
Descent Methods
CPSC 406 – Computational Optimization

1 / 20

Descent methods
descent directions

line search

convergence

2 / 20

Descent directions

min
x

 f(x) with f : Rn → R continuously differentiable

directional derivative of f along ray x+ αd

f ′(x; d) = lim
α→0+

f(x+ αd) − f(x)
α

= ∇f(x)Td

d is a descent direction at x if

f ′(x; d) < 0

by continuity, if d is a descent direction, then for some maximum step ᾱ

f(x+ αd) < f(x) ∀α ∈ (0, ᾱ)

3 / 20

Question
Suppose we modify the standard gradient descent update by using a symmetric matrix B and
setting

xk+1 = xk − αB∇f(xk).

Under what condition on the eigenvalues of B is −B∇f(xk) guaranteed to be a descent
direction for every nonzero ∇f(xk)?

a. All eigenvalues of B are strictly positive (i.e., B is positive definite).

b. All eigenvalues of B are non-positive.

c. All eigenvalues of B are less than −1.

d. B has at least one strictly positive eigenvalue.

4 / 20

Generic descent method
Initialize: choose x0 ∈ Rn

For k = 0, 1, 2,…

compute descent direction d(k)

compute step size α(k)

update x(k+1) = x(k) + α(k)d(k)

stop if OPTIMAL or MAXITER

Questions:

how to determine a starting point?

what are advantages/disadvantages of different directions d(k)?

how to choose step size α(k)?

reasonable stopping criteria?

5 / 20

Gradient descent
xk+1 = xk + αkd, d = −∇f(xk)

if xk is not stationary, ie, ∇f(xk) ≠ 0, then negative gradient is a descent direction

f ′(xk; −∇f(xk)) = −∇f(xk)T∇f(xk) = −∥∇f(xk)∥2 < 0

negative gradient is the steepest descent direction of f at x

−
∇f(x)
∥∇f(x)∥

= argmin
∥d∥≤1

f ′(x; d) (most negative)

Proof. Use Cauchy-Schwartz inequality: for any vectors w, v ∈ Rn,

−∥w∥ ⋅ ∥v∥ ≤ w⊺v ≤ ∥w∥ ⋅ ∥v∥

and upper (or lower) bound achived if and only if w and v are parallel

6 / 20

Gradient method
Initialize: choose x0 ∈ Rn and tolerance ϵ > 0

For k = 0, 1, 2,…

1. choose step size αk to approximately minimize

ϕ(α) = f(xk − α∇f(xk))

2. update xk+1 = xk − αk∇f(xk)

3. stop if ∥∇f(xk)∥ < ϵ

7 / 20

Step size selection
step size rules typically used in practice

exact (generally not possible, except for quadratic f)

αk ∈ argmin
α≥0

 ϕ(α), ϕ(α) := f(xk + αdk)

constant (cheap and easy, but requires analyzing f)

αk = ᾱ > 0 ∀k

approximate — backtracking linesearch, eg, Armijo (relatively cheap, no analysis required)

reduce α until sufficient decrease in f, ie, with μ ∈ (0, 1)

 1. set αk = ᾱ > 0

2. until f(xk + αkdk) “sufficiently less than” f(xk)

αk ← αk/2 (or some other divisor)

3. return α(k)

8 / 20

constant stepsize

9 / 20

Constant stepsize
need to fix ᾱ > 0 small enough to ensure convergence

sufficient condition: choose α small enough to guarantee

f(xk + ᾱdk) < f(xk) ∀k

f(x) = 1
2 x

2 with x scalar and d = −f ′(xk):

if ᾱ ∈ (0, 2) then |1 − ᾱ| < 1 and

f(xk) = 1
2 (1 − ᾱ)2k(x(0))2 → 0 as k → ∞

xk+1 = xk − ᾱf ′(xk)
= xk − ᾱxk

= (1 − ᾱ)xk

= (1 − ᾱ)k+1x0

10 / 20

Constant stepsize — quadratic functions

f(x) = 1
2 x

⊺Hx+ b⊺x+ γ, with H ≻ 0

reliable constant stepsize ᾱ depends on maximum eigenvalue

d⊺Hd ≤ λmax(H)∥d∥2 ∀d ∈ Rn (1)

behaviour of function value along steepest descent direction d = −∇f(x)

if ♥ > 0 then f(x+ αd) < f(x), as required, so choose

α ∈ (0, 2/λmax(H))

f(x+ αd) = f(x) + αd⊺∇f(x) + 1
2 α

2d⊺∇2f(x)d (exact because f quadratic)

≤ f(x) − α∥∇f(x)∥2 + 1
2 α

2λmax(H)∥d∥2 (by (1))

= f(x) − (α− 1
2 α

2λmax(H))

