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CPSC 406 – Computational Optimization
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Overview
Least-quares for data fitting

Solution properties

Solution methods
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Fitting a line to data
Given data points (zi, yi), i = 1,… ,m

Find a line y = c + sz that best fits the data

min
c,s

 
m

∑

i=1

(yi − ȳi)2 st ȳi = c + szi
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Matrix formulation
Generic form

min
x

∥Ax − b∥22 =
m

∑

i=1

(aT
i x − bi)2 where A =

Example

min
c,s

 
m

∑

i=1

(yi − ȳi)2 st ȳi = c + szi

where

A = , b = , x = [ ]

⎡

⎢

⎣

aT
1

⋮

aT
m

⎤

⎥

⎦

⎡

⎢

⎣

1 z1

⋮ ⋮
1 zm

⎤

⎥

⎦

⎡

⎢

⎣

y1

⋮
ym

⎤

⎥

⎦

c

s
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Example: Polynomial data fitting
Given m measurements yi taken at times ti:

(t1, y1),… , (tm, ym)

Polynomial model p(t) of degree (n − 1):

p(t) = x0 + x1t + x2t2 +⋯+ xn−1tn−1 (xi = coeff's)

Find coefficients x0,x1,… ,xn−1 such that

 

⟺

A x

≈

b

p(t1) ≈ y1

⋮
p(tm) ≈ ym

⎡

⎢

⎣

1 t1 t21 ⋯ tn−1
1

⋮ ⋮ ⋮ ⋱ ⋮

 1 tm t2m ⋯ tn−1
m

⎤

⎥

⎦



⎡

⎢

⎣

x0

⋮
 xn−1

⎤

⎥

⎦



⎡

⎢

⎣

y1

⋮
 ym

⎤

⎥

⎦
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Solving linear systems
Find x where Ax ≈ b

m > n (overdetermined): possibly no exact solution

m < n (underdetermined): possibly infinitely many solutions

m = n (square): possibly unique solution
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Question
Suppose that A is an m × n full-rank matrix with m > n. Then

a. Ax = b has a unique solution for every b ∈ Rm

b. Ax = b has a solution only if b ∈ range(A)

c. Ax = b has a solution only if b ∈ range(AT )

d. A is invertible
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Over and underdetermined systems
Find x where Ax = b

1 solution

overdetermined

feasible

b ∈ range(A)

infinitely many solutions

underdetermined

feasible

b ∈ range(A)

no solution

overdetermined

infeasible

b ∉ range(A)
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Least-squares optimality

x∗ = argmin
x

f(x) := 1
2 ∥Ax − b∥22 =

1
2

m

∑

i=1

(aT
i x − bi)2

quadratic objective

∥r∥22 = rT r ⟹ f(x) = 1
2 (Ax − b)T (Ax − b) = 1

2 xT AT Ax − bT Ax + 1
2 bT b

gradient: ∇f(x) = AT Ax − AT b

the solution of LS must be a stationary point of f:

∇f(x∗) = 0 ⟺ AT Ax∗ − AT b = 0 ⟺ AT Ax∗ = AT b

normal equations

If A has full column rank ⟹  x∗ = (AT A)−1AT b (unique)
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Geometric view
A = [a1 a2 ⋯  an] where ai ∈ Rm

range(A) = {y ∣ y = Ax for some  x ∈ Rn}
null(AT ) = {z ∣ AT z = 0}

range(A)⊥ = null(AT )
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Orthogonal projection
orthogonality of residual r = b − Ax and columns of A

⟺ r ⟺ AT r = 0 ⟺ r ∈ null(AT )

the following conditions are equivalent

1. AT r = 0

2. r ∈ null(AT )

3. AT Ax = AT b

projection is unique:

y∗ = Ax∗ = projrange(A)(b)

aT
1 r = 0

aT
2 r = 0

⋮
aT

n r = 0

⎫

⎪

⎬

⎪

⎭

⎡

⎢

⎣

aT
1

aT
2

⋮

aT
n

⎤

⎥

⎦
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Question
Consider the single-variable least-squares problem with data

A = and b = (n = 1)

If m = 3 and b = (1, 3, 5), what is the least-squares solution x∗?

a. x∗ = 1

b. x∗ = 3

c. x∗ = 5

d. x∗ = 9

⎡

⎢

⎣

1
1

⋮
1

⎤

⎥

⎦

⎡

⎢

⎣

b1

b2

⋮
bm

⎤

⎥

⎦
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In-class exercise
Run the greenhouse gas example in the least-squares notebook:

Compute the sum-of-squares residual in the trendline.
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