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Scaled descent
conditioning

scaled gradient direction

Gauss Newton
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Zig-zagging
Consider the quadratic function with H  symmetric and positive definite

f(x) =
1
2
x⊺Hx, H = UΛU ⊺

eigenvectors of H  are principal axes

eigenvalues are the lengths of the “unit ellipse” axes

level sets are ellipsoids: gradient descent from two starting points:
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Gradient descent zig-zags
Let x1,x2,… be the iterates generated by gradient descent with exact linesearch. Then

(xk+1 − xk)T (xk+2 − xk+1) = 0

Proof: exact steplength satisfies

αk = argmin
α>0

ϕ(α) := f(xk + αdk), dk = −∇f(xk)

optimality of step α = αk

0 = ϕ′(αk) =
d

dα
f(xk + αkdk

=xk+1

) = (dk)T∇f(xk+1) = −∇f(xk)T∇f(xk+1)

because xk+1 − xk = αkdk and xk+2 − xk+1 = αk+1dk+1

∇f(xk)T∇f(xk+1) = 0 ⟺ (xk+1 − xk)T (xk+2 − xk+1) = 0
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Condition number
The condition number of an n× n positive definite matrix H  is

κ(H) =
λmax(H)
λmin(H)

≥ 1

ill-conditioned if κ(H) ≫ 1

condition number of Hessian influences speed of convergence of gradient descent

κ(H) = 1: gradient descent converges in one step

κ(H) ≫ 1: gradient descent zig-zags

if f  is twice continuously differentiable, define the condition number of f  at solution x∗ as

κ(f) = κ(∇2f(x∗))
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Scaled gradient method
min
x

f(x) f : Rn → R

make a linear change of variables: x = Sy where S is nonsingular to get rescaled problem

min
y

 g(y) := f(Sy)

apply gradient descent to scaled problem

yk+1 = yk − αk∇g(yk) with ∇g(y) = S⊺∇f(Sy)

multiply on le� by S to get x-update

xk+1 = Syk+1 = S(yk − αk∇g(yk)) = xk − αkSST∇f(xk)

scaled gradient method

xk+1 = xk + αkdk, dk = −SST

≻0

∇f(xk)
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Scaled descent
If ∇f(x) ≠ 0, the scaled negative gradient d = −SST∇f(x) is a descent direction

f ′(x; d) = dT∇f(x) = −∇f(x)T (SST )∇f(x) < 0

because D := SST ≻ 0

Recall: a matrix D is positive definite if and only if

D = UΛU ⊺ with Λ ≻ 0 diagonal and U  nonsingular

D = SS⊺ with S nonsingular

scaled gradient method

for k = 0, 1, 2,…

choose scaling matrix Dk ≻ 0

compute dk = −D∇f(xk)

choose stepsize αk > 0 via linesearch on ϕ(α) = f(xk + αdk)

update xk+1 = xk + αkdk
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Choosing the scaling matrix
Observe relationship between optimizing f  and optimizing its scaling g

min
y

g(y) = f(Sy) with x ≡ Sy

condition number of ∇2f(x) governs convergence of gradient descent

∇2g(y) = S⊺∇2f(Sy)S

choose S such that ∇2g is well-conditioned, ie, κ(∇2g) ≈ 1

Example (quadratic)

f(x) = 1
2 x

THx+ b⊺x+ γ, ∇2f(x) = H = UΛU T ≻ 0

pick S such that STHS = I, ie, S = H−1/2 := UΛ−1/2U T

gives perfectly conditioned ∇2g

κ(STHS) = κ(H−1/2HH−1/2) = κ(I) = 1
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Level sets of scaled and unscaled problems
Close to solution x∗, levels sets of

∙ f  are ellipsoids and κ(f) > 1 ∙g are circles for ideal S because κ(g) ≈ 1
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Question
Consider the change of variables x = Sy to the quadratic function

f(x) =
1
2
xTHx,

to obtain the scaled function

g(y) = f(Sy).

