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Gradients, linearizations, and optimality
directional derivatives

gradients

first-order expansions

necessary conditions for optimality
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Optimality
min
x

f(x) where f : Rn → R

x∗ ∈ Rn is a

global minimizer if f(x∗) ≤ f(x) for all x

strict global minimizer if f(x∗) < f(x) for all x

local minimizer if f(x∗) ≤ f(x) for all x ∈ ϵB(x∗)

strict local minimizer if f(x∗) < f(x) for all x ∈ ϵB(x∗)

flip inequalities for analogous maximizer def’s

argmin
x

{f(x)} = argmax
x

{−f(x)}

Maximizers

The ϵ-ball centered at x̄ is the set of points ϵB(x̄) = {x ∈ Rn ∣ ∥x− x̄∥ < ϵ}. If x̄ = 0, we use the shorthand B(0) = B.
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Optimal attainment
an optimal value may not be attained, eg,

inf
x

e−x is not attained for any x ∈ R

an optimal value may not exist, eg,

min
x

−x2 has no minimizer (unbounded below)

global solution set (may be empty / unique element / many elements)

argmin
x

f(x) = {x̄ ∣ f(x̄) ≤ f(x) for all x}

optimal values are unique even if an optimal point is not unique

Theorem 1 (Coercivity implies existence of minimizer) If f : Rn → R is continuous and
lim∥x∥→∞ f(x) = ∞ (coercive), then minx f(x) has a global minimizer.
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Example
min
x∈R2

x1 + x2

x2
1 + x2

2 + 1

global minimizer at − 1
√2

(1, 1)

global maximizer at 1
√2

(1, 1)
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scalar variable (n)
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Local optimality (1-D)
Let f : R→ R be differentiable. The point x = x∗ is a

local minimizer if

f ′(x) = 0

stationary at x

and f ′′(x) > 0

(strictly) convex at x

local maximizer if

f ′(x) = 0

stationary at x

and f ′′(x) < 0

(strictly) concave at x

if f ′(x) = 0 and f ′′(x) = 0, not enough information, eg,

f(x̄) = x3 ⟹  x = 0 in not a local minimizer or maximizer even though f ′(0) = 0

f(x̄) = x4 ⟹  x = 0 is the unique global minimizer even though f ′′(0) = 0

 

 
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Local optimality (1-D): motivation
suppose f ′(x∗) = 0 and f ′′(x∗) > 0 at some x∗

Taylor series, where remainder term ο(α)/α → 0 as α → 0+:

f(x∗ +Δx) = f(x∗) + f ′(x∗)Δx

=0

+ 1
2 f

′′(x∗)(Δx)2

>0

+ ο((Δx)2)

divide both sides by (Δx)2; for Δx small enough, right-hand side is positive:

f(x∗ +Δx) − f(x∗)
(Δx)2

= 1
2 f

′′(x∗) +
ο((Δx)2)
(Δx)2

> 0

implies f(x∗ +Δx) > f(x∗) for Δx small enough




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multivariable (n>1)
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Directional derivative
restrict f : Rn → R to the ray {x+ αd ∣ α ∈ R+}:

ϕ(α) = f(x+ αd) ϕ′(0) = lim
α→0+

ϕ(α) − ϕ(0)
α

Definition 1 The directional derivative of f  at x ∈ Rn in the direction d ∈ Rn is

f ′(x; d) = lim
α→0+

f(x+ αd) − f(x)
α

.

partial derivatives are directional derivatives along each canonical basis vector ei:

∂f
∂xi

(x) = f ′(x; ei) with ei(j) = {

1 j = i

0 j ≠ i
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Descent directions
a nonzero vector d is a descent direction of f  at x if

f(x+ αd) < f(x) ∀α ∈ (0, ϵ) for some ϵ > 0

equivalently, the directional derivative is negative:

f ′(x; d) := lim
α→0+

f(x+ αd) − f(x)
α

< 0
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Gradients
if f : Rn → R is continuously differentiable (ie, differentiable at all x and ∇f  is continuous)
the gradient of f  at x is the vector

∇f(x) = ∈ Rn

gradient and directional derivative related via

f ′(x; d) = ∇f(x)⊺d

direction derivative gives

the rate of change of f  at x in the direction d

(if ∥d∥ = 1) the projection of ∇f(x) onto d

⎡

⎢

⎣

∂f
∂x1

(x)

⋮
∂f
∂xn

(x)

