using JuMP, Ipopt
model = Model(Ipopt.Optimizer)
set_silent(model)
@variable(model, x>=0)
@variable(model, y>=0)
@objective(model, Min, (1 - x)^2 + 100 * (y - x^2)^2)
optimize!(model)
solution_summary(model)
******************************************************************************
This program contains Ipopt, a library for large-scale nonlinear optimization.
Ipopt is released as open source code under the Eclipse Public License (EPL).
For more information visit https://github.com/coin-or/Ipopt
******************************************************************************
* Solver : Ipopt
* Status
Result count : 1
Termination status : LOCALLY_SOLVED
Message from the solver:
"Solve_Succeeded"
* Candidate solution (result #1)
Primal status : FEASIBLE_POINT
Dual status : FEASIBLE_POINT
Objective value : 2.44348e-21
Dual objective value : 0.00000e+00
* Work counters
Solve time (sec) : 1.09451e-02
Barrier iterations : 16