[Simplex](#page-0-0)

- assumptions
- computing feasible directions
- maintaining feasibility
- reduced costs

Assumptions

we will develop the simplex algorithm for an LP in standard form

$$
\begin{array}{ll}\text{minimize} & c^T x\\ \text{subject to} & Ax = b, x \ge 0 \end{array}
$$

where A is $m \times n$

we assume throughout this section that

- A has full row rank (no redundant rows)
- the LP is feasible
- all basic feasible solutions (ie, extreme points) are nondegenerate

variable index sets:

- $\mathcal{B} = \{ \beta_1, \beta_2, \dots, \beta_m \}$: basic variables
- $\mathcal{N} = \{ \eta_1, \eta_2, \ldots, \eta_{n-m} \}$: nonbasic variables

Feasible directions

a direction d is **feasible** at $x \in \mathcal{P}$ if there exists $\alpha > 0$ such that

 $x + \alpha d \in \mathcal{P}$

Constructing feasible directions

given $x \in \mathcal{P}$ and $Ax = b$, $x > 0$

require for all $\alpha > 0$ that

$$
b = A(x + \alpha d) = Ax + \alpha Ad = b + \alpha Ad
$$

thus, we require $Ad = 0$

suppose that x is a basic feasible solution, so that

$$
0 = Ad = \begin{bmatrix} B & N \end{bmatrix} \begin{bmatrix} d_B \\ d_N \end{bmatrix} = Bd_B + Nd_N \implies Bd_B = -Nd_N
$$

construct search directions by moving a **single** nonbasic variable $\eta_k \in \mathcal{N}$:

$$
d_N = e_k \qquad \text{and} \qquad Bd_B = -a_{\eta_k}
$$

minimize
$$
c_1x_1 + c_2x_2 + c_3x_3 + c_4x_4
$$

\nsubject to $x_1 + x_2 + x_3 + x_4 = 2$
\n $2x_1 + \t+ 3x_3 + 4x_4 = 2$
\n $x \ge 0$
\n $\mathcal{B} = \{1, 2\} \implies \mathcal{B} = \begin{bmatrix} 1 & 1 \\ 2 & 0 \end{bmatrix} \implies x = \begin{bmatrix} x_B \\ x_N \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \end{bmatrix}$

increase nonbasic variable
$$
x_3
$$
, ie, $d_N = \begin{bmatrix} d_{\eta_1} \\ d_{\eta_2} \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$:
\n
$$
Bd_B = -N d_N \implies \begin{bmatrix} 1 & 1 \\ 2 & 0 \end{bmatrix} \begin{bmatrix} d_{\beta_1} \\ d_{\beta_2} \end{bmatrix} = - \begin{bmatrix} 1 \\ 3 \end{bmatrix} \implies \begin{bmatrix} d_{\beta_1} \\ d_{\beta_2} \end{bmatrix} = 1/2 \begin{bmatrix} -3 \\ 1 \end{bmatrix}
$$

thus,

 $d = (-3/2, 1/2, 1, 0)$

Change in objective

how does the objective $c^{\,T}\bar{x}=c^{\,T}\!(x+\alpha d)$ change as α increases?

 $\phi = c \, {^T\!x} \quad \quad$ where x is a basic feasible solution

then

$$
\begin{aligned}\n\overline{\phi} &= c^T \overline{x} \qquad (\overline{x} = x + \alpha d) \\
&= c^T (x + \alpha d) \\
&= c^T x + \alpha c^T d \\
&= \phi + \alpha \left[c_s^T \quad c_N^T \right] \begin{bmatrix} d_s \\
 d_N \end{bmatrix} \\
&= \phi + \alpha (c_s^T d_s + c_N^T d_N) \\
&= \phi + \alpha \left(\underbrace{c_s^T d_s + c_{\eta_\rho}}_{\text{reduced costs}} \right)\n\end{aligned}
$$

where $d_N = e_p$, ie, only pth nonbasic variable η_p moves

Reduced costs

reduced cost for **any** variable x_j , $j = 1, \ldots, n$:

$$
z_j := c_j + c_s^T d_s = c_j - c_s^T B^{-1} a_j
$$

reduced costs for **basic variable** x_j , $j \in \mathcal{B}$:

$$
z_j = c_j - c_s^T B^{-1} a_j
$$

= $c_j - c_s^T e_j$ $(B^{-1}B = I \implies B^{-1} a_j = e_j \text{ if } j \in B)$
= $c_j - c_j$
= 0

thus, only nonbasic variables need to be considered

note: if $z > 0$, then all feasible directions increase the objective

theorem: consider a BFS x with a reduced cost z.

