$

Primal-dual approach for QPs

QP:

minimize $\frac{1}{2}x^{\mathsf{T}}Qx + c^{\mathsf{T}}x - \mu \sum_j \log x_j$ subject to $Ax = b$

Optim cond's:

$$
Qx + c + \mu X^{-1}e = A^{T}y
$$

$$
Ax = b (x > 0)
$$

LP:

minimize $c \frac{\tau}{2} - \mu \sum_j \log x_j$ subject to $A^Ty+z=c$

Optim cond's: $\mathsf{c} + \mu \mathsf{X}^{-1} \mathsf{e} = \mathsf{A}^T \mathsf{y}$ $Ax = b (x > 0)$

Primal-dual approach for QPs

QP:

minimize $\frac{1}{2}x^{\mathsf{T}}Qx + c^{\mathsf{T}}x - \mu \sum_j \log x_j$ subject to $Ax = b$

Optim cond's:

$$
Qx + c + \mu X^{-1}e = A^{T}y
$$

$$
Ax = b (x > 0)
$$

LP:

minimize $c \frac{\tau}{2} - \mu \sum_j \log x_j$ subject to $A^Ty+z=c$

Optim cond's: $\mathsf{c} + \mu \mathsf{X}^{-1} \mathsf{e} = \mathsf{A}^T \mathsf{y}$ $Ax = b (x > 0)$

 τ

Define z such that $x_i z_i = \mu$. The optimality conditions become

$$
-Qx + A^{T}y + z = c, \quad z > 0
$$

\n
$$
Ax = b, \quad x > 0
$$

\n
$$
x_{j}z_{j} = \mu, \quad j = 1,...,n
$$

\n
$$
F_{\mu}(x, y, z) = \begin{bmatrix} Ax - b \\ -Qx + A^{T}y + z - c \\ Xz - \mu e \end{bmatrix}
$$

\n
$$
F_{\mu}(x, y, z) = \begin{bmatrix} Ax - b \\ Xz - \mu e \end{bmatrix}
$$

\n
$$
F_{\mu}(x, y, z) = \begin{bmatrix} Ax - b \\ Xz - \mu e \end{bmatrix}
$$

Newton's method for QPs

$$
F_{\mu}(x, y, z) = \begin{bmatrix} Ax - b \\ A^{T}y + z + Qx - c \\ Xz - \mu e \end{bmatrix}
$$

An approximate LP solution (x, y, z) , with $(x, z) > 0$ satisfies

$$
F_{\mu}(x,y,z)=0
$$

Apply Newton's method for root finding to these equations, eg,

$$
\begin{bmatrix} x_{k+1} \\ y_{k+1} \\ z_{k+1} \end{bmatrix} = \begin{bmatrix} x_k \\ y_k \\ z_k \end{bmatrix} + \alpha \begin{bmatrix} p_x \\ p_y \\ p_y \end{bmatrix}
$$

where p is a Newton step:

$$
J_k p = -F_k \quad \Longleftrightarrow \quad \begin{bmatrix} A & 0 & 0 \\ -Q & A^T & I \\ Z_k & 0 & X_k \end{bmatrix} \begin{bmatrix} p_x \\ p_y \\ p_z \end{bmatrix} = \begin{bmatrix} b - Ax_k \\ c + Qx_k - A^T y_k - z_k \\ \mu e - X_k z_k \end{bmatrix}
$$