Standard Form Polyhedra

CPSC 406 – Computational Optimization

Standard Form Polyhedra

- standard form
- converting to standard form
- two-dimensional representations
- degeneracy: inequality form
- degeneracy: standard form

Polyhedra in standard form

Generic polyhedron

$$\mathcal{P} = \left\{ x ig| egin{smallmatrix} Ax = b \ Cx \leq d \end{matrix}
ight\}$$

Standard-form polyhedron

$$\mathcal{P} = egin{cases} Ax = b \ x \ge 0 \end{bmatrix} \quad ext{with} \quad b \ge 0$$

Ensure nonnegative *b*

For $b_i < 0$, replace

$$a_i x = b_i \quad \longrightarrow \quad (-a_i) x = (-b_i)$$

For $d_i < 0$, replace

$$egin{array}{rcl} c_i^{\intercal}x \leq d_i & \longrightarrow & (-c_i)^{\intercal}x \geq (-d_i) \ c_i^{\intercal}x \geq d_i & \longrightarrow & (-c_i)^{\intercal}x \leq (-d_i) \end{array}$$

Introduce slack and surplus variables

For every inequality constraint of the form

$$c_i^{\intercal} x \leq d_i \qquad ig(c_i^{\intercal} x \geq d_iig)$$

introduce a new *slack* (or *surplus*) variable s_i , replacing the inequality with two constraints

$$egin{aligned} c_i^\intercal x + s_i &= d_i \ s_i &\geq 0 \end{aligned} egin{pmatrix} c_i^\intercal x - s_i &= d_i \ s_i &\geq 0 \end{pmatrix} \end{aligned}$$

Reformulate free variables

- x_i is called a *free variable* if it has no constraints
- there are no free variables in standard form every variable must be nonnegative

Converting free variables

• every free variable x_i is replaced with two new variables x_i' and x_i'' , ie,

$$x_i:=x_i'-x_i'', \hspace{1em} x_i'\geq 0 ext{ and } x_i''\geq 0$$

- x'_i encodes the positive part of x_i
- x_i'' encodes the negative part of x_i
- optimal solution necessarily has $x_i'\cdot x_i''=0$ (why?)

Example

Consider the following LP problem:

To convert to standard form:

- 1. Handle the lower bound on x_2 : Substitute $x_2=y_2+5$ where $y_2\geq 0$
- 2. Introduce slack variables for the inequality constraints

3. Rewrite the objective for minimization

Basic solutions in standard form

• x^* is a *basic solution* if the vectors in the basis set are linearly independent:

 $a_{i_1},a_{i_2},\ldots,a_{i_n}, \quad i_j\in \mathcal{B}$

- in standard form, there are:
 - n variables (x_1, \ldots, x_n)
 - m + n total constraints
 - $\circ \,\,m$ equality constraints (Ax=b)
 - $\circ \,\,n$ inequality constraints ($x\geq 0$)
- for any basic solution *x*:
 - the basic set $\mathcal B$ must have n elements
 - thus, exactly n of the constraints need to be active at x
 - *m* equality constraints are always satisfied
 - thus n-m of the inequality constraints $x \geq 0$ should be "active"

Basic solutions in standard form

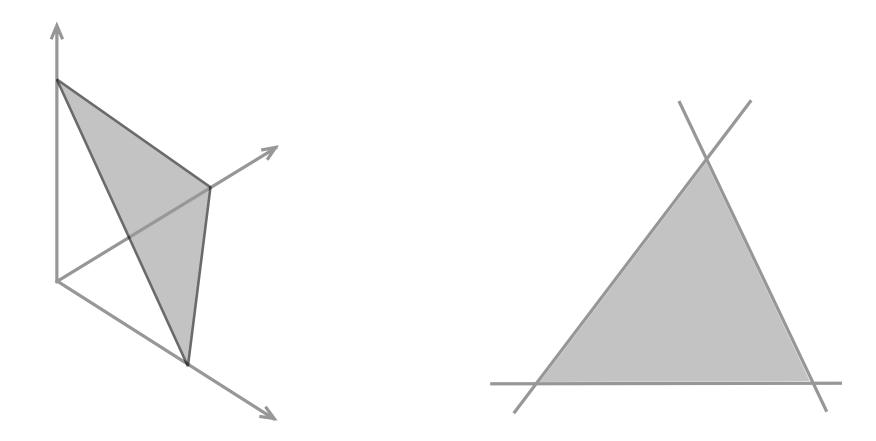
- Choosing n m of the inequality constraints to be active is the same as choosing n m variables x_i to be zero.
- Making x_i zero effectively eliminates column i from the matrix A.
- This is equivalent to choosing *m* columns of *A*! To be a basic solution, we also need these *m* columns to be linearly independent. So, permute the variables and partition

 $AP = \begin{bmatrix} B & N \end{bmatrix}$ where B is nonsingular

• Now we have

$$ar{A}x = egin{bmatrix} B & N \ & I \end{bmatrix}egin{bmatrix} x_B \ x_N \end{bmatrix} = egin{bmatrix} b \ 0 \end{bmatrix}$$
 $x_N = 0$ $Bx_B = b$

Two-dimensional representation



Degeneracy: inequality form

Polyhedron in inequality form:

 $Ax \leq b$

A basic feasible solution x^* with

$$a_i^{\intercal} x^* = b_i, \quad i \in \mathcal{B} \quad ext{and} \quad a_i^{\intercal} x^* < b_i, \quad i
ot \in \mathcal{B}$$

is *degenerate* if # of indices in $\mathcal B$ is greater than n

- property of the *description* of the polyhedron
- affects the performance of some algorithms
- disappears for small perturbations of b

Degeneracy: standard form

Polyhedron in standard form:

$$Ax = b, \quad x \ge 0$$

A basic solution partitions the variables into two sets:

$$egin{array}{ccc} \left[B & N
ight] egin{bmatrix} x_B \ x_N \end{bmatrix} = b & ext{with} & x_N = 0 \end{array}$$

ie,

$$Bx_B = b$$

A basic feasible solution in standard form is *degenerate* if more than n - m components in x are zero, ie,