- if $z > 0$ then x is optimal
- if x is optimal and nondegenerate then $z > 0$

Choosing a steplength

change in objective value from moving pth nonbasic variable $\eta_p \in \mathcal{N}$:

$$
\bar{\phi} = \phi + \alpha z_{\eta_{\rho}}
$$

 z_{n_0} < 0, so choose $\alpha > 0$ as large as possible:

$$
\alpha^* = \max\{\alpha \ge 0 \mid x + \alpha d \ge 0\}
$$

case 1: if $d > 0$, then it is an unbounded feasible direction of descent, ie,

$$
x + \alpha d \ge 0 \quad \text{for all} \quad \alpha \ge 0
$$

case 2: if $d_i < 0$ for some j, then $x + \alpha d \ge 0$ only if

$$
\alpha \leq -x_j/d_j \quad \text{for every} \quad d_j < 0
$$

ratio test:

$$
\alpha^* = \min_{\{j \in \mathcal{B} | d_j < 0\}} -\frac{x_j}{d_j}
$$

 $\ddot{}$

Basis change

case 1: no "blocking" basic variable. Therefore d is a direction of unbounded descent

case 2: the first basic variable to "hit" a bound is "blocking"

variable swap:

- entering nonbasic variable $\eta_p \in \mathcal{N}$ becomes basic $(x_{n_p} \to +)$
- blocking basic variable $\beta_{q} \in \mathcal{B}$ becomes nonbasic $(x_{\beta_{q}} \to 0)$

new basic and nonbasic variables

- $\overline{\mathcal{B}} \leftarrow \mathcal{B} \setminus \{ \beta_a \} \cup \{ \eta_n \}$
- $\bar{\mathcal{N}} \leftarrow \mathcal{N} \setminus \{ \eta_{p} \} \cup \{ \beta_{q} \}$

A new basis

the new set of columns define a basic feasible solution: the new basis matrix

$$
\bar{B}=[a_{\beta_1} \ a_{\beta_2} \ \cdots \ a_{\eta_p} \ \cdots \ a_{\beta_m}] \quad \text{with} \quad \eta_p \in \mathcal{N}
$$

has rank m. Note that

$$
I = B^{-1}B = B^{-1} \begin{bmatrix} a_{\beta_1} & a_{\beta_2} & \cdots & a_{\beta_q} & \cdots & a_{\beta_m} \end{bmatrix}
$$

= $\begin{bmatrix} e_1 & e_2 & \cdots & e_q & \cdots & e_m \end{bmatrix}$

thus,

$$
B^{-1}\overline{B} = B^{-1} \begin{bmatrix} a_{\beta_1} & a_{\beta_2} & \cdots & a_{\eta_p} & \cdots & a_{\beta_m} \end{bmatrix}
$$

\n
$$
= \begin{bmatrix} e_1 & e_2 & \cdots & B^{-1}a_{\eta_p} & \cdots & e_m \end{bmatrix}
$$

\n
$$
= \begin{bmatrix} 1 & d_{\beta_1} & & & \\ & 1 & d_{\beta_2} & & \\ & & \ddots & \vdots & \\ & & & d_{\beta_q} & \\ & & & & \vdots & \\ & & & & d_{\beta_m} & \\ & & & & & 1 \end{bmatrix}
$$
 with $d_{\beta_q} < 0$

Simplex without B^{-1}

search direction: maintain $Ax = b$ and $A(x + \alpha d) = b$ for all $\alpha \ge 0$

$$
Ad = 0 \quad \Longrightarrow \quad [B \quad N] \begin{bmatrix} d_B \\ d_N \end{bmatrix} = 0 \quad \Longrightarrow \quad Bd_B = -Nd_N
$$

