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Convex sets
definition

subspaces, affine sets, and spans

halfspaces and hyperplanes

cones and hulls

operations that preserve convexity
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Lines and line segments
line through two points x1,x2 ∈ Rn is the set

{z ∣ z = θx1 + (1 − θ)x2,  θ ∈ R}

x ∈ Rn is a convex combination of vectors x1,… ,xk if

x =
k

∑

i=1

θixi,
k

∑

i=1

θi = 1, θi ≥ 0

3 / 13



Convex sets and hulls
the convex hull of a set of points S contains all convex combinations of points in S:

conv(S) = {

k

∑

i=1

θixi ∣ xi ∈ S,  
k

∑

i=1

θi = 1,  θi ≥ 0}

C ⊂ Rn is convex if it contains all convex combinations of its elements, ie, C = conv(C)
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Question
Show that the norm ball

B = {x ∈ Rn ∣ ∥x − xc∥ ≤ r}

is a convex set.

Hint: use the triangle inequality
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Subspaces, spans, and affine sets
S ⊂ Rn is a subspace if it contains all linear combinations of points in the set, ie,

αx + βy ∈ S,  ∀x, y ∈ S,  ∀α,β ∈ R

for any m × n matrix A, its range and nullspace are subspaces of Rn:

range(A) = {Ax ∣ x ∈ Rn} and null(AT ) = {z ∣ AT z = 0}

the span of a collection of vectors x1,… ,xk is the subspace of all vectors

span(x1,… ,xn) = {

k

∑

i=1

θixi, ∀θi ∈ R}

an affine set is a translated a subspace, ie, for fixed x0 ∈ Rn and subspace S,

L = {x0 + v ∣ v ∈ S} ≡ x0 + S
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Halfspaces and hyperplanes
fix nonzero vector a ∈ Rn and scalar β

hyperplanes and halfspaces, respectively, have the form

H = {x ∣ aT x = β} and H− = {x ∣ aT x ≤ β}

a is the normal to the hyperplane

hyperplanes are affine and convex

halfspaces are convex but not affine
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Question
Express the nonnegative orthant

Rn
+ = {x ∣ xi ≥ 0,  i = 1,… ,n}

as an intersection of n halfspaces.
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Convex polyhdra
S is a convex polyhdron if it’s the intersection of a finite number of halfspaces:

S =
m

⋂

i=1

{x ∣ aT
i x ≤ βi} = {x ∣ Ax ≤ b}

where

A = ∈ Rm×n and b ∈ Rm

⎡

⎢

⎣

aT
1

⋮

aT
m

⎤

⎥

⎦
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Question
Express the probability simplex

Δ = {x   
n

∑

i=1

xi = 1,  xi ≥ 0}

as the intersection of n halfspaces and a hyperplane.

∣
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Convex cones
a set K ⊂ Rn is a cone if x ∈ K  ⟺  αx ∈ K for all α ≥ 0

a convex cone is a cone that is also convex

x, y ∈ K and  α,β ≥ 0  ⟹  αx + βy ∈ K

Examples

Rn
+ = {x ∣ xi ≥ 0,  i = 1,… ,n} (nonnegative orthant)

Ln
+ = {[ ] ∈ Rn+1 ∥x∥2 ≤ t,  x ∈ Rn,  t ∈ R} (second-order cone)

S n
+ = {X ∈ Rn×n ∣ X ⪰ 0} (positive semidefinite cone)

x

t

∣
11 / 13



Application: Robust Portfolio Optimization
Objective: Balance risk and return by optimizing asset allocation weights w in a portfolio:

max
w

μT w subject to wTΣw ≤ σ2, 1T w = 1

where μ is the vector of expected returns and Σ is the covariance matrix and σ2 is the maximum
acceptable risk.

Transform the quadratic risk constraint into a second-order cone constraint:

∥Σ1/2w∥2 ≤ σ.

Optimization Problem:

This formulation is a second-order cone program (SOCP) that directly maximizes return while
keeping risk below a specified threshold.

max
w

μT w

s.t. ∥Σ1/2w∥2 ≤ σ,
1T w = 1.
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Operations that preserve convexity
Let C1, C2 be convex sets in Rn.

nonnegative scaling:

θC1 = {θx ∣ x ∈ C1}, θ ≥ 0

intersection:

C1 ∩ C2

sum:

C1 + C2 = {x + y ∣ x ∈ C1,  y ∈ C2}
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