(♥)

∥∇f(x)∥2

11 / 20

Lipschitz smooth functions
for general smooth functions, constant stepsize depends on the Lipschitz constant of the gradient

Definition 1 (L-smooth functions) The function f : Rn → R is L-Lipschitz smooth if

∥∇f(x) − ∇f(y)∥ ≤ L∥x− y∥ ∀x, y ∈ Rn

example — quadratic functions

f(x) = 1
2 x

⊺Hx+ b⊺x+ γ, with H ≻ 0

f is λmax(H)-Lipschitz smooth because

∥∇f(x) − ∇f(y)∥ = ∥H(x− y)∥ (= ∥(Hx+ b) − (Hy+ b)∥)
= ∥ΛU ⊺(x− y)∥ (H = UΛU ⊺, UU ⊺ = I)
= ∥Λv∥ (v = U ⊺(x− y))

= √
∑

n
i=1 λ

2
i v

2
i

≤ λmax(H)∥v∥
= λmax(H)∥x− y∥ (∥v∥ = ∥x− y∥)

12 / 20

Second-order L-smooth characterization
If f is twice continuously differentiable, then f is L-Lipschitz smooth if and only if its Hessian is
bounded by L, ie, for all x ∈ Rn

∇2f(x) ⪯ LI ⟺ LI −∇2f(x) ⪰ 0

implies that quadratic approximation is a local upper bound

13 / 20

Question
Consider the nonlinear least-squares function

f(x) :=
1
2
∥c(x)∥2

where c : Rn → Rm is differentiable with the m× n Jacobian J(x) = ∇c(x)T . Suppose the
Jacobian’s largest singular value is bounded by M for all x. Which of the following best describes
the Lipschitz constant L for the gradient ∇f(x) = J(x)T c(x)?

a. L = M

b. L = M 2

c. L = 2M

d. L = 2M 2

(Recall that a function f is called L-smooth if ∥∇f(x) − ∇f(y)∥ ≤ L∥x− y∥ for all x, y.)

14 / 20

Example — logistic loss
given feature/label pairs (ai, bi) ∈ Rn × {0, 1}, i = 1,… ,m, find x to fit logistic model

σ(a⊺i x) ≈ bi, where σ(t) =
1

1 + e−t

logistic loss problem, and objective gradient and Hessian

min
x

f(x) := −
m

∑

i=1

bi log(σ(a
⊺
i x)) + (1 − bi) log(1 − σ(a⊺i x))

∇f(x) = A⊺r, ∇2f(x) = A⊺DA, r = σ. (Ax) − b, D = Diag(ri(1 − ri))mi=1

because diagonals of D are in (0, 1/4), for all unit-norm u,

u⊺∇2f(x)u = u⊺(A⊺DA)u ≤
1
4
u⊺(A⊺A)u ≤

1
4
λmax(A⊺A)

so f is L-Lipschitz smooth with L = λmax(A⊺A)/4 15 / 20

exact linesearch

16 / 20

Exact linesearch
exact linesearch typically only possible for quadratic functions

f(x) = 1
2 x

⊺Hx+ b⊺x+ γ, with H ≻ 0

exact linesearch solves the 1-dimensional optimization problem with d descent dir:

min
α≥0

 ϕ(α) := f(x+ αd)

exact step computation:

ϕ(α) = 1
2 (x+ αd)⊺H(x+ αd) + b⊺(x+ αd) + γ

ϕ′(α) = αd⊺Hd+ x⊺Hd+ b⊺d = αd⊺Hd+∇f(x)⊺d

ϕ′(α∗) = 0 ⟺ α∗ = −
∇f(x)⊺d
d⊺Hd

17 / 20

backtracking

18 / 20

Backtracking linesearch (Armijo)
pull back along descent direction dk until sufficient decrease in f

f ′(xk; dk) < 0

sufficient descent parameter μ ∈ (0, 1)

function armijo(f, ∇f, x, d; μ=1e-4, α=1, ρ=0.5, maxits=10)1
 for k in 1:maxits2
 if f(x+α*d) < f(x) + μ*α*dot(∇f(x),d)3
 return α4
 end5
 α *= ρ6
 end7
 error("backtracking linesearch failed")8
end;9

19 / 20

Convergence of gradient method
f : Rn → R L-smooth

xk+1 = xk − αk∇f(xk)

with

constant stepsize αk = ᾱ ∈ (0, 2/L)

exact stepsize αk = argminα≥0 f(x
k + αdk)

backtracking stepsize αk with μ ∈ (0, 1)

guarantee – for all k = 0, 1, 2,…

descent (unless ∇f(xk) = 0)

f(xk+1) < f(xk)

convergence

∥∇f(xk)∥ → 0

20 / 20

