Scaled Descent

CPSC 406 - Computational Optimization



Scaled descent

e conditioning
e scaled gradient direction

e Gauss Newton
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Zig-zagging

Consider the quadratic function with H symmetric and positive definite

f(x) = %xTHa;, H=UAUT

level sets are ellipsoids: gradient descent from two starting points:

e eigenvectors of H are principal axes

e eigenvalues are the lengths of the “unit ellipse” axes 3/19



Gradient descent
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Gradient descent zig-zags

2

Let ml, T, ...betheiterates generated by gradient descent with exact linesearch. Then

(wk—kl . CI)k)T(QZk+2 o xk—kl) —0

Proof: exact steplength satisfies

of = argmin ¢(a) := f(z" + ad®), d*" = -Vf(z")

a>0

e optimality of stepa = aF

0=¢'(a*) = ——f(g" + a'd") = (d")' V(") = =V f(=") V(")
_pht1
e because FT! — 2% — ofdF and 2F 2 — 2kl — gtk

Vf(ibk)TVf(wk+l) — 0 < (warl . a:k)T(:Bk+2 o wk+1) —0
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Condition number

The condition number of ann X n positive definite matrix H is

e ill-conditioned if k(H) > 1

e condition number of Hessian influences speed of convergence of gradient descent
= k(H) = 1: gradient descent converges in one step
= k(H) > 1:gradient descent zig-zags

e if fistwice continuously differentiable, define the condition number of f at solution z* as

K(f) = K(V*f(z"))
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Scaled gradient method

rrgnf(w) f:R" =R

e make a linear change of variables: x = Sy where S is nonsingular to get rescaled problem
min g(y) := f(5y)
e apply gradient descent to scaled problem
Y =y" —a'Vyg(y") with Vg(y) = STV f(Sy)
e multiply on left by S to get x-update

wk—H _ Syk—i—l _ S(yk o akvg(yk)) _ J)k o akSSTVf(CBk)

scaled gradient method

h 1l = 2k 4+ akdP, d* = —SSTV f(z")
—~—
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Scaled descent

o If Vf(x) # 0, the scaled negative gradientd = —SSTV f(x) is a descent direction
f'(z;d) = d"Vf(z) = —Vf(z)" (S8")Vf(z) <0

because D := SST - 0

e Recall: a matrix D is positive definite if and only if

» D =UAUT with A > 0diagonal and U nonsingular
= D = S85T with S nonsingular

scaled gradient method

e fork=0,1,2,...
= choose scaling matrix Dy > 0
= computed® = —DV f(z*)
= choose stepsize a* > 0 via linesearch on ¢(at) = f(z* + ad”)

= update ¥t = ¥ + aFd*
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Choosing the scaling matrix

Observe relationship between optimizing f and optimizing its scaling g

mying(y) = f(Sy) with z =Sy
condition number of sz(a:) governs convergence of gradient descent
V?g(y) = STV £(Sy)S
e choose S such that Vg is well-conditioned, ie, k(V?%g) ~ 1

Example (quadratic)

f(x) = %xTHx +bTz+v, Vf(z)=H=UAU" -0

e pick Ssuchthat STHS = I,ie, S = H /2 .= UAYV2UT
e gives perfectly conditioned Vg

k(STHS) = k(H V2HH Y = k(1) =1
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Level sets of scaled and unscaled problems

Close to solution x*, levels sets of

e fareellipsoidsand k(f) > 1 e are circles forideal S because k(g) ~ 1

N
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Question

Consider the change of variables x = Sy to the quadratic function

f(e) = 5" He,

to obtain the scaled function

9(y) = f(Sy).

Which choice of the nonsingular scaling matrix S will transform the level sets of g(y) into circles
(i.e., result in a perfectly conditioned Hessian for g)?

a. S = I (the identity matrix)

b.S=H

.S =H1?

d. S = diag(H) (the diagonal part of H)
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Common scalings

Make SF) W2 f(2*))S*) a5 well conditioned as possible

(k)))—1 Newton (k = 1)
SH(§ENT — ( ( ")+ AI)~'  damped Newton

-1
Dlag( ' (x(k)) ) diagonal scaling
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Gauss Newton
Nonlinear Least Squares



Nonlinear least squares

e NLLS (nonlinear least-squares) problem

mIiRn f(z) = |r(z)||35, r:R" —=R™ (typically, m > n).
TER™

e gradient and residual vector (Jacobian J(x))

(r1() | Vri(z)'

ro(x Vra(z)T
=" Ve = de@, = |

P (T)_ _V’rm(a:)T_

e reduces to linear least-squares when 7 is affine
r(x) = Az —b
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Example - localication problem

e estimate z € R? from approximate distances to known fixed beacons

data
/&pg " » m beacons at known locations by, . . .
S : :
b, % M./ e approximate distances

: Kei I,
1 i Rt i '\\

o/ ; di = ||z — bi||2 + €

L P

ik e ¢ i where €; is measurement error
¥ b3 l'

e NLLS position estimate solves

must settle for locally optimal solution

y Oy
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Linearization of residual

e linearize r(x) about =

ri(z) r(z) + Vri(z)! (z — z)
rol(® ro(T Vro () (x —

&) — (z) _ (Z) + Vra(z)" ( )'+dw—fm
Tm(T) i (Z) + V(@)Y (z — T)

e pure Gauss Newton iteration: use linearized least-squares problem used to determine z (k+1)

z* ) = argmin 2| J(z")z — b(z")|2 or z* TV = J(z*)\b(z)

Z
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Gauss Newton as scaled descent

e expand the least squares subproblem (set Ji, := J(a:k) and by, := b(:z:k)). If Ji, full rank,

) — argmin | Jex — by||?

(Jf Tk) 1T by
(J,Q{’ ) T (Jpx® — 1)
— —(JIZJk) 1Jk Tk

e interpret at scaled gradient descent

2Pt =gk df dF = (T (=T )

—Di-0 =V f(a*)

e Hessian of objective f(z) = %H"‘(w)Hz

V2f(z) = J(z)TJ(z) + Z V2ri(z)
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Gauss Newton for NLLS
min f(z) = 3|r(2)[3, 7:R" - R"

e linesearch on nonlinear objective f(z) = 4 ||r(x)||* required to ensure convergence

" = 2% 1+ ofd”, d* = argmin ||Jpd — 71
d

Gauss Newton for NLLS

e given starting point 2 and stopping tolerance e > 0
e fork=0,1,2,...
1. compute residual r, = r(z*) and Jacobian Ji, = J(z*)
2. compute step d* = argmin, ||Jxd + 1%, ie, d* = —Jp\rx
3. choose stepsize a® € (0, 1] via linesearch on f(z)
4. update ! = z* + oFdF

5.stop if ||r(zF1)|| < € or ||V f(zF)] = ||J,§Frk|| < €
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