QR Factorization

CPSC 406 – Computational Optimization

Overview

- Orthogonality
- QR properties
- Solution of linear least-squares problems

Orthogonal vectors

Two vectors x and y in \mathbb{R}^n

• recall cosine identity

$$x^\intercal y = \|x\|_2 \|y\|_2 \cos heta$$

• x and y in \mathbb{R}^n are **orthogonal** if

$$x^{\intercal}y = 0 \quad (\cos \theta = 0)$$

• *x* and *y* are **orthonormal** if

$$x^{\intercal}y = 0, \quad x^{\intercal}x = 1, \quad y^{\intercal}y = 1$$

- a set of orthogonal n-vectors $\{q_1,\ldots,q_m\}$ are linearly independent
 - if m=n then it's a basis for \mathbb{R}^n

Orthogonal matrices

An $n \times r$ matrix Q is **orthonormal** if its columns are pairwise orthonormal:

$$Q = [q_1 \mid \dots \mid q_r], \qquad Q^{\mathsf{T}}Q = \begin{bmatrix} q_1^{\mathsf{T}}q_1 & q_2^{\mathsf{T}}q_1 & \dots & q_r^{\mathsf{T}}q_1 \\ q_1^{\mathsf{T}}q_2 & q_2^{\mathsf{T}}q_2 & \dots & q_r^{\mathsf{T}}q_2 \\ \vdots & \vdots & \ddots & \vdots \\ q_1^{\mathsf{T}}q_r & q_2^{\mathsf{T}}q_r & \dots & q_r^{\mathsf{T}}q_r \end{bmatrix} = I_r$$

• if r = n (ie, Q is square) then Q is **orthogonal**

$$Q^{-1} = Q^{\mathsf{T}}$$
 and $Q^{\mathsf{T}}Q = QQ^{\mathsf{T}} = I_n$

• orthogonal transformations preserve lengths and angles

$$\|x\|_2 = \|Qx\|_2$$
 and $x^\intercal y = x^\intercal Q^\intercal Qy = (Qx)^\intercal (Qy)$ and $\det(Q) = \pm 1$

Question: Orthogonal matrices

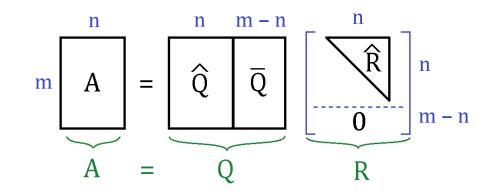
Let Q be an n imes n orthogonal matrix (so $Q^T Q = I_n$). Which of the following statements is always true for any vectors $x, y \in \mathbb{R}^n$?

a.
$$\|Qx\| = \|x\|$$
, but $\|Qy\|
eq \|y|$

b.
$$(Qx)^\intercal(Qy) = x^\intercal y$$

c. $\det(Q) = +1$ d. $\|Qx\|
eq \|x\|$, and angles are distored by Q?

QR Factorization

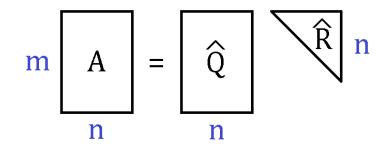


where

1. Q is orthogonal ($Q^{\intercal}Q = QQ^{\intercal} = I_m$) 2. \hat{R} is upper triangular ($\hat{R}_{ij} = 0$ for i > j) 3. $\mathbf{range}(\hat{Q}) = \mathbf{range}(A)$ 4. $\mathbf{range}(\bar{Q}) = \mathbf{range}(A)^{\perp} \equiv \mathbf{null}(A^{\intercal})$ 1 using LinearAlgebra
2 Q, R = qr(A)

Reduced QR Factorization

For $A\,m imes n$ with $m\ge n$, full rank



taking column by column, with $\hat{Q} = [q_1 \mid \, \cdots \, \mid q_n]$

$$egin{aligned} a_1 &= r_{11}q_1\ a_2 &= r_{12}q_1 + r_{22}q_2\ a_3 &= r_{13}q_1 + r_{23}q_2 + r_{33}q_3\ dots\ a_n &= r_{1n}q_1 + r_{2n}q_2 + \dots + r_{nn}q_n \end{aligned}$$

${\rm Question:} \ {\rm Columns} \ {\rm of} \ Q$

Let A be an $m \times n$ matrix ($m \ge n$) of full column rank, and suppose A = QR is its reduced QR factorization. The columns of Q form an orthonormal basis for which of the following subspaces?

