
LP/QP Interior Algorithms

• barrier function

• primal barrier method

• perturbed optimality conditions

• Newton’s method

• primal-dual method for LPs and QPs

1 / 14

Interior-point algorithms

The Simplex algorithm:

• “walks” the edges of the polyhedral feasible set

• worst-case complexity is exponential (may need to visit every vertex)

• experience (and some analysis) suggests average polynomial complexity

Interior-point (IP) are a radical departure from the simplex method:

• IP algorithms traverse the interior of the polyhedral set

• (impractical) polynomial algorithm for LP first proposed by Kachian (1979)

• Karmarkar (1984) offered first “practical” polynomial LP algorithm
• AT&T wouldn’t release details
• patented the KORBYX, a computer that implemented the method
• appeared in front-page of New York Times

2 / 14

Eliminate nonnegativity constraints

Apply to the primal LP problem in standard form:

minimize
x

cTx subject to Ax = b, x ≥ 0

The core difficulty in LP is the prescence of the constraint x ≥ 0

Eliminate nonnegativity constraint via barrier function:

Bµ(x) = cTx − µ
∑
j

log xj

• − log xj →∞ as xj → 0+ (def’d as +∞ for xj ≤ 0)

• −µ
∑

j log xj →∞ as any xj → 0+

3 / 14

Eliminate nonnegativity constraints

Apply to the primal LP problem in standard form:

minimize
x

cTx subject to Ax = b, x ≥ 0

The core difficulty in LP is the prescence of the constraint x ≥ 0

Eliminate nonnegativity constraint via barrier function:

Bµ(x) = cTx − µ
∑
j

log xj

• − log xj →∞ as xj → 0+ (def’d as +∞ for xj ≤ 0)

• −µ
∑

j log xj →∞ as any xj → 0+

3 / 14

Barrier function

(Pµ) minimize
x

Bµ(x) subject to Ax = b

• minimizer of the barrier problem depends on µ:

xµ solves Pµ

• minimizer of Pµ is unique for each µ because of convexity of Bµ

4 / 14

Example 1: minimize
x

x subj to x ≥ 0

Bµ(x) = x − µ log x =⇒ x(µ) = µ

5 / 14

Example 2: minimize
x1,x2,x3

x2 subj to x1 + x2 + x3 = 1, x ≥ 0

Bµ(x) = x2 − µ log(x1)− µ log(x2)− µ log(x3)

Eliminate x3 = 1− x1 − x2:

minimize
x1,x2

x2 − µ log(x1)− µ log(x2)− µ log(1− x1 − x2)

• x1(µ) = 1−x2(µ)
2

• x2(µ) =
1+2µ−

√
1+9µ2+2µ

2

• x3(µ) = 1−x2(µ)
2

This problem has infinitely many solutions:

X ∗ = { x | x = (x1, 0, x3), x1 + x3 = 1, x ≥ 0 }

Note that the solution that we converge to isn’t basic.

6 / 14

Example 2: minimize
x1,x2,x3

x2 subj to x1 + x2 + x3 = 1, x ≥ 0

Bµ(x) = x2 − µ log(x1)− µ log(x2)− µ log(x3)

Eliminate x3 = 1− x1 − x2:

minimize
x1,x2

x2 − µ log(x1)− µ log(x2)− µ log(1− x1 − x2)

• x1(µ) = 1−x2(µ)
2

• x2(µ) =
1+2µ−

√
1+9µ2+2µ

2

• x3(µ) = 1−x2(µ)
2

This problem has infinitely many solutions:

X ∗ = { x | x = (x1, 0, x3), x1 + x3 = 1, x ≥ 0 }

Note that the solution that we converge to isn’t basic.