⎤

⎥

⎦
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Εxample
f(x) = x2

1 + 8x1x2 − 2x2
3

What is f ′(x; d) for x = (1, 1, 2) and d = (1, 0, 1)?

a. 1

b. 2

c. 3

d. 4

e. 5
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Automatic differentiation
f(x) = (1 − x1)2 + 100(x2 − x2

1)
2

gradient

directional derivative

using ForwardDiff1
f(x) = (1 - x[1])^2 + 100*(x[2] - x[1]^2)^22
∇f(x) = ForwardDiff.gradient(f, x)3
x = [1.0, 1.0]4
@show ∇f(x);5

∇f(x) = [-0.0, 0.0]

fp(x, d) = ForwardDiff.derivative(α->f(x + α*d), 0.)1
d = [1.0, 0.0]2
fp(x, d)3
fp(x, d) == ∇f(x)'d4

true
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Visualizing the gradient
Definition 2 (Level set) The α-level set of f  is the set of points x where the function value is at
most α:

[f ≤ α] = {x ∣ f(x) ≤ α}

a direction d points “into” the level set [f ≤ f(x)] if

f ′(x; d) := ∇f(x)⊺d < 0

the gradient ∇f(x) is orthogonal to the level set defined
by f(x)
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Linear approximation
if f : Rn → R is differentiable at x, then for any direction d

the remainder ο : R+ → R decays faster than ∥d∥

lim
α→0+

ο(α)
α

= 0

f(x+ d) = f(x) + ∇f(x)⊺d+ ο(∥d∥) = f(x) + f ′(x; d) + ο(∥d∥)
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1st-order conditions
Theorem 2 (Necessary first-order conditions) For f : Rn → R differentiable, x∗ is a local
minimizer only if it is a stationary point:

∇f(x∗) = 0

up to first order, for any direction d

because f  is (locally) minimal at x∗

because this holds for all d, necessarily ∇f(x∗) = 0

f(x∗ + αd) − f(x∗) = ∇f(x∗)⊺(αd) + o(α∥d∥)
= αf ′(x∗; d) + o(α∥d∥)

0 ≤ lim
α→0+

f(x∗ + αd) − f(x∗)
α

= f ′(x∗; d) = ∇f(x∗)⊺d
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Example: Quadratic
f(x) = 1

2 x⊺Hx − c⊺x + γ, H = H ⊺ ∈ Rn, c ∈ Rn

x∗ is a local minimizer only if ∇f(x∗) = 0, ie,

0 = ∇f(x∗) = Hx∗ − c ⟹ Hx∗ = c

if null(H) ≠ ∅ and c ∈ range(H), then there exists x0 such that Hx0 = b and

argmin
x

f(x) = {x0 + z ∣ z ∈ null(H) }
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Example: Least squares
f(x) = 1

2 ∥Ax − b∥2 = 1
2 (Ax − b)⊺(Ax − b) = 1

2 x⊺(A⊺A)

=H

x − (b⊺A)

=c⊺

x + 1
2 b⊺b

=γ

x∗ is a least-squares solution if and only if it satisfies the normal equations

0 = ∇f(x∗) = A⊺Ax∗ − A⊺b ⟺ A⊺Ax∗ = A⊺b

 


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Example: Nonlinear least squares

f(x) = 1
2 ∥r(x)∥2 = 1

2 r(x)⊺r(x) = 1
2

m

∑

i=1

ri(x)2

where

r(x) = where ri : Rn → R,  i = 1,… ,m

gradient

⎡

⎢

⎣

r1(x)

⋮
rm(x)

⎤

⎥

⎦

∇f(x) = ∇[ 1
2

m

∑

i=1

ri(x)2] =
m

∑

i=1

∇ri(x)ri(x)

= [ ]

∇r(x)≡J(x)⊺

= J(x)⊺r(x)∇r1(x) ∣ ⋯ ∣ ∇rm(x)


⎡

⎢

⎣

r1(x)

⋮
rm(x)

⎤

⎥

⎦
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Gradients and convergence
using Plots1
using Optim: g_norm_trace, f_trace, iterations, LBFGS, optimize2

3
f(x) = (1 - x[1])^2 + 100 * (x[2] - x[1]^2)^24

5
x0 = zeros(2) 6
res = optimize(f, x0, method=LBFGS(), autodiff=:forward, store_trace=true)7
fval, gnrm, itns = f_trace(res), g_norm_trace(res), iterations(res)8
plot(0:itns, [fval gnrm], yscale=:log10, lw=3, label=["f(x)" "||∇f(x)||"], size=(59
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