Which choice of the nonsingular scaling matrix S will transform the level sets of g(y) into circles
(i.e., result in a perfectly conditioned Hessian for g)?

a. S = I  (the identity matrix)

b. S = H

c. S = H−1/2

d. S = diag(H) (the diagonal part of H)
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Common scalings
Make S (k)∇2f(x(k))S (k) as well conditioned as possible

S (k)(S (k))T =

⎧

⎪

⎨

⎪

⎩

(∇f(x(k)))−1 Newton (κ = 1)

(∇f(x(k)) + λI)−1 damped Newton

Diag(

∂ 2f(x(k))
∂x2

i

)

−1
diagonal scaling

12 / 19



Gauss Newton
Nonlinear Least Squares
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Nonlinear least squares
NLLS (nonlinear least-squares) problem

min
x∈Rn

f(x) := 1
2 ∥r(x)∥

2
2, r : Rn → Rm (typically, m > n).

gradient and residual vector (Jacobian J(x))

r(x) = , ∇f(x) = J(x)Tr(x), J(x) =

reduces to linear least-squares when r is affine

r(x) = Ax− b

⎡

⎢

⎣

r1(x)
r2(x)

⋮
rm(x)

⎤

⎥

⎦

⎡

⎢

⎣

∇r1(x)T

∇r2(x)T

⋮

∇rm(x)T

⎤

⎥

⎦
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Example – localication problem
estimate x ∈ R2 from approximate distances to known fixed beacons

data

m beacons at known locations b1,… , bm
approximate distances

di = ∥x− bi∥2 + ϵi

where ϵi is measurement error

NLLS position estimate solves

min
x

1
2

m

∑

i=1

ri(x), ri(x) = ∥x− bi∥2 − di

must settle for locally optimal solution 15 / 18



Linearization of residual
linearize r(x) about x̄

pure Gauss Newton iteration: use linearized least-squares problem used to determine x(k+1)

x(k+1) = argmin
x

  12 ∥J(x
k)x− b(xk)∥22 or x(k+1) = J(xk)∖b(xk)

r(x) = = + o(∥x− x̄∥)

= J(x̄)(x− x̄) + r(x̄) + o(∥x− x̄∥)

= J(x̄)x− (J(x̄)x̄− r(x̄))

=:b(x̄)

+ o(∥x− x̄∥)

⎡

⎢

⎣

r1(x)
r2(x)

⋮
rm(x)

⎤

⎥

⎦

⎡

⎢

⎣

r1(x̄) + ∇r1(x̄)T (x− x̄)

r2(x̄) + ∇r2(x̄)T (x− x̄)

⋮

rm(x̄) + ∇rm(x̄)T (x− x̄)

⎤

⎥

⎦
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Gauss Newton as scaled descent
expand the least squares subproblem (set Jk := J(xk) and bk := b(xk)). If Jk full rank,

interpret at scaled gradient descent

xk+1 = xk + dk, dk := (J T
k Jk)

−1

=Dk≻0

(−J T
k rk)

=−∇f(xk)

Hessian of objective f(x) = 1
2 ∥r(x)∥

2

∇2f(x) = J(x)TJ(x) +
m

∑

i=1

∇2ri(x)

x(k+1) = argmin
x

 ∥Jkx− bk∥2

= (J T
k Jk)

−1J
⊺
k bk

= (J T
k Jk)

−1J T
k (Jkx

k − rk)

= xk − (J T
k Jk)

−1J T
k rk
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Gauss Newton for NLLS
min
x

 f(x) = 1
2 ∥r(x)∥

2
2, r : Rn → Rm

linesearch on nonlinear objective f(x) = 1
2 ∥r(x)∥

2 required to ensure convergence

xk+1 = xk + αkdk, dk = argmin
d

 ∥Jkd− rk∥2

Gauss Newton for NLLS

given starting point x0 and stopping tolerance ϵ > 0

for k = 0, 1, 2,…

1. compute residual rk = r(xk) and Jacobian Jk = J(xk)

2. compute step dk = argmind  ∥Jkd+ rk∥2, ie, dk = −Jk∖rk
3. choose stepsize αk ∈ (0, 1] via linesearch on f(x)

4. update xk+1 = xk + αkdk

5. stop if ∥r(xk+1)∥ < ϵ   or   ∥∇f(xk)∥ = ∥J T
k rk∥ < ϵ
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