effect on objective: need to choose a "good" d_N . Solve

$$
B^T y = c_B \qquad \text{and} \qquad z := c - A^T y
$$

for some $\alpha \geq 0$,

$$
\overline{\phi} = c^{\mathsf{T}}(x + \alpha d) = c^{\mathsf{T}}x + \alpha c^{\mathsf{T}}d = \phi + \alpha \begin{bmatrix} c_s^{\mathsf{T}} & c_s^{\mathsf{T}} \end{bmatrix} \begin{bmatrix} d_s \\ d_N \end{bmatrix}
$$
\n
$$
= \phi + \alpha (c_s^{\mathsf{T}}d_s + c_N^{\mathsf{T}}d_N)
$$
\n
$$
= \phi + \alpha (y^{\mathsf{T}}Bd_s + c_N^{\mathsf{T}}d_N)
$$
\n
$$
= \phi + \alpha (-y^{\mathsf{T}}Nd_N + c_N^{\mathsf{T}}d_N)
$$
\n
$$
= \phi + \alpha (c_N - N^{\mathsf{T}}y)^{\mathsf{T}}d_N
$$
\n
$$
= \phi + \alpha z_N^{\mathsf{T}}d_N
$$

pricing: only one nonbasic η_p moves, implying

$$
d_N = e_p
$$
, $Bd_B = -a_{\eta_p}$, $\overline{\phi} = \phi + \alpha z_{\eta_p}$

choose p so that $z_{\eta_p} < 0$ (eg, most negative). nonbasic η_p enters basis

optimality: no improving direction exists if for each $j = 1, \ldots, n$

$$
x_j = 0 \t and \t z_j \ge 0
$$

$$
x_j \ge 0 \t and \t z_j = 0 \t (must hold for basics)
$$

ratio test: basic variable β_q exits basis

$$
q = \underset{q | d_{\beta_q} < 0}{\arg \min} -\frac{x_{\beta_q}}{d_{\beta_q}},
$$

new basic and nonbasic variables

- $\mathcal{B} \leftarrow \mathcal{B} \setminus \{ \beta_a \} \cup \{ \eta_p \}$
- $\mathcal{N} \leftarrow \mathcal{N} \setminus \{ \eta_{p} \} \cup \{ \beta_{q} \}$

$$
A = \begin{bmatrix} -2 & 1 & 1 & 0 & 0 \\ -1 & 2 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 & 1 \end{bmatrix}, \quad b = \begin{bmatrix} 2 \\ 7 \\ 3 \end{bmatrix}, \quad c = \begin{bmatrix} -1 \\ -2 \\ 0 \\ 0 \\ 0 \end{bmatrix}
$$

iteration 0: $B = \{ 3, 4, 5 \}, \quad \mathcal{N} = \{ 1, 2 \}$ iteration 1:

• $B = I = B^{-1}$

$$
A = \begin{bmatrix} -2 & 1 & 1 & 0 & 0 \\ -1 & 2 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 & 1 \end{bmatrix}, \quad b = \begin{bmatrix} 2 \\ 7 \\ 3 \end{bmatrix}, \quad c = \begin{bmatrix} -1 \\ -2 \\ 0 \\ 0 \\ 0 \end{bmatrix}
$$

iteration 0: $B = \{3, 4, 5\}$, $\mathcal{N} = \{1, 2\}$ iteration 1:

- $B = I = B^{-1}$
- current itn: $Bx_B = b \longrightarrow x_B = (2, 7, 3)$

$$
A = \begin{bmatrix} -2 & 1 & 1 & 0 & 0 \\ -1 & 2 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 & 1 \end{bmatrix}, \quad b = \begin{bmatrix} 2 \\ 7 \\ 3 \end{bmatrix}, \quad c = \begin{bmatrix} -1 \\ -2 \\ 0 \\ 0 \\ 0 \end{bmatrix}
$$

iteration 0: $B = \{ 3, 4, 5 \}$, $\mathcal{N} = \{ 1, 2 \}$ iteration 1:

- $B = I = B^{-1}$
- current itn: $Bx_B = b \longrightarrow x_B = (2, 7, 3)$
- \bullet simplex multipliers: $B^{\mathsf{T}}y = c_{\scriptscriptstyle \mathsf{B}} \quad \longrightarrow \quad y = 0$

$$
A = \begin{bmatrix} -2 & 1 & 1 & 0 & 0 \\ -1 & 2 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 & 1 \end{bmatrix}, \quad b = \begin{bmatrix} 2 \\ 7 \\ 3 \end{bmatrix}, \quad c = \begin{bmatrix} -1 \\ -2 \\ 0 \\ 0 \\ 0 \end{bmatrix}
$$

iteration 0: $B = \{ 3, 4, 5 \}$, $\mathcal{N} = \{ 1, 2 \}$ iteration 1:

