Newton's Method

CPSC 406 – Computational Optimization

Newton's Method

- quadratic approximation
- interpretation as scaled descent
- Cholesky factorization

Gradient descent

• suppose f is L-smooth, i.e. $\|
abla^2 f(x)\| \leq L$ for all x

$$\min_{x\in\mathbb{R}^n}\;f(x),\quad f_k=f(x^k),\quad g_k=
abla f(x^k),\quad H_k=
abla^2 f(x^k)$$

• quadratic approximation of f at x^k

$$egin{aligned} q_k(x) &:= f_k + g_k^T(x-x^k) + rac{1}{2}(x-x^k)^T H_k(x-x^k) \ &\leq f_k + g_k^T(x-x^k) + rac{1}{2}L \|x-x^k\|^2 =: \hat{q}_k(x) \end{aligned}$$

• minimizer \hat{x} of upper bound $\hat{q}_k(x)$ satisfies

$$0 =
abla \hat{q}_k(\hat{x}) = g_k + L(\hat{x} - x^k)$$

- solve for solution $ar{x}$ to obtain gradient descent with lpha=1/L

$$\bar{x} = x^k - \frac{1}{L}g_k \tag{3/13}$$

Newton's method

• 2nd-order approximation of f at x^k

$$q_k(x) = f_k + g_k^T(x-x^k) + rac{1}{2}(x-x^k)^T H_k(x-x^k), \quad g_k =
abla f(x^k), \quad H_k =
abla^2 f(x^k) \succ 0$$

• let $ar{x}$ be the minimizer of $q_k(x)$, ie,

$$0 =
abla q_k(ar x) = g_k + H_k(ar x - x^k) \quad \Longleftrightarrow \quad ar x = x^k - H_k^{-1}g_k$$

- pure Newton's method chooses next iterate $x^{k+1} = ar{x}$

$$x^{k+1} = x^k + \underbrace{d_N^k}_{= ext{Newton direction}}, \hspace{1em} H_k d_N^k = -g_k$$

- damped Newton's method chooses next iterate with step $lpha \leq 1$

$$x^{k+1}=x^k+lpha d_N^k, \qquad H_k d_N^k=-g_k$$

Convergence of Newton's method

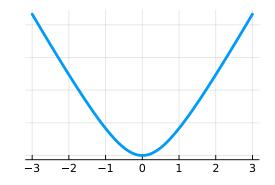
- require $abla^2 f(x^k) \succ 0$ for all k to ensure **descent**
- may still diverge even if $abla^2 f(x^k) \succ 0$ for all $k- ext{eg}$, if $\lambda_{\min}(H_k)$ is small

Example

$$f(x)=\sqrt{1+x^2}, \quad
abla f(x)=rac{x}{\sqrt{1+x^2}}, \quad
abla^2 f(x)=rac{1}{(1+x^2)^{3/2}}$$

• Newton iteration

$$x^{k+1} = x^k - rac{f'(x^k)}{f''(x^k)} = -(x^k)^3$$



• convergence of iterates depends on initial point

$$x^k o egin{cases} 0 & ext{if} \ |x^0| < 1 \ \pm 1 & ext{if} \ |x^0| = 1 \ \infty & ext{if} \ |x^0| > 1 \end{cases}$$

Convergence of Newton's method

- Suppose $f:\mathbb{R}^n
 ightarrow \mathbb{R}$ is twice continuously differentiable and
 - $abla^2 f(x^k) \succ \epsilon I$ for some $\epsilon > 0$ and all x
 - $\|
 abla^2 f(x)
 abla^2 f(y)\| \leq L \|x-y\|$ for all x,y for some L>0

• Newton iterations satisfy if x^k is sufficiently close to x^*

$$\|x^{k+1}-x^*\| \leq rac{L}{2\epsilon}\|x^k-x^*\|^2$$

- in addition, if $\|x^{(0)}-x^*\| \leq \epsilon/L$, then iterates obtain local quadratic convergence

$$\|x^{k+1}-x^*\| \leq igg(rac{2\epsilon}{L}igg)igg(rac{1}{4}igg)^{2^k}$$

Example

$$f(x) = 100(x_2 - x_1^2)^2 + (1 - x_1)^2$$

Newton

k

Gradient descent

fval	k	fval
1.0100e+02	1	1.0100e+02
6.7230e+01	100	1.4702e+00
1.9074e+00	200	1.4543e+00
1.5506e+00	300	1.4345e+00
1.1674e+00	400	1.4200e+00
8.3524e-01	500	1.4059e+00
6.1188e-01	600	1.3918e+00
3.8893e-01	700	1.3776e+00
3.8636e-01	800	1.3633e+00
1.3032e-01	900	1.3490e+00
9.0166e-02	1000	1.3347e+00
3 . 1699e-02		
2.9670e-02		

