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Descent methods

e descent directions
e line search

¢ convergence
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Descent directions

min f(z) with f:R"™ — R continuously differentiable

e directional derivative of f alongray x + ad

fond) — 1 TE o)~ F@)

a—07t 8%

= Vf(x)'d

e dis adescentdirection at x if

f'(z;d) <0

e by continuity, if d is a descent direction, then for some maximum step &
f(z 4+ ad) < f(z) Vae€ (0,a)
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Question

Suppose we modify the standard gradient descent update by using a symmetric matrix B and
setting

"t = ¥ — a BV f(z").

Under what condition on the eigenvalues of Bis —B V f(z*) guaranteed to be a descent
direction for every nonzero Vf(a:k)?

a. All eigenvalues of B are strictly positive (i.e., B is positive definite).
b. All eigenvalues of B are non-positive.
c. All eigenvalues of B are less than —1.

d. B has at least one strictly positive eigenvalue.
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Generic descent method

Initialize: choose xy € R"
Fork=0,1,2,...

e compute descent direction d®)

* compute step size a'k)

o update 1) = z(*) 4 (k) q(k)
e stop if OPTIMAL or MAXITER

Questions:

how to determine a starting point?

what are advantages/disadvantages of different directions d*)?

how to choose step size a7

reasonable stopping criteria?
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Gradient descent
"t = 2% + afd, d = —Vf(z"
o if z¥ is not stationary, ie, Vf(a:k) = 0, then negative gradient is a descent direction
f'(@" -V (") = -V F(a") V(") = —||VF(z")]? <0

* negative gradient is the steepest descent direction of f at x

_ ||§;Eg|| = aﬁ‘rilin f'(z;d) (most negative)

Proof. Use Cauchy-Schwartz inequality: for any vectors w, v € R",
—[lw] - [Jv]| < wTv < [jw]| - [Jv]

and upper (or lower) bound achived if and only if w and v are parallel
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Gradient method

Initialize: choose £y € R" and tolerancee > 0

Fork=0,1,2,...
1. choose step size a” to approximately minimize
() = f(z* — aVf(z"))

2. update zF! = ¥ — oV f(zF)

3.stop if ||V f(z*)|| < e
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Step size selection

step size rules typically used in practice

 exact (generally not possible, except for quadratic f)

o € argmin ¢(a), o(a) := f(z" + ad")

a>0

e constant (cheap and easy, but requires analyzing f)

af =a>0 Vk

e approximate — backtracking linesearch, eg, Armijo (relatively cheap, no analysis required)

= reduce « until sufficient decrease in f, ie, with u € (0,1)

lLseta® =a >0
2.until f(z* + o*d*)  “sufficiently lessthan”  f(z*)

e af < af/2 (or some other divisor)

k)

3. return a( 8/20
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Constant stepsize

e need to fixa > 0 small enough to ensure convergence

s\

e sufficient condition: choose a: small enough to guarantee

fz® + ad®) < f(z*) Vk

f(z) = 3x? withz scalarand d = — f'(z*):

"t =2 — af' (2"

— mk —ézwk

= (1 —a)z”
_ (1 - &)k—l—lmO

ifa € (0,2)then |1 —a| < 1and

f") =11 -a)*@")? -0 as k— oo
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Constant stepsize — quadratic functions

f(z)=3z"Hz +b'z+~, with H >0

e reliable constant stepsize & depends on maximum eigenvalue

dTHd < Amax(H)||d||*? Vd e R™ (1)

e behaviour of function value along steepest descent directiond = —V f(x)
f(xz+ad) = f(z) + ad"'Vf(z) + $a°d"V*f(z)d (exact because f quadratic)
< f(=) — el VA@)II° + 5 Amax (H) [1d]* (by (1))
= f(@) = (@ = 50" Anax(H)) |V f(2) "
)

e if® > Othen f(z + ad) < f(x), as required, so choose

a € (0,2/Anax(H))
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Lipschitz smooth functions

for general smooth functions, constant stepsize depends on the Lipschitz constant of the gradient