- $B = I = B^{-1}$
- current itn: $Bx_B = b \longrightarrow x_B = (2, 7, 3)$
- \bullet simplex multipliers: $B^{\mathsf{T}}y = c_{\scriptscriptstyle \mathsf{B}} \quad \longrightarrow \quad y = 0$
- reduced costs: $z_N = c_N N^T y \quad \longrightarrow \quad z_N = (-1, -2)$

$$
A = \begin{bmatrix} -2 & 1 & 1 & 0 & 0 \\ -1 & 2 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 & 1 \end{bmatrix}, \quad b = \begin{bmatrix} 2 \\ 7 \\ 3 \end{bmatrix}, \quad c = \begin{bmatrix} -1 \\ -2 \\ 0 \\ 0 \\ 0 \end{bmatrix}
$$

iteration 0: $\mathcal{B} = \{3, 4, 5\}$, $\mathcal{N} = \{1, 2\}$ iteration 1:

- $B = I = B^{-1}$
- current itn: $Bx_B = b \longrightarrow x_B = (2, 7, 3)$
- \bullet simplex multipliers: $B^{\mathsf{T}}y = c_{\scriptscriptstyle \mathsf{B}} \quad \longrightarrow \quad y = 0$
- reduced costs: $z_N = c_N N^T y \quad \longrightarrow \quad z_N = (-1, -2)$
- choose $\eta_2 = 2$ to enter basis

$$
A = \begin{bmatrix} -2 & 1 & 1 & 0 & 0 \\ -1 & 2 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 & 1 \end{bmatrix}, \quad b = \begin{bmatrix} 2 \\ 7 \\ 3 \end{bmatrix}, \quad c = \begin{bmatrix} -1 \\ -2 \\ 0 \\ 0 \\ 0 \end{bmatrix}
$$

iteration 0: $\mathcal{B} = \{3, 4, 5\}$, $\mathcal{N} = \{1, 2\}$ iteration 1:

- $B = I = B^{-1}$
- current itn: $Bx_B = b \longrightarrow x_B = (2, 7, 3)$
- \bullet simplex multipliers: $B^{\mathsf{T}}y = c_{\scriptscriptstyle \mathsf{B}} \quad \longrightarrow \quad y = 0$
- reduced costs: $z_N = c_N N^T y \quad \longrightarrow \quad z_N = (-1, -2)$
- choose $\eta_2 = 2$ to enter basis
- search dir: $Bd_B = -a_2 \longrightarrow d_B = (-1, -2, 0)$

$$
A = \begin{bmatrix} -2 & 1 & 1 & 0 & 0 \\ -1 & 2 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 & 1 \end{bmatrix}, \quad b = \begin{bmatrix} 2 \\ 7 \\ 3 \end{bmatrix}, \quad c = \begin{bmatrix} -1 \\ -2 \\ 0 \\ 0 \\ 0 \end{bmatrix}
$$

iteration 0: $\mathcal{B} = \{3, 4, 5\}$, $\mathcal{N} = \{1, 2\}$ iteration 1:

- $B = I = B^{-1}$
- current itn: $Bx_B = b \longrightarrow x_B = (2, 7, 3)$
- \bullet simplex multipliers: $B^{\mathsf{T}}y = c_{\scriptscriptstyle \mathsf{B}} \quad \longrightarrow \quad y = 0$
- reduced costs: $z_N = c_N N^T y \quad \longrightarrow \quad z_N = (-1, -2)$
- choose $\eta_2 = 2$ to enter basis
- search dir: $Bd_B = -a_2 \longrightarrow d_B = (-1, -2, 0)$
- ratio test: $q = \arg \min$ $q|d_{\beta q}$ $<$ 0 $-\frac{X_{\beta_q}}{I}$ $\frac{d\beta_{q}}{d\beta_{q}} \longrightarrow q = 1, \; \beta_{q} = 3$ exits basis

$$
A = \begin{bmatrix} -2 & 1 & 1 & 0 & 0 \\ -1 & 2 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 & 1 \end{bmatrix}, \quad b = \begin{bmatrix} 2 \\ 7 \\ 3 \end{bmatrix}, \quad c = \begin{bmatrix} -1 \\ -2 \\ 0 \\ 0 \\ 0 \end{bmatrix}
$$

iteration 0: $\mathcal{B} = \{3, 4, 5\}$, $\mathcal{N} = \{1, 2\}$ iteration 1:

