Convex Sets

CPSC 406 - Computational Optimization
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Convex sets

e definition

e subspaces, affine sets, and spans
e halfspaces and hyperplanes

e cones and hulls

e operations that preserve convexity
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Lines and line segments

e line through two points 1, x5 € R" is the set

{z]| z=0z1+ (1 — 0)xa, 0 € R}

e £ € R"is aconvex combination of vectors x1, ..., x} if

k k
33:29133@, 20i:1, 9120
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Convex sets and hulls

* the convex hull of a set of points S contains all convex combinations of pointsin S:

k k
COHV(S) = {Z@zwz | Tr; € S, Z@z =1, 0; > O}
1=1 1=1

0%

e C C R"is convexif it contains all convex combinations of its elements, ie, C = conv(C)

o, N
.0

€+
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Question

Show that the norm ball

B={rcR"|[z—zl <r}

is a convex set.

Hint: use the triangle inequality
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Subspaces, spans, and affine sets

S C R™is a subspace if it contains all linear combinations of points in the set, ie,

ar+PByecS, Ve,ye S, Va,B € R

forany m X n matrix A, its range and nullspace are subspaces of R™:

range(A) = {Az |z € R"} and null(4?) = {z]| ATz=0}

the span of a collection of vectors x 1, . .., T is the subspace of all vectors
k

1

span(zi,...,x,) = { 0;x;, VO, € R}

1

an affine set is a translated a subspace, ie, for fixed y € R™ and subspace S,

£:{$0+U|’UES}E$0+S

S is the subspace parallel to £ 6/13



Halfspaces and hyperplanes

fix nonzero vector a € R™ and scalar 3

e hyperplanes and halfspaces, respectively, have the form

’H:{w]aT:B:B} and H_:{w!aTiﬁﬁﬂ}

e @ isthe normalto the hyperplane
e hyperplanes are affine and convex

e halfspaces are convex but not affine
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Question

Express the nonnegative orthant
RY ={z|z;>0,i=1,...,n}

as an intersection of n halfspaces.

8/13



Convex polyhdra

S is a convex polyhdron if it’s the intersection of a finite number of halfspaces:
m
S=(Hzlajx < B} ={z| Az < b}
i=1

where

A= ] eR™" and beR™
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Question

Express the probability simplex

A{x zn:wizla :132-20}
i—1

as the intersection of n halfspaces and a hyperplane.
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Convex cones

e aset/IC C R"isaconeife €¢ K «<— ax € Cforalla > 0

e aconvex coneis acone thatis also convex

z,yceKand a,>0 = ax+PByc kK

Examples

RY={z|z; >0,i=1,...,n}

E:z_ _ {[j] c Rn+1

St ={X e R™" | X » 0}

ngsuxekmteR}

(nonnegative orthant)

(second-order cone)

(positive semidefinite cone)
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Application: Robust Portfolio Optimization

Objective: Balance risk and return by optimizing asset allocation weights w in a portfolio:

max ,uTw subject to wlYw < 02, 1Tw=1
w

where 1 is the vector of expected returns and X is the covariance matrix and o2 is the maximum
acceptable risk.

e Transform the quadratic risk constraint into a second-order cone constraint:
|24 2wy <o
e Optimization Problem:
max ,LLT’w
w

s.t. || 2Y%wls < o,
17w =1.

e This formulation is a second-order cone program (SOCP) that directly maximizes return while
keeping risk below a specified threshold.
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Operations that preserve convexity

Let C1, Ca be convex setsin R",

e nonnegative scaling:

0C, = {0z |z €C}, 6>0

¢ intersection:

CiNCy

* sum:

Cl—I—sz{:L’+y|:L'ECl,y€C2}
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