Definition 1 (L-smooth functions) The function f : R® — R is L-Lipschitz smooth if

IVf(z) - Vil < Lz —y| Vo,yeR"

example — quadratic functions

flz)= 32"Hx +bTz+v, with H >0

e fis Amax(H)-Lipschitz smooth because

IVf(z) = Vil =H(z -yl (= [[(Hz +b) — (Hy + b))
= ||[AUT(z — y)|| (H=UAUT, UUT=1)
= || A (v=UT(z —y))
= /30 A2
< Amax(H) ||v]]
= Amax (H) ||z — (vl = llz = ylI)
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Second-order L-smooth characterization

If fistwice continuously differentiable, then f is L-Lipschitz smooth if and only if its Hessian is
bounded by L, ie, forallz € R"

V2f(x) < LI <+ LI—-V?*f(z)>0

implies that quadratic approximation is a local upper bound
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Question

Consider the nonlinear least-squares function

1 2
f(@) == 5 lle(@)]
where ¢ : R® — R™ is differentiable with the m x n Jacobian J(z) = Ve(z)!. Suppose the
Jacobian’s largest singular value is bounded by M for all 2. Which of the following best describes

the Lipschitz constant L for the gradient V f(z) = J(z)%c(x)?

a.L=M

b.L = M?
c.L=2M
d. L =2M?*

(Recall that a function fis called L-smooth if |V f(z) — Vf(y)|| < L||x — y|| forall z, y.)
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Example — logistic loss

e given feature/label pairs (a;, b;) € R™ x {0,1},4 =1,...,m,find z to fit logistic model

1
Tz) ~ b; h t) =
o(a;z) ~ b;, where o(t) T
e logistic loss problem, and objective gradient and Hessian
mmf Z b;log(o(a;z)) + (1 — b;)log(1 — o(a] z))

Vf(z)=ATr, V?f(zx)=ATDA, r=o0.(Az)—b, D = Diag(r;(1—7;))",

e because diagonals of D arein (0,1/4), for all unit-norm w,

T(AT At < ~Apan(ATA)

uTV2f(z)u = uT(ATDA)u A

< Ly
="

e so fis L-Lipschitz smooth with L = A< (ATA)/4 15 /20
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Exact linesearch

e exact linesearch typically only possible for quadratic functions

f(z) = 32"Hzx + bz +v, with H >0

 exact linesearch solves the 1-dimensional optimization problem with d descent dir:

min ¢(a) := f(z + ad)

a>0

e exact step computation: (

$(a) = 5(z+ ad)TH(z + ad) + b"(z + ad) + v

09

¢'(a) = ad"Hd +x"Hd + b"d = ad"Hd + V f(z)"d -
Vf(z)'d
I %\ *
¢ (a) =0 <<= o = TTHd

17 /20



backtracking



Backtracking linesearch (Armijo)

pull back along descent direction d¥ until sufficient decrease in f

o f'(z*;d") <0
e sufficient descent parameter u € (0, 1)

FO& + pead 4%

[\/ o FOad)

k

b $06< + o(-j‘(x“;,é )

\

function armijo(f, Vf, x, d; p=le-4, a=1, p=0.5, maxits=10)

for k in 1:maxits
if f(x+axd) < f(x) + pxokdot(Vf(x),d)
return «
end
a k= p
end
error("backtracking linesearch failed")

end;
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Convergence of gradient method
f : R®™ — R L-smooth

wk—H _ wkz - aka(a:k)
with

e constant stepsize o = & € (0,2/L)

k

e exactstepsize o = argmin ., f(z" + ad®)

e backtracking stepsize o* with ;1 € (0, 1)

guarantee -forallk = 0,1, 2,...

e descent (unless V f(z*) = 0)

fla™h) < f(=")

¢ convergence

[V £z — 0
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