- $B = I = B^{-1}$
- current itn: $Bx_B = b \longrightarrow x_B = (2, 7, 3)$
- \bullet simplex multipliers: $B^{\mathsf{T}}y = c_{\scriptscriptstyle \mathsf{B}} \quad \longrightarrow \quad y = 0$
- reduced costs: $z_N = c_N N^T y \quad \longrightarrow \quad z_N = (-1, -2)$
- choose $\eta_2 = 2$ to enter basis
- search dir: $Bd_B = -a_2 \longrightarrow d_B = (-1, -2, 0)$
- ratio test: $q = \arg \min$ $q|d_{\beta q}$ $<$ 0 $-\frac{X_{\beta_q}}{I}$ $\frac{d\beta_{q}}{d\beta_{q}} \longrightarrow q = 1, \; \beta_{q} = 3$ exits basis

• new basis: $B = \{2, 4, 5\}$, $\mathcal{N} = \{1, 3\}$

• current basis: $B = \{ 2, 4, 5 \}$, $\mathcal{N} = \{ 1, 3 \}$

• current basis:
$$
B = \{2, 4, 5\}
$$
, $\mathcal{N} = \{1, 3\}$
\n• $B = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$, $B^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$

• current basis:
$$
B = \{2, 4, 5\}
$$
, $\mathcal{N} = \{1, 3\}$
\n• $B = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$, $B^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$

- current basis: $B = \{2, 4, 5\}$, $\mathcal{N} = \{1, 3\}$ • $B =$ $\sqrt{ }$ $\overline{1}$ 1 0 0 2 1 0 0 0 1 1 $\Big\vert \, , \quad B^{-1} =$ $\sqrt{ }$ $\overline{1}$ 1 0 0 −2 1 0 0 0 1 1 $\overline{1}$
- current itn: $Bx_B = b \longrightarrow x_B = (2, 3, 3)$
- simplex multipliers: $B^{T}y = c_{B} \quad \longrightarrow \quad y = (-2,0,0)$

- current basis: $B = \{2, 4, 5\}$, $\mathcal{N} = \{1, 3\}$ • $B =$ $\sqrt{ }$ $\overline{1}$ 1 0 0 2 1 0 0 0 1 1 $\Big\vert \, , \quad B^{-1} =$ $\sqrt{ }$ $\overline{1}$ 1 0 0 −2 1 0 0 0 1 1 $\overline{1}$
- current itn: $Bx_B = b \longrightarrow x_B = (2, 3, 3)$
- simplex multipliers: $B^{T}y = c_{B} \quad \longrightarrow \quad y = (-2,0,0)$
- reduced costs: $z_N = c_N N^T y \quad \longrightarrow \quad z_N = (-5, 2)$

- current basis: $B = \{2, 4, 5\}, \quad \mathcal{N} = \{1, 3\}$ • $B =$ $\sqrt{ }$ $\overline{1}$ 1 0 0 2 1 0 0 0 1 1 $\Big\vert \, , \quad B^{-1} =$ $\sqrt{ }$ $\overline{1}$ 1 0 0 −2 1 0 0 0 1 1 $\overline{1}$
- current itn: $Bx_B = b \longrightarrow x_B = (2, 3, 3)$
- simplex multipliers: $B^{T}y = c_{B} \quad \longrightarrow \quad y = (-2,0,0)$
- reduced costs: $z_N = c_N N^T y \quad \longrightarrow \quad z_N = (-5, 2)$
- choose $\eta_1 = 1$ to enter basis

- current basis: $B = \{2, 4, 5\}$, $\mathcal{N} = \{1, 3\}$ • $B =$ $\sqrt{ }$ $\overline{1}$ 1 0 0 2 1 0 0 0 1 1 $\Big\vert \, , \quad B^{-1} =$ $\sqrt{ }$ $\overline{1}$ 1 0 0 −2 1 0 0 0 1 1 $\overline{1}$
- current itn: $Bx_B = b \longrightarrow x_B = (2, 3, 3)$
- simplex multipliers: $B^{T}y = c_{B} \quad \longrightarrow \quad y = (-2,0,0)$
- reduced costs: $z_N = c_N N^T y \quad \longrightarrow \quad z_N = (-5, 2)$
- choose $\eta_1 = 1$ to enter basis
- search dir: $Bd_B = -a_1 \longrightarrow d_B = (2, -3, 1)$

