Second-Order Optimality

CPSC 406 – Computational Optimization

Hessians and second-order optimality

- sufficient optimality conditions in ${\mathbb R}$
- positive definite matrices
- Hessians
- quadratic functions
- sufficient optimality conditions in \mathbb{R}^n

Necessary conditions (1-D)

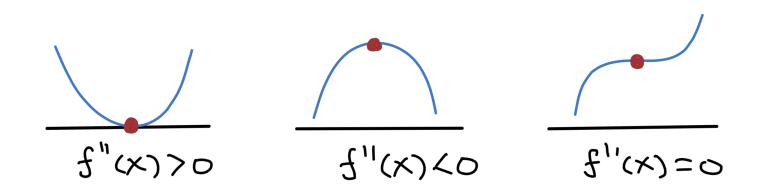
Suppose that $f:\mathbb{R}
ightarrow\mathbb{R}$ is twice continuosly differentiable

necessary optimality conditions

- x^* is a local minimizer **only if**
- (first-order) $f'(x^*)=0$
- (second-order) $f''(x^*) \geq 0$

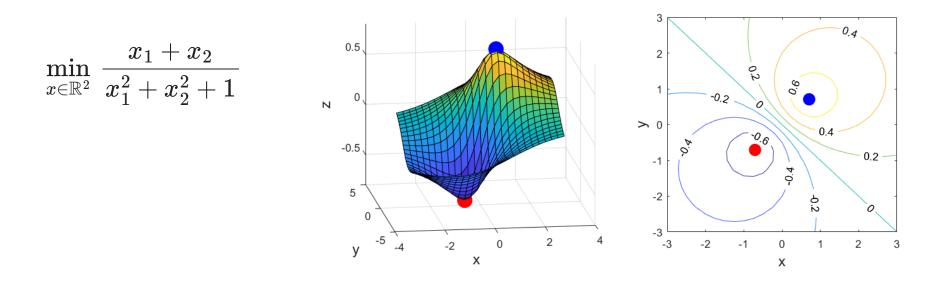
sufficient optimality conditions

- x^* is a local minimizer if
- (first-order) $f'(x^*)=0$
- (second-order) $f^{\prime\prime}(x^*)>0$



• generalize second-order conditions to \mathbb{R}^n

Example



```
1 using ForwardDiff
2 f(x) = (x[1]+x[2])/(x[1]^2+x[2]^2+1)
3 \nabla f(x) = ForwardDiff.gradient(f, x)
4
5 x = [1, 1]/sqrt(2);
6 @show \nabla f(+x)
7 @show \nabla f(-x);
```

∇f(+x) = [1.1102230246251565e-16, 1.1102230246251565e-16] ∇f(-x) = [1.1102230246251565e-16, 1.1102230246251565e-16]

• Both x and -x are stationary. Which is minimial/maximal?

positive definite matrices

Positive (semi)definite matrices

Let H by n-by-n matrix with $H=H^{\,\mathrm{T}}$ (symmetric)

• H is positive semidefinite $(H \succeq 0)$ if

 $x^\intercal H x \geq 0 \quad ext{for all} \quad x \in \mathbb{R}^n$

• H is positive definite $(H \succ 0)$ if

 $x^{\intercal}Hx>0 \quad ext{for all} \quad 0
eq x\in \mathbb{R}^n$

- H is **negative semidefinite** if -H is positive semidefinite, ie, $H \preceq 0 \iff -H \succeq 0$
- H is negative definite if -H is positive definite, ie, $H\prec 0 \Longleftrightarrow -H \succ 0$

• *H* is **indefinite** if it is neither positive nor negative semidefinite, ie,

 $\exists \ x
eq y \in \mathbb{R}^n \quad ext{such that} \quad x^\intercal H x > 0 \quad ext{and} \quad y^\intercal H y < 0$

Question

The matrix
$$H = egin{bmatrix} 2 & -1 \ -1 & 1 \end{bmatrix}$$
 is

a. positive definite

b. positive semidefinite

c. negative definite

d. negative semidefinite

e. indefinite

Diagonal matrices

$$D = egin{bmatrix} d_1 & 0 & \cdots & 0 \ 0 & d_2 & \cdots & 0 \ dots & dots & \ddots & dots \ dots & dots & \ddots & dots \ 0 & 0 & \cdots & d_n \end{bmatrix} = \mathbf{Diag}(d_1, d_2, \dots, d_n)$$

