
Linear Programming and Applications

• Diet problem

• History

• Network flow

• Branch and bound

Next up: LP geometry, solvers, duality

1 / 11



Linear programming

Given A ∈ Rm×n, b ∈ Rm, c ∈ Rn:

minimize
x

cT x

subject to Ax = b
x ≥ 0

• Other variations exist, but all equivalent after reformulations

• Historical importance

• Good solvers (simplex method, interior point methods)

• Generalized to “linear cone” solvers
• x ≥ 0 is replaced by x in second-order cone or semidefinite cone
• Now we can solve lots of convex problems

2 / 11



Diet problem

minimize
x

cT x

subject to Ax = b, x ≥ 0

• minimum-cost diet

• xi represents how many servings of food group i to eat

• ci gives cost of 1 serving of food from group i

• aTi x = bi encodes nutritional recommendations

• x ≥ 0 since you can’t eat negative food

3 / 11



Important fields

• Operations research
• Started with post-WWII military research
• many applications in management science
• often appears as relaxations of important combinatorial problems
• e.g., assigning people to tasks, routing supplies, strategic planning,...

• Economics
• 1939: Planning a country’s economy (Kantorivich in USSR, Koopmans in US)
• Planning in business (maximize utility subject to resource constraints)

• Combinatorial optimization
• Linear relaxation gives lower bounds
• Often used in branch-and-bound solvers

4 / 11



Assignment

Task: assign n people to n tasks

maximize
X∈Rn×n

∑
ij

XijWij

subject to XT e = e, Xe = e
Xi,j ∈ {0, 1}

• Xij = 1 ⇐⇒ person i assigned to task j

• Wij encodes preference of person i ’s assignment to task j

• linear equality constraint ensures only 1 assignment per person and per task

• combinatorial constraint Xi,j ∈ {0, 1} makes problem hard to solve

• relaxation: replace binary constraints with interval constraints:

Xi,j ∈ {0, 1} → 0 ≤ Xi,j ≤ 1

5 / 11



Routing (aka, Traveling Salesman problem)

Task: assign a supply route for a truck, with n stops

minimize
X∈Rn×n

∑
ij

XijWij

subject to XT e = e, Xe = e∑
j

X1,j =
∑
i

Xi,1 = 1∑
i ̸∈S

∑
j∈S

Xij ≥ 1, ∀S ⊆ {1, ..., n}

Xi,j ∈ {0, 1}

• Xij = 1 if visit stop i right after stop j

• second linear constraint: ensure truck leaves and returns at depo (i = 1)

• third constraint: ensures route is connected

• relaxation: replace binary constraints with interval constraints:

Xi,j ∈ {0, 1} → 0 ≤ Xi,j ≤ 1

6 / 11



Network flow

Appears in transportation, network routing, planning

• n nodes, m arcs (directed edges)

• X ∈ Rn×m records flows from node i through arc j

• CL ≤ X ≤ CU capacity constraints (eg, link capacities)

• if no edge between nodes i and j then (CL)ij = (CU)ij = 0

• flow conservation:∑
j

Xij = 0 for all non-source non-sink nodes i

7 / 11



Network flow: Max-flow

maximize
X

n∑
i=1

X1,i Total flow

subject to CL ≤ X ≤ CU Capacity constraints∑
j

Xij = 0, ∀i ̸= 1 Conservation of flow

8 / 11



Branch and bound

Mixed integer linear program

minimize
x∈Rn

cT x

subject to Ax = b, Cx ≤ d
xi ∈ {0, 1}, i = 1, . . . , n

• Generalizes assignment, routing, graph coloring, and more

• x ∈ Rn is feasible if

Ax = b, Cx ≤ d , xi ∈ {0, 1}, i = 1, ..., n

9 / 11



Branch and bound

Mixed integer linear program

minimize
x∈Rn

cT x

subject to Ax = b, Cx ≤ d
xi ∈ {0, 1}, i = 1, ..., n

• let p(x) := cT x

• Upper bound: For any feasible x , p(x) ≥ p(x∗)

• Lower bound: Consider x̂ the solution to relaxed problem

minimize
x∈Rn

cT x

subject to Ax = b, Cx ≤ d
0 ≤ x ≤ e

Then p(x̂) ≤ p(x∗)

10 / 11



Branch and bound algorithm

1. Binary tree traverses every possible value of x

2. Breadth-first search: calculate an upper and lower bound given a fixed value

3. If lower bound > upper bound of another node, impossible choice
• cut node and all descendants

4. Continue searching

5. B-B solvers require fast LP solvers, since they may be applied many times!

11 / 11



Branch and bound algorithm

1. Binary tree traverses every possible value of x

2. Breadth-first search: calculate an upper and lower bound given a fixed value

3. If lower bound > upper bound of another node, impossible choice
• cut node and all descendants

4. Continue searching

5. B-B solvers require fast LP solvers, since they may be applied many times!

11 / 11



Branch and bound algorithm

1. Binary tree traverses every possible value of x

2. Breadth-first search: calculate an upper and lower bound given a fixed value

3. If lower bound > upper bound of another node, impossible choice
• cut node and all descendants

4. Continue searching

5. B-B solvers require fast LP solvers, since they may be applied many times!

11 / 11



Branch and bound algorithm

1. Binary tree traverses every possible value of x

2. Breadth-first search: calculate an upper and lower bound given a fixed value

3. If lower bound > upper bound of another node, impossible choice
• cut node and all descendants

4. Continue searching

5. B-B solvers require fast LP solvers, since they may be applied many times!

11 / 11



Branch and bound algorithm

1. Binary tree traverses every possible value of x

2. Breadth-first search: calculate an upper and lower bound given a fixed value

3. If lower bound > upper bound of another node, impossible choice
• cut node and all descendants

4. Continue searching

5. B-B solvers require fast LP solvers, since they may be applied many times!

11 / 11


	History
	Network flow
	Branch and bound

