CPSC 406 – Computational Optimization
\[ \def\argmin{\operatorname*{argmin}} \def\Ball{\mathbf{B}} \def\bmat#1{\begin{bmatrix}#1\end{bmatrix}} \def\Diag{\mathbf{Diag}} \def\half{\tfrac12} \def\ip#1{\langle #1 \rangle} \def\maxim{\mathop{\hbox{\rm maximize}}} \def\maximize#1{\displaystyle\maxim_{#1}} \def\minim{\mathop{\hbox{\rm minimize}}} \def\minimize#1{\displaystyle\minim_{#1}} \def\norm#1{\|#1\|} \def\Null{{\mathbf{null}}} \def\proj{\mathbf{proj}} \def\R{\mathbb R} \def\Rn{\R^n} \def\rank{\mathbf{rank}} \def\range{{\mathbf{range}}} \def\span{{\mathbf{span}}} \def\st{\hbox{\rm subject to}} \def\T{^\intercal} \def\textt#1{\quad\text{#1}\quad} \def\trace{\mathbf{trace}} \]
\[ \min_{x \in \Rn}\ \{\ f(x) \mid Ax=b\ \} \]
\[ \mathcal{F} = \{x \in \Rn \mid Ax=b\} = \{\bar x + Zp \mid p \in \R^{n-m}\} \]
\(\bar x\) is a particular solution, ie, \(A\bar x = b\)
\(Z\) is a basis for the null space of \(A\), ie, \(AZ=0\)
reduced problem is unconstrained in \(n-m\) variables
\[ \min_{p \in \R^{n-m}}\ f(\bar x + Zp) \]
\[ \min_{x \in \R^2}\ \Set{ \half(x_1^2 + x_2^2) \mid x_1 + x_2 = 1 } \]
\[ \begin{aligned} f_Z(p) &= f(\bar x + Zp) \\[10pt] \nabla f_Z(p) &= Z^T \nabla f(\bar x + Zp) \quad \text{(reduced gradient)} \end{aligned} \]
\[ \nabla f_Z(p^*) = 0 \quad\Longleftrightarrow\quad Z^T \nabla f(x^*) = 0 \quad\Longleftrightarrow\quad \nabla f(x^*) \in \Null(Z^T) \]
\[ \Null(A) \equiv \range(Z) \quad\Longleftrightarrow\quad \Null(Z^T) \equiv \range(A^T) \]
A point \(x^*\) is a local minimizer of the linearly-constrained problem only if
\[ \begin{aligned} \exists\ y\in\R^m \text{ st } \nabla f(x^*) &= A^Ty & \text{[optimality]}\\[10pt] Ax^* &= b & \text{[feasibility]} \end{aligned} \]
\[ Z^T\nabla f(x^*) = 0 \quad\Longleftrightarrow\quad \nabla f(x^*)\T p = 0 \quad \forall p \in \Null(A) \]
\[ \nabla f(x^*) = A^Ty = \sum_{i=1}^m y_i a_i \]
\[ f_Z(p) := f(\bar x + Zp) \qquad \nabla f_Z(p) := Z^T \nabla f(\bar x + Zp) \qquad \nabla^2 f_Z(p) := Z^T \nabla^2 f(\bar x + Zp) Z \]
Necessary 2nd-order optimality: \(x^*\) is a local minimizer only if
\[ \left.\begin{aligned} Ax^* &= b \\ Z^T\nabla f(x^*) &= 0 \\ Z^T\nabla^2 f(x^*)Z &\succeq 0 \end{aligned} \quad\right\} \quad\Longleftrightarrow\quad \left\{ \quad \begin{aligned} Ax^* &= b \\ \nabla f(x^*)&=A^Ty &\text{ for some } y \\ p^T\nabla^2 f_Z(p^*)p &\ge 0 \quad \forall p \in\Null(A) \end{aligned} \right. \]
Necessary and sufficient 2nd-order optimality: \(x^*\) is a local minimizer if and only if
\[ \left.\begin{aligned} Ax^* &= b \\ Z^T\nabla f(x^*) &= 0 \\ Z^T\nabla^2 f(x^*)Z &\succ 0 \end{aligned} \quad\right\} \quad\Longleftrightarrow\quad \left\{ \quad \begin{aligned} Ax^* &= b \\ \nabla f(x^*)&=A^Ty &\text{ for some } y \\ p^T\nabla^2 f_Z(p^*)p &> 0 \quad \forall 0\ne p \in\Null(A) \end{aligned} \right. \]
\[ \min_{x \in \Rn}\Set{\ \|x\| \mid Ax=b\ } \]
Take \(f(x) = \half\|x\|^2\) and apply first-order optimality conditions
\[ \left. \begin{aligned} x &= A^T y \quad\text{for some } y \\ Ax&=b \end{aligned} \right\} \quad\Longleftrightarrow\quad \begin{bmatrix} -I & A^T \\ A & 0 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0 \\ b \end{bmatrix} \]
A possible solution approach: - observe that multiplier \(y\) satisfies \[ AA^Ty = b \]
(could have proceeded directly to solution \(x\))
Find a minimimal norm solution to the linear system
\[ \sum_{i=1}^n \xi_i = 1 \]
If \(n=5\) and \(x=(\xi_1, \xi_2, \xi_3, \xi_4, \xi_5)\), which of the following is a minimal norm solution?
What are the lagrange multipliers for the minimum-norm problem
\[ \min_{x \in \Rn}\Set{\ \|x\|^2 \mid Ax=b\ } \] where \[ A = \begin{bmatrix} 1 &1& 1 \\ 1& 1& 0 \end{bmatrix} \quad\text{and}\quad b = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \]
\[ \min_{x \in \Rn}\ \Set{ f(x) \mid Ax=b } \]
\[ A = \begin{bmatrix} B & N \end{bmatrix} \quad\text{where}\quad B \quad\text{nonsingular} \]
feasibility requires \[ b = Ax = Bx_B + Nx_N \]
basic (\(x_B\)) and nonbasic (\(x_N\)) variables:
constructing a null-space matrix
\[ Z = \begin{bmatrix} -B^{-1}N \\ I \end{bmatrix} \quad\Longrightarrow\quad AZ = \begin{bmatrix} B & N \end{bmatrix}\begin{bmatrix} -B^{-1}N \\ I \end{bmatrix} = 0 \]