- 1.3869e-03
- 1 ⊑ 1 7116- 01

Cholesky factorization

Positive definite matrices

• an n imes n matrix A is positive definite if

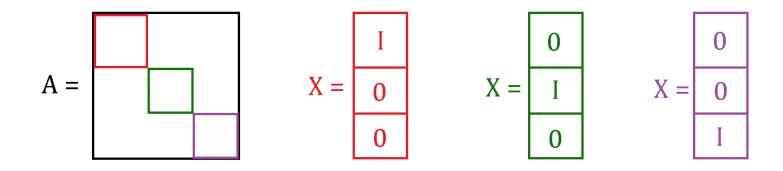
 $x^TAx > 0 \quad ext{for all} \quad x
eq 0$

• all eigenvalues of A are positive

$$0 < x^TAx = x^T(\lambda x) = \lambda x^Tx = \lambda \|x\|^2$$

•
$$A \succ 0 \quad \Longleftrightarrow \quad X^T A X \succ 0$$
 for all X full rank

• every principle submatrix $A_{\mathcal{I},\mathcal{I}}$ is positive definite, eg, diagonals are positive



Cholesky factorization

• if $A \succ 0$, then

$$A = egin{bmatrix} a_{11} & w^T \ w & K \end{bmatrix} = \underbrace{egin{bmatrix} lpha & \ w/lpha & I \end{bmatrix}}_{R_1^T} egin{bmatrix} 1 & \ K - ww^T/lpha^2 \end{bmatrix} egin{bmatrix} lpha & w^T/lpha \ & I \end{bmatrix} \ lpha := \sqrt{a_{11}}$$

• $A \succ 0 \iff K - ww^T/lpha^2 \succ 0$, thus apply above factorization to $K - ww^T/lpha^2$:

$$K-ww^T/lpha^2=ar{R}_2^Tar{A}_2ar{R}_2,$$

• recursively apply to obtain $A = R^T R$

$$A = R_{1}^{T} \begin{bmatrix} 1 & & \\ & \bar{R}_{2}^{T} \bar{A}_{2} \bar{R}_{2} \end{bmatrix} R_{1} = R_{1}^{T} \underbrace{\begin{bmatrix} 1 & & \\ & \bar{R}_{2}^{T} \end{bmatrix}}_{R_{2}^{T}} \underbrace{\begin{bmatrix} 1 & & \\ & \bar{A}_{2} \end{bmatrix}}_{R_{2}} \begin{bmatrix} 1 & & \\ & \bar{R}_{2} \end{bmatrix}}_{R_{2}} R_{1}$$
$$= R_{1}^{T} R_{2}^{T} A_{2} R_{2} R_{1} = \cdots = \underbrace{(R_{1}^{T} R_{2}^{T} \cdots R_{n}^{T})}_{R^{T}} \underbrace{(R_{n} \cdots R_{2} R_{1})}_{R}$$

Cholesky factorization (summary)

- an n imes n matrix A is positive definite if and only if

 $A = R^T R$ for some nonsingular upper triangular R

- requires $(1/3)n^3$ flops vs $(2/3)n^3$ for LU factorization

1 using LinearAlgebra 2 A = [4 12 -16; 12 37 -43; -16 -43 98]	3×3 LowerTriangular{Float64, Matrix{Float64}}:	
3 R = cholesky(A)	2.0 · ·	
4 R.L	6.0 1.0 ·	
	-8.0 5.0 3.0	

1 R.L * R.L' \approx A

true

1	A[3,3] = -1	'' N
2	R = try	
3	cholesky(A)	
4	catch	
5	"Matrix is not positive definite"	
6	end	

"Matrix is not positive definite"

Solving for Newton direction

• Newton direction d_N^k solves

$$H_k d_N^k = -g_k, \quad ext{where} \quad H_k =
abla^2 f(x^k), \quad g_k =
abla f(x^k)$$

• solve for Newton step via

Cholesky

1. au=0

- 2. $(H_k+ au I)=R^TR$
- if Cholesky fails, increase au and repeat 3. solve $R^T R d_N^k = -g_k$

Eigenvalue decomposition

1. choose
$$\epsilon > 0$$
 small
2. $H_k = U\Lambda U^T$, $\Lambda = \mathbf{Diag}(\lambda_1, \dots, \lambda_n)$
3. $\overline{\lambda}_i = \max(\lambda_i, \epsilon)$
4. $\overline{\Lambda} = \mathbf{Diag}(\overline{\lambda}_1, \dots, \overline{\lambda}_n)$
5. solve $U\overline{\Lambda}U^T d_N^k = -g_k$

Factorizations

• A = QR can be used to solve linear systems or least-squares problems

$$Ax = b \quad \Longleftrightarrow \quad Rx = Q^T b$$

- if $A \succ 0$, other factorizations are available:
 - diagonalization: U orthogonal, Λ diagonal

$$A = U\Lambda U^T, \quad Ax = b \quad \Longleftrightarrow \quad \Lambda y = U^T b, \quad x = U y$$

• Cholesky: $R \succ 0$ lower triangular

$$A=R^TR, \quad Ax=b \quad \Longleftrightarrow \quad \underbrace{R^Ty=b}_{ ext{backsolve}}, \quad \underbrace{Rx=y}_{ ext{forward solve}}$$

• why?

- inverting a matrix can be numerically unstable
- factorizations can be reused for multiple right-hand sides
- multiplying orthogonal matrices is numerically stable and solving triangular/diagonal systems is easy