Linear Constraints

CPSC 406 – Computational Optimization

Linear constraints

  • underdetermined linear systems
  • reduced-gradient methods

Linearly-constrained optimization

\[ \min_{x \in \Rn}\ \{\ f(x) \mid Ax=b\ \} \]

  • \(f: \Rn \to \R\) is smooth function
  • \(A\) is \(m \times n\)\(b\) is an \(m\)-vector,  \(m < n\) (underdetermined)
  • assume throughout that \(A\) has full row rank
  • feasible set \[ \mathcal{F} = \{x \in \Rn \mid Ax=b\} \]

 

Eliminating constraints

  • equivalent representation of the feasible set

\[ \mathcal{F} = \{x \in \Rn \mid Ax=b\} = \{\bar x + Zp \mid p \in \R^{n-m}\} \]

  • \(\bar x\) is a particular solution, ie, \(A\bar x = b\)

  • \(Z\) is a basis for the null space of \(A\), ie, \(AZ=0\)

  • reduced problem is unconstrained in \(n-m\) variables

\[ \min_{p \in \R^{n-m}}\ f(\bar x + Zp) \]

  • apply any unconstrained optimization method to solve to obtain solution \(p^*\)
  • then a solution \(x^* = \bar x + Zp^*\) is the solution to the original problem

Example (in class)

\[ \min_{x \in \R^2}\ \Set{ \half(x_1^2 + x_2^2) \mid x_1 + x_2 = 1 } \]

Optimality conditions

  • define reduced objective for any particular solution \(\bar x\) and basis \(Z\)

\[ \begin{aligned} f_Z(p) &= f(\bar x + Zp) \\[10pt] \nabla f_Z(p) &= Z^T \nabla f(\bar x + Zp) \quad \text{(reduced gradient)} \end{aligned} \]

  • let \(p^*\) be a solution to the reduced problem and set \(x^* = \bar x + Zp^*\), but

\[ \nabla f_Z(p^*) = 0 \quad\Longleftrightarrow\quad Z^T \nabla f(x^*) = 0 \quad\Longleftrightarrow\quad \nabla f(x^*) \in \Null(Z^T) \]

  • funadamental subspaces of \(A\) and \(Z\) are orthogonal complements

\[ \Null(A) \equiv \range(Z) \quad\Longleftrightarrow\quad \Null(Z^T) \equiv \range(A^T) \]

  • thus, \[\nabla f(x^*) \in \Null(Z^T)\quad\Longleftrightarrow\quad\nabla f(x^*) \in \range(A^T) \quad\Longleftrightarrow\quad \exists y \text{ st } \nabla f(x^*) = A^Ty\]

First-order necessary conditions

A point \(x^*\) is a local minimizer of the linearly-constrained problem only if

\[ \begin{aligned} \exists\ y\in\R^m \text{ st } \nabla f(x^*) &= A^Ty & \text{[optimality]}\\[10pt] Ax^* &= b & \text{[feasibility]} \end{aligned} \]

  • optimality condition is equivalent to

\[ Z^T\nabla f(x^*) = 0 \quad\Longleftrightarrow\quad \nabla f(x^*)\T p = 0 \quad \forall p \in \Null(A) \]

  • the \(m\)-vector \(y\) contains the Lagrange multipliers

\[ \nabla f(x^*) = A^Ty = \sum_{i=1}^m y_i a_i \]

Second-order optimality

\[ f_Z(p) := f(\bar x + Zp) \qquad \nabla f_Z(p) := Z^T \nabla f(\bar x + Zp) \qquad \nabla^2 f_Z(p) := Z^T \nabla^2 f(\bar x + Zp) Z \]

Necessary 2nd-order optimality: \(x^*\) is a local minimizer only if

\[ \left.\begin{aligned} Ax^* &= b \\ Z^T\nabla f(x^*) &= 0 \\ Z^T\nabla^2 f(x^*)Z &\succeq 0 \end{aligned} \quad\right\} \quad\Longleftrightarrow\quad \left\{ \quad \begin{aligned} Ax^* &= b \\ \nabla f(x^*)&=A^Ty &\text{ for some } y \\ p^T\nabla^2 f_Z(p^*)p &\ge 0 \quad \forall p \in\Null(A) \end{aligned} \right. \]