6 / 14

Primal barrier method

solve a sequence of linearly constrained nonlinear functions:

choose x0 > 0, µ0 > 0(≈ 1), τ < 1
repeat

xk+1 minimizes Bµk
(x) subj to Ax = b

µk+1 ← τµk

until µk is “small”

under mild conditions, xk → x∗

7 / 14

Perturbed optimality conditions

primal LP:

minimize cTx − µ
∑

j log xj
subject to Ax = b

Optim cond’s:

c + µX−1e = ATy

Ax = b (x > 0)

dual LP:
maximize bTy + µ

∑
j log zj

subject to ATy + z = c

Optim cond’s:

Aw = −b
−µZ−1e = w

ATy + z = c (z > 0)

Tie these optimality cond’s together by identifying x ≡ −w and noting

µZ−1e = x ⇐⇒ µ
1

zj
= xj ⇐⇒ xjzj = µ

write both optimality conditions simultaneously as

ATy + z = c , z > 0

Ax = b, x > 0

xjzj = µ, j = 1, . . . , n

8 / 14

Perturbed optimality conditions

primal LP:

minimize cTx − µ
∑

j log xj
subject to Ax = b

Optim cond’s:

c + µX−1e = ATy

Ax = b (x > 0)

dual LP:
maximize bTy + µ

∑
j log zj

subject to ATy + z = c

Optim cond’s:

Aw = −b
−µZ−1e = w

ATy + z = c (z > 0)

Tie these optimality cond’s together by identifying x ≡ −w and noting

µZ−1e = x ⇐⇒ µ
1

zj
= xj ⇐⇒ xjzj = µ

write both optimality conditions simultaneously as

ATy + z = c , z > 0

Ax = b, x > 0

xjzj = µ, j = 1, . . . , n

8 / 14

Perturbed optimality conditions

primal LP:

minimize cTx − µ
∑

j log xj
subject to Ax = b

Optim cond’s:

c + µX−1e = ATy

Ax = b (x > 0)

dual LP:
maximize bTy + µ

∑
j log zj

subject to ATy + z = c

Optim cond’s:

Aw = −b
−µZ−1e = w

ATy + z = c (z > 0)

Tie these optimality cond’s together by identifying x ≡ −w and noting

µZ−1e = x ⇐⇒ µ
1

zj
= xj ⇐⇒ xjzj = µ

write both optimality conditions simultaneously as

ATy + z = c , z > 0

Ax = b, x > 0

xjzj = µ, j = 1, . . . , n

8 / 14

Newton’s method

Fµ(x , y , z) =

 Ax − b
ATy + z − c
Xz − µe


An approximate LP solution (x , y , z), with (x , z) > 0 satisfies

Fµ(x , y , z) = 0

Apply Newton’s method for root finding to these equations, eg,xk+1

yk+1

zk+1

 =

xkyk
zk

+ α

pxpy
py


where p is a Newton step:

Jkp = −Fk ⇐⇒

 A 0 0
0 AT I
Zk 0 Xk

pxpy
pz

 =

 b − Axk
c − ATyk − zk
µe − Xkzk


9 / 14

Primal-dual method for LPs

choose x0 > 0, y0, z0 > 0, τ < 1

γ0 ← xT0 z0, k ← 0
while γk > ε do

µk = τ(xTk zk)/n

Solve Jkp = −Fk for p = (px , py , pz) [Newton step]

βx
k = min

{
1, .995 min

{j|px
j <0}
−
xkj
pxj

}

βz
k = min

{
1, .995 min

{j|pz
j <0}
−
zkj
pzj

}
xk+1 ← xk + βx

kp
x

yk+1 ← yk + βz
kp

y

zk+1 ← zk + βz
kp

z

k ← k + 1
end

10 / 14

Linear Algebra

The main work is in computing the step directions (px , py , pz) via A 0 0
0 AT I
Zk 0 Xk

pxpy
pz

 =

 b − Axk
c − ATyk − zk
µe − Xkzk

 =:

rprd
rµ



It’s common to eliminate pz and solve the block 2-by-2 system[
−X−1k Zk AT

A

] [
px
py

]
=

[
rp

rd − X−1k rµ

]

