
Newton’s Method
CPSC 406 – Computational Optimization

1 / 13

Newton’s Method
quadratic approximation

interpretation as scaled descent

Cholesky factorization

2 / 13

Gradient descent
suppose f is L-smooth, i.e. ∥∇2f(x)∥ ≤ L for all x

min
x∈Rn

 f(x), fk = f(xk), gk = ∇f(xk), Hk = ∇2f(xk)

quadratic approximation of f at xk

minimizer x̂ of upper bound q̂k(x) satisfies

0 = ∇q̂k(x̂) = gk + L(x̂− xk)

solve for solution x̄ to obtain gradient descent with α = 1/L

x̄ = xk −
1
L
gk

qk(x) := fk + gTk (x− xk) + 1
2 (x− xk)THk(x− xk)

≤ fk + gTk (x− xk) + 1
2 L∥x− xk∥2 =: q̂k(x)

3 / 13

Newton’s method
2nd-order approximation of f at xk

qk(x) = fk + gTk (x− xk) + 1
2 (x− xk)THk(x− xk), gk = ∇f(xk), Hk = ∇2f(xk) ≻ 0

let x̄ be the minimizer of qk(x), ie,

0 = ∇qk(x̄) = gk +Hk(x̄− xk) ⟺ x̄ = xk −H−1
k gk

pure Newton’s method chooses next iterate xk+1 = x̄

xk+1 = xk + dkN

=Newton direction

, Hkd
k
N = −gk

damped Newton’s method chooses next iterate with step α ≤ 1

xk+1 = xk + αdkN , Hkd
k
N = −gk

4 / 13

Convergence of Newton’s method
require ∇2f(xk) ≻ 0 for all k to ensure descent

may still diverge even if ∇2f(xk) ≻ 0 for all k — eg, if λmin(Hk) is small

Example

f(x) = √1 + x2, ∇f(x) =
x

√1 + x2
, ∇2f(x) =

1
(1 + x2)3/2

Newton iteration

xk+1 = xk −
f ′(xk)

f ′′(xk)
= −(xk)3

convergence of iterates depends on initial point

xk →
⎧

⎪

⎨

⎪

⎩

0 if |x0| < 1
±1 if |x0| = 1
∞ if |x0| > 1 5 / 13

Convergence of Newton’s method
Suppose f : Rn → R is twice continuously differentiable and

∇2f(xk) ≻ ϵI for some ϵ > 0 and all x

∥∇2f(x) − ∇2f(y)∥ ≤ L∥x− y∥ for all x, y for some L > 0

Newton iterations satisfy if xk is sufficiently close to x∗

∥xk+1 − x∗∥ ≤
L

2ϵ
∥xk − x∗∥2

in addition, if ∥x(0) − x∗∥ ≤ ϵ/L, then iterates obtain local quadratic convergence

∥xk+1 − x∗∥ ≤ (

2ϵ
L

)(

1
4

)

2k

6 / 13

Example
f(x) = 100(x2 − x2

1)
2 + (1 − x1)2

Newton Gradient descent

 k fval
 1 1.0100e+02
 2 6.7230e+01
 3 1.9074e+00
 4 1.5506e+00
 5 1.1674e+00
 6 8.3524e-01
 7 6.1188e-01
 8 3.8893e-01
 9 3.8636e-01
 10 1.3032e-01
 11 9.0166e-02
 12 3.1699e-02
 13 2.9670e-02
 14 1.3869e-03
15 1 7446e 04

 k fval
 1 1.0100e+02
 100 1.4702e+00
 200 1.4543e+00
 300 1.4345e+00
 400 1.4200e+00
 500 1.4059e+00
 600 1.3918e+00
 700 1.3776e+00
 800 1.3633e+00
 900 1.3490e+00
1000 1.3347e+00

7 / 13

Cholesky factorization

8 / 13

Positive definite matrices
an n× n matrix A is positive definite if

xTAx > 0 for all x ≠ 0

all eigenvalues of A are positive

0 < xTAx = xT (λx) = λxTx = λ∥x∥2

A ≻ 0 ⟺ XTAX ≻ 0 for all X full rank

every principle submatrix AI ,I is positive definite, eg, diagonals are positive

9 / 13

Cholesky factorization
if A ≻ 0, then

A = [] = []

RT
1

[]

A1

[]

R1

α := √a11

A ≻ 0 ⟺ K − wwT/α2 ≻ 0, thus apply above factorization to K − wwT/α2:

K − wwT/α2 = R̄T
2 Ā2R̄2,

recursively apply to obtain A = RTR

a11 wT

w K

α

w/α I

1

K − wwT/α2

α wT/α
I

A = RT
1 []R1 = RT

1 []

RT
2

[]

A2

[]

R2

R1

= RT
1R

T
2A2R2R1 = ⋯ = (RT

1R
T
2 ⋯RT

n)

RT

(Rn⋯R2R1)

R

1

R̄T
2 Ā2R̄2

1

R̄T
2

1

Ā2

1

R̄2

10 / 13

Cholesky factorization (summary)
an n× n matrix A is positive definite if and only if

A = RTR for some nonsingular upper triangular R

requires (1/3)n3 flops vs (2/3)n3 for LU factorization

using LinearAlgebra1
A = [4 12 -16; 12 37 -43; -16 -43 98]2
R = cholesky(A)3
R.L4

3×3 LowerTriangular{Float64,
Matrix{Float64}}:
 2.0 ⋅ ⋅
 6.0 1.0 ⋅
 -8.0 5.0 3.0

R.L * R.L' ≈ A1 true

A[3,3] = -11
R = try2
 cholesky(A)3
catch4
 "Matrix is not positive definite"5
end6

"Matrix is not positive definite"

11 / 13

Solving for Newton direction
Newton direction dkN solves

Hkd
k
N = −gk, where Hk = ∇2f(xk), gk = ∇f(xk)

solve for Newton step via

Cholesky

1. τ = 0

2. (Hk + τI) = RTR

if Cholesky fails, increase τ and repeat

3. solve RTRdkN = −gk

Eigenvalue decomposition

1. choose ϵ > 0 small

2. Hk = UΛU T , Λ = Diag(λ1,… ,λn)

3. λ̄i = max(λi, ϵ)

4. Λ̄ = Diag(λ̄1,… , λ̄n)

5. solve UΛ̄U TdkN = −gk

12 / 13

Factorizations
A = QR can be used to solve linear systems or least-squares problems

Ax = b ⟺ Rx = QT b

if A ≻ 0, other factorizations are available:

diagonalization: U orthogonal, Λ diagonal

A = UΛU T , Ax = b ⟺ Λy = U T b, x = Uy

Cholesky: R ≻ 0 lower triangular

A = RT R, Ax = b ⟺ RT y = b

backsolve

, Rx = y

forward solve

why?

inverting a matrix can be numerically unstable

factorizations can be reused for multiple right-hand sides

multiplying orthogonal matrices is numerically stable and solving triangular/diagonal
systems is easy

13 / 13

