CPSC 406 – Computational Optimization
\[ \def\argmin{\operatorname*{argmin}} \def\Ball{\mathbf{B}} \def\bmat#1{\begin{bmatrix}#1\end{bmatrix}} \def\Diag{\mathbf{Diag}} \def\half{\tfrac12} \def\int{\mathop{\rm int}} \def\ip#1{\langle #1 \rangle} \def\maxim{\mathop{\hbox{\rm maximize}}} \def\maximize#1{\displaystyle\maxim_{#1}} \def\minim{\mathop{\hbox{\rm minimize}}} \def\minimize#1{\displaystyle\minim_{#1}} \def\norm#1{\|#1\|} \def\Null{{\mathbf{null}}} \def\proj{\mathbf{proj}} \def\R{\mathbb R} \def\Re{\mathbb R} \def\Rn{\R^n} \def\rank{\mathbf{rank}} \def\range{{\mathbf{range}}} \def\sign{{\mathbf{sign}}} \def\span{{\mathbf{span}}} \def\st{\hbox{\rm subject to}} \def\T{^\intercal} \def\textt#1{\quad\text{#1}\quad} \def\trace{\mathbf{trace}} \]
\[ f(\theta x + (1-\theta)y) \le \theta f(x) + (1-\theta)f(y) \]
\[ f(\theta x + (1-\theta)y) < \theta f(x) + (1-\theta)f(y) \]
\(f:\Rn\to\R\) is convex if and only if \[ \phi(\alpha) = f(x+\alpha d) \] is convex over \(\alpha\in\R\) for all points \(x\) and directions \(d\)
Example. Quadratic functions \[ f(x)=\half x^TAx+b^Tx+\gamma \] are convex if and only if \(A\succeq 0\)
\[ \alpha f \quad\text{is convex if}\quad f\quad\text{is convex and}\quad \alpha\ge 0 \]
\[ f_1+f_2 \quad\text{is convex if}\quad f_1,f_2\quad\text{are convex} \]
\[ f(Ax+b) \quad\text{is convex if}\quad f\quad\text{is convex} \]
Examples
When is \(f(x) = x^\alpha\) convex over \(x\ge0\)?
Prove that the log-sum-exp function
\[ f(x) = \log\left(\sum_{i=1}^m e^{a_i^Tx}\right) \]
is convex over \(\Rn\).
\[ \min_{x\in\mathcal{C}}\ f(x), \quad \text{$\mathcal{C}\subset\Rn$ convex},\quad\text{$f:\mathcal{C}\to\R$ convex} \]
If \(x^*\) is a local minimizer, it’s also a global minimizer, ie,
\[ f(x^*)\le f(x)\ \forall x\in\mathcal{C}\cap\epsilon𝔹(x^*) \quad\Longrightarrow\quad f(x^*)\le f(x)\ \forall x\in\mathcal{C} \]
Suppose \(\bar x\) is a local but not global minimizer. Then,
\[ \begin{aligned} f(\theta \bar x + (1-\theta)y) &\le \theta f(\bar x) + (1-\theta)f(y) & \text{(convexity)} \\ &= \theta f(\bar x) + (1-\theta)f(\bar x) & \text{(hypothesis)} \\ &= f(\bar x), \end{aligned} \]
The level set of \(f:\Rn\to\R\) at level \(α\in\R\)
\[ [f\le\alpha] := \set{x\in\Rn\mid f(x)\le\alpha} \]
\[ f(\theta x + (1-\theta)y) \le \theta f(x) + (1-\theta)f(y) \le \theta\alpha + (1-\theta)\alpha = \alpha \]
\[ f(y) \ge f(x) + \nabla f(x)^T(y-x) \quad \forall x,y\in\mathcal{C} \]
\[ \nabla^2f(x)\succeq 0 \quad \forall x\in\mathcal{C} \]
\[ f(x) = x^\alpha \quad\text{over}\quad x\in\Re_+ \] Over what values of \(\alpha\) is \(f\)