•
$$D \succ 0 \quad \Longleftrightarrow \quad d_i > 0$$
 for all i

•
$$D \succeq 0 \quad \Longleftrightarrow \quad d_i \geq 0$$
 for all i

Eigenpairs of symmetric matrices

Let H be a n-by-n matrix. Then $(x,\lambda)\in\mathbb{R}^n imes\mathbb{R}$ is an **eigenvector/eigenvalue** pair of H if

 $Hx = \lambda x$

Theorem 1 (Eigenvalues of symmetric matrices) If H is n-by-n and symmetric, then there exists n orthogonal eigenvectors and all eigenvalues are real.

$$egin{cases} Hx_1 = \lambda_1 x_1 \ Hx_2 = \lambda_2 x_2 \ dots \ Hx_n = \lambda_n x_n \end{pmatrix} \quad ext{or} \quad HX = X\Lambda$$

where $X^\intercal = X^{-1}$ (orthogonal) and Λ is a diagonal matrix of eigenvalues:

$$X = [x_1 \quad x_2 \quad \cdots \quad x_n] \quad ext{and} \quad \Lambda = egin{bmatrix} \lambda_1 & 0 & \cdots & 0 \ 0 & \lambda_2 & \cdots & 0 \ dots & dots$$

Eigenvalues and definiteness

The matrix *H* is positive (semi) definite if and only if all of its eigenvalues are (nonnegative) positive.

proof (positive definite)

• by spectral theorem,

$$X^{\intercal}HX = \Lambda$$
 where $X^{\intercal} = X^{-1}$ and $\Lambda = \mathbf{Diag}(\lambda_1, \lambda_2, \dots, \lambda_n)$

• for any
$$x \in \mathbb{R}^n$$
 there exists $y = (y_1, \dots, y_n)$ such that $x = Xy$ and

$$x^\intercal H x = y^\intercal X^\intercal H X y = y^\intercal \Lambda y = \sum_{i=1}^n \lambda_i y_i^2$$

- thus, $x^\intercal H x > 0$ for all x
eq 0 (ie, H positive definite) if and only if

$$\sum_{i=1}^n \lambda_i y_i^2 > 0 \quad ext{for all} \quad y
eq 0 \quad \Longleftrightarrow \quad \lambda_i > 0 \quad ext{for all} \quad i=1:n$$

Example

1 using LinearAlgebra

$$H = egin{bmatrix} 4 & 1 \ 1 & 3 \end{bmatrix}$$

1 H = [4 1; 1 3] 2 @show eigvals(H);

eigvals(H) = [2.381966011250105, 4.618033988749895]

$$H = egin{bmatrix} 1 & 1 & 1 \ 1 & 1 & 1 \ 1 & 1 & 1/10 \end{bmatrix}$$

1 H = ones(3,3)

- 2 H[3, 3] = 1/10
- 3 @show eigvals(H);

eigvals(H) = [-0.6536725037400826, -2.3721342664653315e-17, 2.7536725037400815]

Equivalent conditions

Let H be a n-by-n symmetric matrix.

positive definite equivalences:

- 1. all eigenvalues of ${\cal H}$ are positive
- 2. $x^\intercal H x > 0$ for all $0
 eq x \in \mathbb{R}^n$
- 3. $H = R^{\intercal}R$ for some nonsingular n-by-n matrix R
- 4. H is symmetric and all of its leading principal minors are positive

positive semidefinite equivalences:

- 1. all eigenvalues of ${\cal H}$ are nonnegative
- 2. $x^\intercal H x \geq 0$ for all $x \in \mathbb{R}^n$
- 3. $H = R^{\mathsf{T}} R$ for some n-by-n matrix R
- 4. ${\cal H}$ is symmetric and all of its principal minors are nonnegative

