Linear Constraints

CPSC 406 - Computational Optimization



Linear constraints

e underdetermined linear systems

e reduced-gradient methods
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Linearly-constrained optimization

min { f(z) | Az =0b}

zeRn

f : R™ — Ris asmooth function o

Aism X n,bisan m-vector, m < n (underdetermined)

g‘: ixAax=b 3

assume throughout that A has full row rank

feasible set

F={x € R"| Az = b}
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Eliminating constraints
e equivalent representation of the feasible set
F={zeR"| Az =b}={z+2Zp|pe R" ™}

e T isaparticular solution, ie, AT = b
Z is a basis for the null space of A,ie, AZ = 0

e reduced problem is unconstrained inn — m variables

min f(Z + Zp)
peRn—m

*

apply any unconstrained optimization method to solve to obtain solution p

then a solutionx™ = T + Zp* is the solution to the original problem
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Example (in class)
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Optimality conditions

 define reduced objective for any particular solution Z and basis Z

fz(p) = f(Z + Zp)
Viz(p) = Z'VFf(Z+ Zp) (reduced gradient)
* let p* be a solution to the reduced problem and setx* = & + Zp*
Vizp")=0 <+— Z'Vfz*)=0 <+— Vf(z*) cnull(Z))
e funadamental subspaces of A and Z are orthogonal complements
null(4) = range(Z) <= null(Z') =range(A4’)

e thus,

Vf(z*) e null(Z?) <= Vf(z*) crange(A?) <« JystVf(z*)=Aly
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First-order necessary conditions

A point ™ is a local minimizer of the linearly-constrained problem only if
Jy e R™st Vf(z*) = Aly loptimality]
Ax™ =D feasibility]

e optimality condition is equivalent to

Z'Vf(x*) =0 <= Vf(z")"p=0 Vpcnull(A)

N2 TS

e the m-vector y contains the Lagrange multipliers ‘ o
“ o x|l dr=b]
»*

Vi) =ATy=> yia; ’
1=1
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Second-order optimality

fz(p) == f(Z+ Zp)  Vfzlp):=Z"Vf(@+Zp) Vfz(p):=Z"V’f(z+ Zp)Z

Necessary 2nd-order optimality: * is a local minimizer only if

Ax* =b Ax* =b
ZI'V f(z*) =0 = Viz*) = ATy for some y
ZIV2f(x*)Z = 0 pIV2fz(p*)p >0 Vp € null(4)

Necessary and sufficient 2nd-order optimality: * is a local minimizer if and only if

Az™ =b Az* =b
Z'V f(z*) =0 = Vi(z*) = Aty for some y
ZIV2f(2*)Z - 0 pIV2fz(p*)p >0 V0 #pc null(A)
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Example: Least norm solutions

min { ||z| | Az = b}

zceR”

Take f(z) = +||z||? and apply first-order optimality conditions

r = ATy for somey —I AT [z 0
< —
Axr =b A 0] |y b

A possible solution approach: - observe that multiplier y satisfies
AATy =1

e factor AT = (R (thin QR factorization)
e multipliers:y = R"1R"Tb
e solution:z = ATy = (QR)(R'RTb) = QR Tb
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Question

Ifn =5andz = (&1, €9, &3, &4, €5), which of the following is a minimal norm solution?

a.x=1/5-(1,1,1,1,1)
b.x =5-(5,5,5,5,5)
cr=(1,1,1,1,1)
d.x=(1,2,3,4,5)
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Question
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Reduced gradient method

min {f(z) | Az = b}

zceR”

o choosez"and Z suchthat Az? = band AZ = 0
e fork=0,1,2,...
= compute gradient g* = V f(z*)
= STOPf||ZT g"|| small
= compute Hessian approximation H* ~ V2 f(z*), H* = 0
= solve ZTH*ZpF = —ZT g*
= linesearchon f(z* + aZp*)
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Obtaining a null-space basis

e assume variables (columns of A) permuted so that

A=|B N| where B nonsingular

e feasibility requires
b=Ax = Bxp+ Nzxy

e basic (x g) and nonbasic (x ) variables:
m v are “free”
» 25 = B 'b — B !Nz uniquely determined by z x

e constructing a null-space matrix

—~B7IN
z- |
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