- current basis: $B = \{2, 4, 5\}$, $\mathcal{N} = \{1, 3\}$ • $B =$ $\sqrt{ }$ $\overline{1}$ 1 0 0 2 1 0 0 0 1 1 $\Big\vert \, , \quad B^{-1} =$ $\sqrt{ }$ $\overline{1}$ 1 0 0 −2 1 0 0 0 1 1 $\overline{1}$
- current itn: $Bx_B = b \longrightarrow x_B = (2, 3, 3)$
- simplex multipliers: $B^{T}y = c_{B} \quad \longrightarrow \quad y = (-2,0,0)$
- reduced costs: $z_N = c_N N^T y \quad \longrightarrow \quad z_N = (-5, 2)$
- choose $\eta_1 = 1$ to enter basis
- search dir: $Bd_B = -a_1 \longrightarrow d_B = (2, -3, 1)$
- ratio test: $q =$ arg min $q \in \{ 1,...,m \} | d_{\beta q} < 0$ $-\frac{X_{\beta_q}}{I}$ $\frac{d^{2} \beta q}{d \beta_q}$ \longrightarrow $q = 2, \ \beta_q = 4$ exits basis

- current basis: $B = \{2, 4, 5\}, \quad \mathcal{N} = \{1, 3\}$ • $B =$ $\sqrt{ }$ $\overline{1}$ 1 0 0 2 1 0 0 0 1 1 $\Big\vert \, , \quad B^{-1} =$ $\sqrt{ }$ $\overline{1}$ 1 0 0 −2 1 0 0 0 1 1 $\overline{1}$
- current itn: $Bx_B = b \longrightarrow x_B = (2, 3, 3)$
- simplex multipliers: $B^{T}y = c_{B} \quad \longrightarrow \quad y = (-2,0,0)$
- reduced costs: $z_N = c_N N^T y \quad \longrightarrow \quad z_N = (-5, 2)$
- choose $\eta_1 = 1$ to enter basis
- search dir: $Bd_B = -a_1 \longrightarrow d_B = (2, -3, 1)$
- ratio test: $q =$ arg min $q \in \{ 1,...,m \} | d_{\beta q} < 0$ $-\frac{X_{\beta_q}}{I}$ $\frac{d^{2} \beta q}{d \beta_q}$ \longrightarrow $q = 2, \ \beta_q = 4$ exits basis

• new basis: $B = \{2, 1, 5\}$, $\mathcal{N} = \{4, 3\}$

• current basis: $B = \{ 2, 1, 5 \}$, $\mathcal{N} = \{ 4, 3 \}$

• current basis:
$$
B = \{2, 1, 5\}
$$
, $\mathcal{N} = \{4, 3\}$
\n• $B = \begin{bmatrix} 1 & -2 & 0 \\ 2 & -1 & 0 \\ 0 & 1 & 1 \end{bmatrix}$, $B^{-1} = (1/3) \begin{bmatrix} -1 & 2 & 0 \\ -2 & 1 & 0 \\ 2 & -1 & 3 \end{bmatrix}$

• current basis: $B = \{ 2, 1, 5 \}, \quad N = \{ 4, 3 \}$ • $B =$ $\sqrt{ }$ $\overline{1}$ $1 -2 0$ 2 −1 0 0 1 1 1 |, $B^{-1} = (1/3)$ $\sqrt{ }$ $\overline{1}$ −1 2 0 -2 1 0 2 −1 3 1 $\overline{1}$

- current basis: $B = \{2, 1, 5\}$, $N = \{4, 3\}$
- $B =$ $\sqrt{ }$ $\overline{1}$ $1 -2 0$ 2 −1 0 0 1 1 1 |, $B^{-1} = (1/3)$ $\sqrt{ }$ $\overline{1}$ −1 2 0 -2 1 0 2 −1 3 1 $\overline{1}$
- current itn: $Bx_B = b \longrightarrow x_B = (4, 1, 2)$
- simplex multipliers: $B^{T}y = c_{B} \quad \longrightarrow \quad y = (4/3, -5/3, 0)$