- A. The row space of ${\cal A}$
- B. The column space of A
- C. The $\operatorname{\mathbf{null}}\operatorname{\mathbf{space}}\operatorname{of} A$
- D. The ${\it orthogonal\ complement\ }$ of the column space of A

Nonsingular equations with QR

Given n imes n matrix A, full rank, solve

Ax = b

solve by QR factorization A = QR and $Q^{\intercal}Q = I$ mathematically

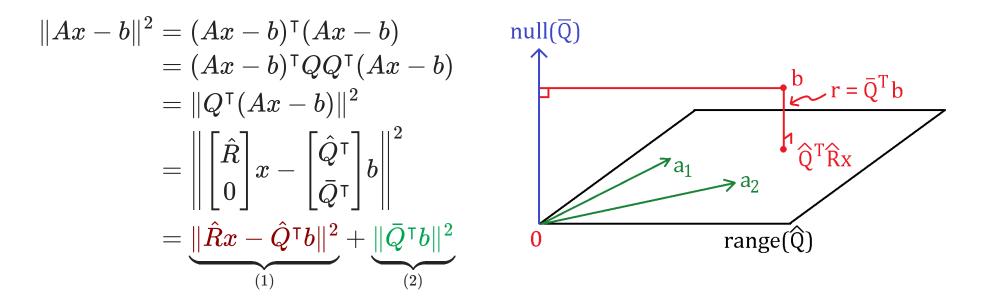
$$x = A^{-1}b = (QR)^{-1}b = R^{-1}Q^{-1}b = R^{-1}Q^{\intercal}b$$

computationally

1 using LinearAlgebra 2 Q, R = qr(A) # $0(n^3) \le --$ dominant cost 3 y = Q'b # $0(n^2) \le --$ matrix-vector multiply 4 x = R \ y # $0(n^2) \le --$ triangular solve

Geometry of Least-Squares via QR

$$\min_{x\in \mathbb{R}^n} \; \|Ax-b\|^2, \qquad A=QR$$



where (1) is minimized when $\hat{R}x=\hat{Q}^{\intercal}b$ and (2) is constant

Question: Least-Squares and Orthogonal Projections

Consider the least-squares problem

$$\min_{x\in\mathbb{R}^n}\|Ax-b\|,$$

Let A = QR and $c = Q^T b$. Which of the following best describes the **meaning** of c\$?

- A. c is the orthogonal projection of b in the **original space**.
- B. c is the coordinate vector of the projection of b onto the **column space** of Q.
- C. c is orthogonal to every column of Q.
- D. c has no geometric interpretation for the least-squares problem.

Solving Least-Squares via QR

$$\min_{x\in \mathbb{R}^n} \; \|Ax-b\|^2, \qquad A=QR$$

mathematically

$$A^{\intercal}Ax = A^{\intercal}b$$

 $R^{\intercal}Q^{\intercal}QRx = R^{\intercal}Q^{\intercal}b$
 $Rx = Q^{\intercal}b$
 $x = R^{-1}Q^{\intercal}b$

computationally

1 using LinearAlgebra
2 F = qr(A) # 0(n^3) <-- dominant cost
3 Q, R = Matrix(F.Q), F.R # extract _thin_ Q, and R
4 y = Q'b # 0(n^2) <-- matrix-vector multiply
5 x = R \ y # 0(n^2) <-- triangular solve</pre>

more numerically stable than solving $A^{\intercal}Ax = A^{\intercal}b$ directly

Question: Geometric Interpretation of ${\cal R}$

In the factorization A = QR, with Q having orthonormal columns, what is the **geometric** interpretation of the triangular matrix R?

- a. R is an orthogonal matrix that preserves angles and lengths.
- b. R describes how the columns of A can be expressed as linear combinations of the columns of Q, capturing their coordinates in the orthonormal basis.
- c. R is the null-space basis of A.
- d. R is a diagonal matrix containing the singular values of A.

Accuracy of QR vs Normal Equations

For ϵ positive, this matrix has full rank because $\sin^2(heta) + \cos^2(heta) = 1$

$$A = egin{bmatrix} sin^2(heta_1) & cos^2(heta_1+\epsilon) & 1 \ sin^2(heta_2) & cos^2(heta_2+\epsilon) & 1 \ dots & dots & dots \ sin^2(heta_m) & cos^2(heta_m+\epsilon) & 1 \end{bmatrix}$$

```
1 using LinearAlgebra
   \theta = \text{LinRange}(0, 3, 400)
 3 \epsilon = 1e-7
 4 A = @. [\sin(\theta)^2 \cos(\theta + \varepsilon)^2 \theta^0]
 5 x^{e} = [1., 2., 1.]
   b = A * x^e
 6
 7
8 xn = A'A \setminus A'b
                                     # Compute xn via normal equations
 0
10 Q, R = qr(A); Q = Matrix(Q) # Compute xr via QR
11 xr = R \setminus (Q'b)
12
13 xb = A \setminus b
                                       # Compute xb via backslash
14
15 @show xn xr xb;
```