Necessary and sufficient 2nd-order optimality: \(x^*\) is a local minimizer if and only if

\[ \left.\begin{aligned} Ax^* &= b \\ Z^T\nabla f(x^*) &= 0 \\ Z^T\nabla^2 f(x^*)Z &\succ 0 \end{aligned} \quad\right\} \quad\Longleftrightarrow\quad \left\{ \quad \begin{aligned} Ax^* &= b \\ \nabla f(x^*)&=A^Ty &\text{ for some } y \\ p^T\nabla^2 f_Z(p^*)p &> 0 \quad \forall 0\ne p \in\Null(A) \end{aligned} \right. \]

Example: Least norm solutions

\[ \min_{x \in \Rn}\Set{\ \|x\| \mid Ax=b\ } \]

Take \(f(x) = \half\|x\|^2\) and apply first-order optimality conditions

\[ \left. \begin{aligned} x &= A^T y \quad\text{for some } y \\ Ax&=b \end{aligned} \right\} \quad\Longleftrightarrow\quad \begin{bmatrix} -I & A^T \\ A & 0 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0 \\ b \end{bmatrix} \]

A possible solution approach: - observe that multiplier \(y\) satisfies \[ AA^Ty = b \]

  • factor \(A^T = QR\) (thin QR factorization)
  • multipliers: \(y = R^{-1}R^{-T}b\)
  • solution: \(x = A^Ty = (QR)(R^{-1}R^{-T}b) = QR^{-T}b\)

(could have proceeded directly to solution \(x\))

Question

Find a minimimal norm solution to the linear system

\[ \sum_{i=1}^n \xi_i = 1 \]

If \(n=5\) and \(x=(\xi_1, \xi_2, \xi_3, \xi_4, \xi_5)\), which of the following is a minimal norm solution?

  1. \(x = 1/5\cdot(1, 1, 1, 1, 1)\)
  2. \(x = 5\cdot (5, 5, 5, 5, 5)\)
  3. \(x = (1, 1, 1, 1, 1)\)
  4. \(x = (1, 2, 3, 4, 5)\)

Question

What are the lagrange multipliers for the minimum-norm problem

\[ \min_{x \in \Rn}\Set{\ \|x\|^2 \mid Ax=b\ } \] where \[ A = \begin{bmatrix} 1 &1& 1 \\ 1& 1& 0 \end{bmatrix} \quad\text{and}\quad b = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \]

Reduced gradient method

\[ \min_{x \in \Rn}\ \Set{ f(x) \mid Ax=b } \]

  • choose \(x^0\) and \(Z\) such that \(Ax^0=b\) and \(AZ=0\)
  • for \(k=0,1,2,\ldots\)
    • compute gradient \(g^k = \nabla f(x^k)\)
    • STOP if \(\|Z^T g^k\|\) small
    • compute Hessian approximation \(H^k \approx \nabla^2 f(x^k)\), \(H^k \succ 0\)
    • solve \(Z^T H^k Z p^k = -Z^T g^k\)
    • linesearch on \(f(x^k + \alpha Zp^k)\)

Obtaining a null-space basis

  • assume variables (columns of \(A\)) permuted so that

\[ A = \begin{bmatrix} B & N \end{bmatrix} \quad\text{where}\quad B \quad\text{nonsingular} \]

  • feasibility requires \[ b = Ax = Bx_B + Nx_N \]

  • basic (\(x_B\)) and nonbasic (\(x_N\)) variables:

    • \(x_N\) are “free”
    • \(x_B = B^{-1}b - B^{-1}Nx_N\) uniquely determined by \(x_N\)
  • constructing a null-space matrix

\[ Z = \begin{bmatrix} -B^{-1}N \\ I \end{bmatrix} \quad\Longrightarrow\quad AZ = \begin{bmatrix} B & N \end{bmatrix}\begin{bmatrix} -B^{-1}N \\ I \end{bmatrix} = 0 \]