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Convex Optimization
optimality for convex problems

normal cone

Lagrange multipliers for linearly constrained problems
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Optimality for convex problems
min
x

{f(x) ∣ x ∈ C}

f : Rn → R is convex differentiable

C ⊆ Rn is convex

x∗ is optimal if all feasible directions are non-increasing in f

if C = Rn the problem is unconstrained

x∗ ∈ argmin
x∈Rn

f(x) ⟺ 0 ≤ f ′(x∗, d) = ∇f(x∗)Td for all x∗ + d ∈ Rn

implies ∇f(x∗) = 0
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Optimality – constrained
x∗ ∈ argmin

x∈C
f(x) ⟺ 0 ≤ f ′(x∗, d) = ∇f(x∗)Td ∀x∗ + d ∈ C

does not imply ∇f(x∗) = 0
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Normal cone
The normal cone to the set C ⊂ Rn at the point x ∈ C is the set

NC(x) = {g ∈ Rn ∣ gT (z− x) ≤ 0 ∀z ∈ C}

NC(x1) is the normal to supporting hyperplane H1 = {z ∈ Rn ∣ gTz ≤ gTx1}

NC(x2) = {0} because x2 is an interior point

NC(x3) is the cone of normals at the vertex x3
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Question
What is the normal cone to the set

Bn = {x ∈ R2 ∣ ∥x∥2 ≤ 1}

at the point x = (1/√2, 1/√2)?

a. {0}

b. {(λ,λ) ∣ λ ≥ 0}

c. {λ( 1
√2

, 1
√2

) ∣ λ ≤ 0}

d. {μ( 1
√2

, − 1
√2

) ∣ μ ∈ R}
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Example
min

x1,x2≥0

1
2 (x1 − 1)2 + 1

2 (x2 + 1)2

Solution and gradient:

x∗ = [ ] ∇f(x∗) = [ ] = [ ]

Normal cone at x∗:

NR2
+
(x∗) = {λ [ ] : λ ≥ 0}

Optimality:

−∇f(x∗) ∈ NR2
+
(x∗)

1
0

x∗
1 − 1

x∗
2 + 1

0
1

0
−1
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Necessary and sufficient optimality
a point x∗ ∈ argminx∈C f(x) if and only if

∇f(x∗)T (x− x∗) ≥ 0 ∀x ∈ C

Use the definition of the normal code to deduce the equivalent condition

−∇f(x∗) ∈ NC(x∗)
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Interior point
a point x is in the interior of C (ie, x ∈ intC) if all directions are feasible, ie,

x+ ϵd ∈ C ∀d ∈ Rn and ϵ > 0 small

if g ∈ NC(x) and x ∈ intC then for every direction d,

together, these imply g = 0, and thus

x ∈ intC ⟹ NC(x) = {0}

[aside; the opposite implication is also true, but requires the supporting hyperplane theorem.]

unconstrained optimality:

x∗ ∈ argmin
x∈Rn

f(x) ⟺ −∇f(x∗) ∈ NC(x) = {0} ⟺ ∇f(x∗) = 0

0 ≤ gT (z− x) = ϵgTd for all z = x+ ϵd ∈ C

0 ≤ gT (z− x) = −ϵgTd for all z = x− ϵd ∈ C
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Normal cone to an affine set
C = {x ∈ Rn ∣ Ax = b}, A ∈ Rm×n, b ∈ Rm

For any x ∈ C, define the translated set

Cx = {z− x ∣ z ∈ C} = null(A)

Then,

NC(x) = {g ∣ gT (z− x) ≤ 0 ∀z ∈ C}

= {g ∣ gTd ≤ 0 ∀d ∈ Cx}

= {g ∣ gTd ≤ 0 ∀d ∈ null(A)}

= {g ∣ gTd = 0 ∀d ∈ null(A)}

= range(AT )
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Linearly constrained optimization
min
x∈Rn

{f(x) ∣ Ax = b}

a point x ∈ C = {x ∣ Ax = b} is optimal if and only if

−∇f(x) ∈ NC(x∗) = range(AT )

or, equivalently,

∇f(x) = ATy for some y ∈ Rm

the vector y = (y1,… , ym) contains the Lagrange multipliers for each constraint aTi x = bi
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