- current basis: $B = \{2, 1, 5\}$, $N = \{4, 3\}$
- $B =$ $\sqrt{ }$ $\overline{1}$ $1 -2 0$ 2 −1 0 0 1 1 1 |, $B^{-1} = (1/3)$ $\sqrt{ }$ $\overline{1}$ −1 2 0 -2 1 0 2 −1 3 1 $\overline{1}$
- current itn: $Bx_B = b \longrightarrow x_B = (4, 1, 2)$
- simplex multipliers: $B^{T}y = c_{B} \quad \longrightarrow \quad y = (4/3, -5/3, 0)$
- reduced costs: $z_{\scriptscriptstyle N} = c_{\scriptscriptstyle N} N^T y \quad \longrightarrow \quad z_{\scriptscriptstyle N} = (5/3, -4/3)$

- current basis: $B = \{2, 1, 5\}$, $N = \{4, 3\}$
- $B =$ $\sqrt{ }$ $\overline{1}$ $1 -2 0$ 2 −1 0 0 1 1 1 |, $B^{-1} = (1/3)$ $\sqrt{ }$ $\overline{1}$ −1 2 0 -2 1 0 2 −1 3 1 $\overline{1}$
- current itn: $Bx_B = b \longrightarrow x_B = (4, 1, 2)$
- simplex multipliers: $B^{T}y = c_{B} \quad \longrightarrow \quad y = (4/3, -5/3, 0)$
- reduced costs: $z_{\scriptscriptstyle N} = c_{\scriptscriptstyle N} N^T y \quad \longrightarrow \quad z_{\scriptscriptstyle N} = (5/3, -4/3)$
- choose $\eta_2 = 3$ to enter basis

- current basis: $B = \{2, 1, 5\}$, $\mathcal{N} = \{4, 3\}$ $\sqrt{ }$ 1 $\sqrt{ }$
- $B =$ $\overline{1}$ $1 -2 0$ 2 −1 0 0 1 1 |, $B^{-1} = (1/3)$ $\overline{1}$ −1 2 0 -2 1 0 2 −1 3 1 $\overline{1}$

- simplex multipliers: $B^{T}y = c_{B} \quad \longrightarrow \quad y = (4/3, -5/3, 0)$
- reduced costs: $z_{\scriptscriptstyle N} = c_{\scriptscriptstyle N} N^T y \quad \longrightarrow \quad z_{\scriptscriptstyle N} = (5/3, -4/3)$
- choose $\eta_2 = 3$ to enter basis
- search dir: $Bd_B = -a_3 \longrightarrow d_B = (1/3, 2/3, -2/3)$

- current basis: $B = \{2, 1, 5\}$, $\mathcal{N} = \{4, 3\}$
- $B =$ $\sqrt{ }$ $\overline{1}$ $1 -2 0$ 2 −1 0 0 1 1 1 |, $B^{-1} = (1/3)$ $\sqrt{ }$ $\overline{1}$ −1 2 0 -2 1 0 2 −1 3 1 $\overline{1}$

- simplex multipliers: $B^{T}y = c_{B} \quad \longrightarrow \quad y = (4/3, -5/3, 0)$
- reduced costs: $z_{\scriptscriptstyle N} = c_{\scriptscriptstyle N} N^T y \quad \longrightarrow \quad z_{\scriptscriptstyle N} = (5/3, -4/3)$
- choose $\eta_2 = 3$ to enter basis
- search dir: $Bd_B = -a_3 \longrightarrow d_B = (1/3, 2/3, -2/3)$
- ratio test: only candidate basic variable is $q = 3$, $\beta_q = 5$ exits basis

- current basis: $B = \{2, 1, 5\}$, $\mathcal{N} = \{4, 3\}$
- $B =$ $\sqrt{ }$ $\overline{1}$ $1 -2 0$ 2 −1 0 0 1 1 1 |, $B^{-1} = (1/3)$ $\sqrt{ }$ $\overline{1}$ −1 2 0 -2 1 0 2 −1 3 1 $\overline{1}$