11 / 14

Linear Algebra

The main work is in computing the step directions (px , py , pz) via A 0 0
0 AT I
Zk 0 Xk

pxpy
pz

 =

 b − Axk
c − ATyk − zk
µe − Xkzk

 =:

rprd
rµ



It’s common to eliminate pz and solve the block 2-by-2 system[
−X−1k Zk AT

A

] [
px
py

]
=

[
rp

rd − X−1k rµ

]

11 / 14

Quadratic Programming (QP)

minimize 1
2x

TQx + cTx

subject to Ax = b, x ≥ 0

This is a much more general problem than LP. (Setting Q = 0 gives an LP.)

Example: The “distance” between two polyhedra

P1 = { x | A1x ≤ b1 } and P2 = { x | A2x ≤ b2 }

is defined by the solution of the quadratic program

minimize
x1,x2

1
2‖x1 − x2‖22

subject to A1x1 ≤ b1 and A2x2 ≤ b2

12 / 14

Quadratic Programming (QP)

minimize 1
2x

TQx + cTx

subject to Ax = b, x ≥ 0

This is a much more general problem than LP. (Setting Q = 0 gives an LP.)

Example: The “distance” between two polyhedra

P1 = { x | A1x ≤ b1 } and P2 = { x | A2x ≤ b2 }

is defined by the solution of the quadratic program

minimize
x1,x2

1
2‖x1 − x2‖22

subject to A1x1 ≤ b1 and A2x2 ≤ b2

12 / 14

Primal-dual approach for QPs

QP:

minimize 1
2x

TQx + cTx − µ
∑

j log xj
subject to Ax = b

Optim cond’s:

Qx + c + µX−1e = ATy

Ax = b (x > 0)

LP:
minimize cTx − µ

∑
j log xj

subject to ATy + z = c

Optim cond’s:

c + µX−1e = ATy

Ax = b (x > 0)

Define z such that xjzj = µ. The optimality conditions become

−Qx + ATy + z = c , z > 0

Ax = b, x > 0

xjzj = µ, j = 1, . . . , n

Fµ(x , y , z) =

 Ax − b
−Qx + ATy + z − c

Xz − µe



ATy + z = c , z > 0

Ax = b, x > 0

xjzj = µ, j = 1, . . . , n

Fµ(x , y , z) =

 Ax − b
ATy + z − c
Xz − µe



13 / 14

Primal-dual approach for QPs

QP:

minimize 1
2x

TQx + cTx − µ
∑

j log xj
subject to Ax = b

Optim cond’s:

Qx + c + µX−1e = ATy

Ax = b (x > 0)

LP:
minimize cTx − µ

∑
j log xj

subject to ATy + z = c

Optim cond’s:

c + µX−1e = ATy

Ax = b (x > 0)

Define z such that xjzj = µ. The optimality conditions become

−Qx + ATy + z = c , z > 0

Ax = b, x > 0

xjzj = µ, j = 1, . . . , n

Fµ(x , y , z) =

 Ax − b
−Qx + ATy + z − c

Xz − µe



ATy + z = c , z > 0

Ax = b, x > 0

xjzj = µ, j = 1, . . . , n

Fµ(x , y , z) =

 Ax − b
ATy + z − c
Xz − µe



13 / 14

Newton’s method for QPs

Fµ(x , y , z) =

 Ax − b
ATy + z + Qx − c

Xz − µe


An approximate LP solution (x , y , z), with (x , z) > 0 satisfies

Fµ(x , y , z) = 0

Apply Newton’s method for root finding to these equations, eg,xk+1

yk+1

zk+1

 =

xkyk
zk

+ α

pxpy
py


where p is a Newton step:

Jkp = −Fk ⇐⇒

 A 0 0
−Q AT I
Zk 0 Xk

pxpy
pz

 =

 b − Axk
c + Qxk − ATyk − zk

µe − Xkzk


14 / 14

	LP/QP Interior Algorithms

