Linear Constraints

CPSC 406 – Computational Optimization

Linear constraints

- underdetermined linear systems
- reduced-gradient methods

Linearly-constrained optimization

$$\min_{x\in \mathbb{R}^n} \ \set{f(x) \mid Ax = b}$$

- $f: \mathbb{R}^n
 ightarrow \mathbb{R}$ is a smooth function
- A is m imes n, b is an m-vector, m < n (underdetermined)
- assume throughout that A has full row rank
- feasible set

$$\mathcal{F} = \{x \in \mathbb{R}^n \mid Ax = b\}$$

Eliminating constraints

• equivalent representation of the feasible set

$$\mathcal{F} = \{x \in \mathbb{R}^n \mid Ax = b\} = \{ar{x} + Zp \mid p \in \mathbb{R}^{n-m}\}$$

- $ar{x}$ is a particular solution, ie, $Aar{x}=b$
- Z is a basis for the null space of A, ie, AZ=0
- reduced problem is unconstrained in n-m variables

 $\min_{p\in \mathbb{R}^{n-m}} \; f(ar{x}+Zp)$

- apply any unconstrained optimization method to solve to obtain solution p^st
- then a solution $x^* = ar{x} + Zp^*$ is the solution to the original problem

Example (in class)

$$\min_{x\in \mathbb{R}^2} \; ig\{ rac{1}{2} (x_1^2 + x_2^2) \mid x_1 + x_2 = 1 ig\}$$

Optimality conditions

- define **reduced** objective for any particular solution $ar{x}$ and basis Z

$$f_Z(p) = f(\bar{x} + Zp)$$

 $abla f_Z(p) = Z^T
abla f(ar x + Zp) \quad (ext{reduced gradient})$

- let p^* be a solution to the reduced problem and set $x^* = ar{x} + Z p^*$

$$abla f_Z(p^*) = 0 \quad \Longleftrightarrow \quad Z^T
abla f(x^*) = 0 \quad \Longleftrightarrow \quad
abla f(x^*) \in \mathbf{null}(Z^T)$$

• funadamental subspaces of A and Z are orthogonal complements

$$\mathbf{null}(A) \equiv \mathbf{range}(Z) \iff \mathbf{null}(Z^T) \equiv \mathbf{range}(A^T)$$

• thus,

$$abla f(x^*) \in \mathbf{null}(Z^T) \quad \Longleftrightarrow \quad
abla f(x^*) \in \mathbf{range}(A^T) \quad \Longleftrightarrow \quad \exists y \operatorname{st}
abla f(x^*) = A^T y$$

First-order necessary conditions

A point x^* is a local minimizer of the linearly-constrained problem **only if**

$$\exists \ y \in \mathbb{R}^m ext{ st }
abla f(x^*) = A^T y \qquad ext{[optimality]}$$

$$Ax^* = b$$
 [feasibility]

• optimality condition is equivalent to

$$Z^T
abla f(x^*) = 0 \quad \Longleftrightarrow \quad
abla f(x^*)^\intercal p = 0 \quad orall p \in \mathbf{null}(A)$$

• the *m*-vector *y* contains the Lagrange multipliers

$$abla f(x^*) = A^T y = \sum_{i=1}^m y_i a_i$$

Second-order optimality

 $f_Z(p):=f(ar{x}+Zp) \qquad
abla f_Z(p):=Z^T
abla f(ar{x}+Zp) \qquad
abla^2 f_Z(p):=Z^T
abla^2 f(ar{x}+Zp)Z$

Necessary 2nd-order optimality: x^* is a local minimizer **only if**

$$egin{array}{c} Ax^* = b \ Z^T
abla f(x^*) = 0 \ Z^T
abla^2 f(x^*) Z \succeq 0 \end{array} ightarrow \left\{ egin{array}{c} Ax^* = b \
abla f(x^*) = A^T y \ p^T
abla^2 f_Z(p^*) p \geq 0 \end{array} ightarrow p \in {f null}(A) \end{array}
ight.$$
 for some y

Necessary and sufficient 2nd-order optimality: x^* is a local minimizer if and only if

$$egin{array}{c} Ax^* = b \ Z^T
abla f(x^*) = 0 \ Z^T
abla^2 f(x^*) Z \succ 0 \end{array} iggrightarrow i$$

Example: Least norm solutions

$$\min_{x\in \mathbb{R}^n} \left\{ \; \|x\| \mid Ax = b \;
ight\}$$

Take $f(x) = rac{1}{2} \|x\|^2$ and apply first-order optimality conditions

$$egin{array}{ccc} x = A^T y & ext{for some } y \ Ax = b \end{array} & & egin{array}{ccc} -I & A^T \ A & 0 \end{bmatrix} egin{array}{ccc} x \ y \end{bmatrix} = egin{array}{ccc} 0 \ b \end{bmatrix}$$

A possible solution approach: - observe that multiplier y satisfies

$$AA^Ty = b$$

- factor $A^T = QR$ (thin QR factorization)
- multipliers: $y = R^{-1}R^{-T}b$
- solution: $x = A^T y = (QR)(R^{-1}R^{-T}b) = QR^{-T}b$

Find a minimimal norm solution to the linear system

$$\sum_{i=1}^n \xi_i = 1$$

If n=5 and $x=(\xi_1,\xi_2,\xi_3,\xi_4,\xi_5)$, which of the following is a minimal norm solution?

a. $x = 1/5 \cdot (1, 1, 1, 1, 1)$ b. $x = 5 \cdot (5, 5, 5, 5, 5)$ c. x = (1, 1, 1, 1, 1)d. x = (1, 2, 3, 4, 5)

Question

What are the lagrange multipliers for the minimum-norm problem

$$\min_{x\in \mathbb{R}^n} \left\{ \; \|x\|^2 \mid Ax = b \;
ight\}$$

where

$$A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 0 \end{bmatrix}$$
 and $b = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$

Reduced gradient method

$$\min_{x\in \mathbb{R}^n} \ \{f(x) \mid Ax = b\}$$

- choose x^0 and Z such that $Ax^0 = b$ and AZ = 0
- for $k=0,1,2,\ldots$
 - compute gradient $g^k =
 abla f(x^k)$
 - STOP if $\|Z^Tg^k\|$ small
 - compute Hessian approximation $H^k pprox
 abla^2 f(x^k)$, $H^k \succ 0$
 - solve $Z^T H^k Z p^k = -Z^T g^k$
 - linesearch on $f(x^k + \alpha Z p^k)$

Obtaining a null-space basis

• assume variables (columns of A) permuted so that

 $A = \begin{bmatrix} B & N \end{bmatrix}$ where B nonsingular

• feasibility requires

$$b = Ax = Bx_B + Nx_N$$

- basic (x_B) and nonbasic (x_N) variables:
 - x_N are "free"
 - $x_B = B^{-1}b B^{-1}Nx_N$ uniquely determined by x_N
- constructing a null-space matrix

$$Z = \begin{bmatrix} -B^{-1}N \\ I \end{bmatrix} \implies AZ = \begin{bmatrix} B & N \end{bmatrix} \begin{bmatrix} -B^{-1}N \\ I \end{bmatrix} = 0$$