Hessians

For $f: \mathbb{R}^n \to \mathbb{R}$ twice continuously differentiable, the **Hessian** of f at $x \in \mathbb{R}^n$ is the n-by-n symmetric matrix

$$H(x) = egin{bmatrix} rac{\partial^2 f}{\partial x_1^2}(x) & rac{\partial^2 f}{\partial x_1 \partial x_2}(x) & \cdots & rac{\partial^2 f}{\partial x_1 \partial x_n}(x) \ rac{\partial^2 f}{\partial x_2 \partial x_1}(x) & rac{\partial^2 f}{\partial x_2^2}(x) & \cdots & rac{\partial^2 f}{\partial x_2 \partial x_n}(x) \ dots & d$$

example

$$f(x)=x_1^2+8x_1x_2-2x_3^3, \hspace{1em}
abla f(x)=egin{bmatrix} 2x_1+8x_2\ 8x_1\ -6x_3^2 \end{bmatrix}, \hspace{1em} H(x)=egin{bmatrix} 2&8&0\ 8&0&0\ 0&0&-12x_3 \end{bmatrix}$$

Quadratic Functions

Quadratic functions

Quadratic functions over \mathbb{R}^n have the form

$$f(x) = rac{1}{2}x^{\intercal}Hx + b^{\intercal}x + \gamma$$

where H is symmetric and $b \in \mathbb{R}^n$ and $\gamma \in \mathbb{R}$.

• n = 1

$$f(x) = rac{1}{2}hx^2 + bx + \gamma, \quad H = [h]$$

• n=2

$$egin{aligned} f(x) &= rac{1}{2} [\,x_1\,x_2\,] egin{bmatrix} h_{11} & h_{12} \ h_{21} & h_{22} \end{bmatrix} egin{bmatrix} x_1 \ x_2 \end{bmatrix} + [\,b_1\,b_2\,] egin{bmatrix} x_1 \ x_2 \end{bmatrix} + \gamma \ &= rac{1}{2} h_{11} x_1^2 + h_{12} x_1 x_2 + rac{1}{2} h_{22} x_2^2 + b_1 x_1 + b_2 x_2 + \gamma \end{aligned}$$

Quadratic functions and symmetry

$$f(x) = rac{1}{2}x^\intercal H x + b^\intercal x + \gamma, \quad
abla f(x) = H x + b, \quad
abla^2 f(x) = H x + b,$$

We can always assume without loss of generality that

 $H = H^{\intercal}$ (symmetric)

Suppose that $H \neq H^{\intercal}$:

$$x^\intercal H x = \tfrac{1}{2} x^\intercal H x + \tfrac{1}{2} x^\intercal H^\intercal x = x^\intercal \left[\tfrac{1}{2} (H + H^\intercal) \right] x$$

Thus we can replace H with $\frac{1}{2}(H + H^{\intercal})$ and not change the function value

Optimality for quadratic functions

$$\min_{x\in \mathbb{R}^n} f(x) = rac{1}{2} x^\intercal H x + b^\intercal x + \gamma$$

$$abla f(x) = Hx + b, \quad
abla^2 f(x) = H$$

optimality conditions

- (necessary) x^* is optimal **only if** $abla f(x^*) = Hx^* + b = 0$ (stationary)
- (sufficient) if stationary and $H \succeq 0$, then x^* is a global minimizer
- (sufficient) if stationary and $H \succ 0$, then x^* is the unique global minimizer

proof

for all d
eq 0,

$$f(x^*+d)-f(x^*)=d^\intercal \underbrace{
abla f(x^*)}_{=0}+rac{1}{2} \underbrace{d^\intercal \overbrace{
abla^2 f(x^*)}^{=H}}_{\geq 0} egin{array}{c} \geq 0 & ext{if } H \succeq 0 \ > 0 & ext{if } H \succ 0 \ e^\intercal \end{pmatrix}$$

Nonlinear functions

Directional second derivatives

Given $f: \mathbb{R}^n
ightarrow \mathbb{R}$, recall the directional derivative

$$f'(x;d) = \lim_{lpha
ightarrow 0^+} rac{f(x+lpha d) - f(x)}{lpha} = d^\intercal
abla f(x)$$

Definition 1 The **directional second derivative** of f at x in the direction d is

$$f''(x;d) = \lim_{lpha o 0^+} rac{f'(x+lpha d;d) - f'(x;d)}{lpha} = d^\intercal
abla^2 f(x) d$$

partial 2nd derivatives are the directional 2nd derivatives along each canonical basis vector e_i :

$$rac{\partial^2 f}{\partial x_i^2}(x) = f''(x;e_i) \quad ext{with} \quad e_i(j) = egin{cases} 1 & ext{if } j=i \ 0 & ext{if } j
eq i \end{cases}$$

Linear and quadratic approximations

Suppose $f: \mathbb{R}^n
ightarrow \mathbb{R}$ is twice continuously differentiable.

