
Linear Constraints
CPSC 406 – Computational Optimization
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Linear constraints
underdetermined linear systems

reduced-gradient methods
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Linearly-constrained optimization
min
x∈Rn

 { f(x) ∣ Ax = b }

f : Rn → R is a smooth function

A is m × n, b is an m-vector, m < n (underdetermined)

assume throughout that A has full row rank

feasible set

F = {x ∈ Rn ∣ Ax = b}
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Eliminating constraints
equivalent representation of the feasible set

F = {x ∈ Rn ∣ Ax = b} = {x̄ + Zp ∣ p ∈ Rn−m}

x̄ is a particular solution, ie, Ax̄ = b

Z is a basis for the null space of A, ie, AZ = 0

reduced problem is unconstrained in n − m variables

min
p∈Rn−m

 f(x̄ + Zp)

apply any unconstrained optimization method to solve to obtain solution p∗

then a solution x∗ = x̄ + Zp∗ is the solution to the original problem
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Example (in class)
min
x∈R2

 { 1
2 (x

2
1 + x2

2) ∣ x1 + x2 = 1}
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Optimality conditions
define reduced objective for any particular solution x̄ and basis Z

let p∗ be a solution to the reduced problem and set x∗ = x̄ + Zp∗

∇fZ(p∗) = 0 ⟺ Z T∇f(x∗) = 0 ⟺ ∇f(x∗) ∈ null(Z T )

funadamental subspaces of A and Z are orthogonal complements

null(A) ≡ range(Z) ⟺ null(Z T ) ≡ range(AT )

thus,

∇f(x∗) ∈ null(Z T ) ⟺ ∇f(x∗) ∈ range(AT ) ⟺ ∃y st ∇f(x∗) = AT y

fZ(p) = f(x̄ + Zp)

∇fZ(p) = Z T∇f(x̄ + Zp) (reduced gradient)
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First-order necessary conditions
A point x∗ is a local minimizer of the linearly-constrained problem only if

optimality condition is equivalent to

Z T∇f(x∗) = 0 ⟺ ∇f(x∗)⊺p = 0 ∀p ∈ null(A)

the m-vector y contains the Lagrange multipliers

∇f(x∗) = AT y =
m

∑

i=1

yiai

∃ y ∈ Rm st ∇f(x∗) = AT y [optimality]

Ax∗ = b [feasibility]
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Second-order optimality
fZ(p) := f(x̄ + Zp) ∇fZ(p) := Z T∇f(x̄ + Zp) ∇2fZ(p) := Z T∇2f(x̄ + Zp)Z

Necessary 2nd-order optimality: x∗ is a local minimizer only if

⟺

Necessary and sufficient 2nd-order optimality: x∗ is a local minimizer if and only if

⟺

Ax∗ = b

Z T∇f(x∗) = 0
Z T∇2f(x∗)Z ⪰ 0

⎫

⎪

⎬

⎪

⎭

⎧

⎪

⎨

⎪

⎩

Ax∗ = b

∇f(x∗) = AT y  for some y
pT∇2fZ(p∗)p ≥ 0 ∀p ∈ null(A)

Ax∗ = b

Z T∇f(x∗) = 0
Z T∇2f(x∗)Z ≻ 0

⎫

⎪

⎬

⎪

⎭

⎧

⎪

⎨

⎪

⎩

Ax∗ = b

∇f(x∗) = AT y  for some y
pT∇2fZ(p

∗)p > 0 ∀0 ≠ p ∈ null(A)
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Example: Least norm solutions
min
x∈Rn

{ ∥x∥ ∣ Ax = b }

Take f(x) = 1
2 ∥x∥2 and apply first-order optimality conditions

} ⟺ [ ] [ ] = [ ]

A possible solution approach: - observe that multiplier y satisfies

AAT y = b

factor AT = QR (thin QR factorization)

multipliers: y = R−1R−T b

solution: x = AT y = (QR)(R−1R−T b) = QR−T b

x = AT y for some y
Ax = b

−I AT

A 0
x

y

0
b
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Question
Find a minimimal norm solution to the linear system

n

∑

i=1

ξi = 1

If n = 5 and x = (ξ1, ξ2, ξ3, ξ4, ξ5), which of the following is a minimal norm solution?

a. x = 1/5 ⋅ (1, 1, 1, 1, 1)

b. x = 5 ⋅ (5, 5, 5, 5, 5)

c. x = (1, 1, 1, 1, 1)

d. x = (1, 2, 3, 4, 5)
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Question
What are the lagrange multipliers for the minimum-norm problem

min
x∈Rn

{ ∥x∥2 ∣ Ax = b }

where

A = [ ] and b = [ ]

1 1 1
1 1 0

1
1
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Reduced gradient method
min
x∈Rn

  {f(x) ∣ Ax = b}

choose x0 and Z such that Ax0 = b and AZ = 0

for k = 0, 1, 2,…

compute gradient gk = ∇f(xk)

STOP if ∥Z T gk∥ small

compute Hessian approximation H k ≈ ∇2f(xk), H k ≻ 0

solve Z T H kZpk = −Z T gk

linesearch on f(xk + αZpk)

12 / 13



Obtaining a null-space basis
assume variables (columns of A) permuted so that

A = [ ] where B nonsingular

feasibility requires

b = Ax = BxB + NxN

basic (xB) and nonbasic (xN ) variables:

xN  are “free”

xB = B−1b − B−1NxN  uniquely determined by xN

constructing a null-space matrix

Z = [ ] ⟹ AZ = [ ] [ ] = 0

B N

−B−1N

I
B N

−B−1N

I
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