
Duality

• dual LP

• weak duality

• strong duality

• complementarity
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Duality

Consider the constrained problem

minimize
x1,x2

x21 + x22

subject to x1 + x2 = 1

and the unconstrained problem

minimize
x1,x2

ϕ(x1, x2, y) ≡ x21 + x22 + y(1− x1 − x2)

The scalar y is the “price” for violating the constraint x1 + x2 = 1.
What price y is enough to induce the optimal solution x∗ = (1/2, 1/2)?

∂ϕ

∂x1
= 2x1 − y = 0

∂ϕ

∂x1
= 2x2 − y = 0

 =⇒ x1 = x2 =
y

2
=⇒ y∗ = 1
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Dual function

primal problem: minimize
x

cTx subj to Ax = b, x ≥ 0

• n variables, m constraints

• optimal solution x∗

• optimal value p∗ ≡ cTx∗

relaxed problem: minimize
x

cTx + yT(b − Ax) subj to x ≥ 0

• relaxed problem is a lower bound for p∗:

• g(y) := min
x≥0

{
cTx + yT(b − Ax)

}
≤ cTx∗ + yT(b − Ax∗) = cTx∗ = p∗

tightest lower bound: find y that solves

maximize
y

g(y)
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Dual of an LP

g(y) = min
x≥0

{ cTx + yT(b − Ax) }

= bTy +min
x≥0

{ xT (c − ATy) }

=

{
bTy if c − ATy ≥ 0

−∞ otherwise

Because we want to maximize g(y), we must have

maximize
y

bTy

subject to c − ATy ≥ 0

⇐⇒ maximize
y ,z

bTy

subject to ATy + z = c

z ≥ 0

this is the dual LP
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Weak duality

Suppose that x is primal feasible:

Ax = b, x ≥ 0

Suppose that (y , z) is dual feasible:

ATy + z = c , z ≥ 0

Then the primal objective is bounded below by the dual objective:

cTx = (ATy + z)Tx = yTAx + zTx = yTb + zTx︸︷︷︸
(≥0)

≥ yTb

Weak-duality theorem: if (x , y , z) is primal/dual feasible, then

• the primal value is an upper bound for the dual value

• the dual value is a lower bound for the primal value
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Complementarity

primal dual

minimize
x

cTx

subject to Ax = b

x ≥ 0

maximize
y ,z

bTy

subject to ATy + z = c

z ≥ 0

By weak duality:

(primal value) ≡ cT x = bTy + zT x ≥ bTy ≡ (dual value)

This bound is “tight” when x and z are complementary, ie, xT z = 0:

xj = 0 and zj ≥ 0

xj ≥ 0 and zj = 0
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Optimality conditions

Simplex maintains primal feasibility at every iteration:

Ax = b, x ≥ 0

It defines y via BTy = cB and z = c − ATy , and maintains complementarity:

xB ≥ 0 and zB = 0 (by construction)

xN = 0 and zN ⪋ 0

Simplex exits when z ≥ 0, ie, (y , z) is dual feasible, ie,

ATy + z = c , z ≥ 0

Strong duality theorem: If an LP has an optimal solution, so does its dual,
and the optimal values are equal, ie, p∗ = d∗
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Sufficient conditions

Suppose that (x , y , z) is primal/dual feasible.

By weak duality,
cTx − bTy = zT x

By strong duality, if (x , y , z) is primal-dual optimal,

zTx = 0

Conversely, if zTx = 0, then

• cTx achieves its lower bound

• bTy achieves its upper bound

therefore, (x , y , z) is primal-dual optimal

Theorem: The primal-dual triple (x , y , z) is optimal iff

Ax = b, x ≥ 0, ATy + z = c , z ≥ 0, xTz = 0
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Relationship between primal and dual LPs

finite opt unbounded infeasible

finite opt ! % %

unbounded % % !

infeasible % ! !

9 / 10



Interpretation of dual variables

primal dual

minimize
x

cTx

subject to Ax = b

x ≥ 0

maximize
y ,z

bTy

subject to ATy + z = c

z ≥ 0

Suppose that x∗ is optimal and nondegenerate, then

x∗ =

[
B−1b
0

]
> 0

and x∗B (∆b) = B−1(b +∆b) > 0 for small ∥∆b∥

Reduced costs z∗ = c − ATy∗ doesn’t change. Thus (x∗(∥∆b∥), y∗, z∗) is
primal/dual feasible
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