- simplex multipliers: $B^{T}y = c_{B} \quad \longrightarrow \quad y = (4/3, -5/3, 0)$
- reduced costs: $z_{\scriptscriptstyle N} = c_{\scriptscriptstyle N} N^T y \quad \longrightarrow \quad z_{\scriptscriptstyle N} = (5/3, -4/3)$
- choose $\eta_2 = 3$ to enter basis
- search dir: $Bd_B = -a_3 \longrightarrow d_B = (1/3, 2/3, -2/3)$
- ratio test: only candidate basic variable is $q = 3$, $\beta_q = 5$ exits basis
- new basis: $\mathcal{B} = \{2, 1, 3\}$, $\mathcal{N} = \{4, 5\}$

• current basis: $B = \{ 2, 1, 3 \}$, $\mathcal{N} = \{ 4, 5 \}$

\n- current basis:
$$
\mathcal{B} = \{2, 1, 3\}
$$
, $\mathcal{N} = \{4, 5\}$
\n- $\mathcal{B} = \begin{bmatrix} 1 & -2 & 1 \\ 2 & -1 & 0 \\ 0 & 1 & 0 \end{bmatrix}$, $\mathcal{B}^{-1} = \begin{bmatrix} 0 & 1/2 & 1/2 \\ 0 & 0 & 1 \\ 1 & -1/2 & 3/2 \end{bmatrix}$
\n

\n- current basis:
$$
\mathcal{B} = \{2, 1, 3\}
$$
, $\mathcal{N} = \{4, 5\}$
\n- $\mathcal{B} = \begin{bmatrix} 1 & -2 & 1 \\ 2 & -1 & 0 \\ 0 & 1 & 0 \end{bmatrix}$, $\mathcal{B}^{-1} = \begin{bmatrix} 0 & 1/2 & 1/2 \\ 0 & 0 & 1 \\ 1 & -1/2 & 3/2 \end{bmatrix}$
\n- current it: $\mathcal{B} \times \mathcal{B} = \mathcal{B} \implies \mathcal{B} = (4, 1, 2)$
\n

• current itn:
$$
Bx_B = b \longrightarrow x_B = (4, 1, 2)
$$

- current basis: $B = \{2, 1, 3\}$, $\mathcal{N} = \{4, 5\}$ • $B =$ $\sqrt{ }$ $\overline{1}$ $1 -2 1$ 2 −1 0 0 1 0 1 $\Big\vert \, , \quad B^{-1} =$ $\sqrt{ }$ $\overline{1}$ 0 $1/2$ $1/2$ 0 0 1 $1 -1/2$ 3/2 1 $\overline{1}$
- current itn: $Bx_B = b \longrightarrow x_B = (4, 1, 2)$
- simplex multipliers: $B^{T}y = c_{B} \quad \longrightarrow \quad y = (0, -1, -2)$

- current basis: $B = \{2, 1, 3\}$, $\mathcal{N} = \{4, 5\}$ • $B =$ $\sqrt{ }$ $\overline{1}$ $1 -2 1$ 2 −1 0 0 1 0 1 $\Big\vert \, , \quad B^{-1} =$ $\sqrt{ }$ $\overline{1}$ 0 $1/2$ $1/2$ 0 0 1 $1 -1/2$ 3/2 1 $\overline{1}$
- current itn: $Bx_B = b \longrightarrow x_B = (4, 1, 2)$
- simplex multipliers: $B^{T}y = c_{B} \quad \longrightarrow \quad y = (0, -1, -2)$
- reduced costs: $z_N = c_N N^Ty$ $\;\longrightarrow\;\; z_N = (1,2)$

- current basis: $B = \{2, 1, 3\}$, $\mathcal{N} = \{4, 5\}$ • $B =$ $\sqrt{ }$ $\overline{1}$ $1 -2 1$ 2 −1 0 0 1 0 1 $\Big\vert \, , \quad B^{-1} =$ $\sqrt{ }$ $\overline{1}$ 0 $1/2$ $1/2$ 0 0 1 $1 -1/2$ 3/2 1 $\overline{1}$
- current itn: $Bx_B = b \longrightarrow x_B = (4, 1, 2)$
- simplex multipliers: $B^{T}y = c_{B} \quad \longrightarrow \quad y = (0, -1, -2)$
- reduced costs: $z_N = c_N N^Ty$ $\;\longrightarrow\;\; z_N = (1,2)$
- $z_N > 0 \longrightarrow$ basis is optimal