Theorem 2 (Linear approximation) For all $x\in\mathbb{R}^n$ and $\epsilon>0$, for each $y\in\epsilon\mathbf{B}(x)$ there exists $z\in[x,y]$ such that

$$f(y) = f(x) +
abla f(x)^\intercal (y-x) + rac{1}{2}(y-x)^\intercal
abla^2 f(z)(y-x)$$

Theorem 3 (Quadratic approximation) For all x and d in \mathbb{R}^n ,

$$f(x+d) = f(x) +
abla f(x)^{\intercal} d + rac{1}{2} d^{\intercal}
abla^2 f(x) d + o(\|d\|^2)$$

Second-order necessary conditions

For $f:\mathbb{R}^n o\mathbb{R}$ twice continuously differentiable and $ar{x}\in\mathbb{R}^n$ stationary (ie, $abla f(ar{x})=0$)

- $ar{x}$ is a local min $\implies
 abla^2 f(ar{x}) \succeq 0$
- $ar{x}$ is a local max $\implies
 abla^2 f(ar{x}) \preceq 0$

proof sketch for local min (analogous for local max). If $ar{x}$ is a local min, then for all d
eq 0

$$0 \leq f(ar{x}+lpha d) - f(ar{x}) = d^\intercal \underbrace{
abla f(ar{x})}_{=0} + rac{1}{2}lpha^2 d^\intercal
abla^2 f(ar{x}) d + o(lpha^2 \|d\|^2)$$

Divide both sides by $lpha^2$ and take the limit as $lpha o 0^+$. Because $o(lpha^2 \|d\|^2)/lpha^2 o 0$,

 $0 \leq d^\intercal
abla^2 f(ar x) d$

Because this hold for all d
eq 0,

 $abla^2 f(ar x) \succeq 0$

Sufficient conditions for optimality

For $f: \mathbb{R}^n o \mathbb{R}$ twice continuously differentiable and $\bar{x} \in \mathbb{R}^n$ stationary,

- $abla f(ar{x}) = 0$
- $abla^2 f(ar x) \succ 0 \implies ar x$ is a local min
- $abla^2 f(ar x) \prec 0 \implies ar x$ is a local max

proof sketch for local min (analogous for local max). By linear approximation theorem and continuity of $\nabla^2 f$, for any x close enough to \bar{x} there exists $z \in [\bar{x}, x]$ such that

$$f(x)-f(ar{x})=(x-ar{x})^\intercal \underbrace{
abla f(ar{x})}_{=0}+rac{1}{2}(x-ar{x})^\intercal \underbrace{
abla^2 f(z)}_{\succ 0}(x-ar{x})>0$$

Question

$$f(x)=x_1^2+8x_1x_2-2x_3^3, \hspace{1em}
abla f(x)=egin{bmatrix} 2x_1+8x_2\ 8x_1\ -6x_2^2 \end{bmatrix}, \hspace{1em} H(x)=egin{bmatrix} 2&8&0\ 8&0&0\ 0&0&-12x_3 \end{bmatrix}$$

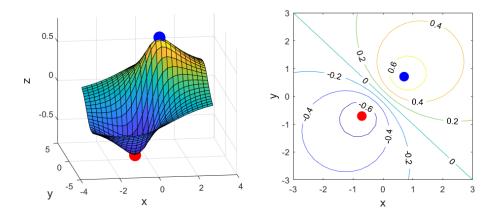
The stationary point $x^{st}=(0,0,0)$ is a

a. minimizer

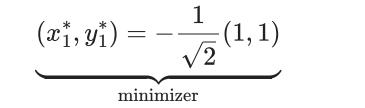
b. maximizer

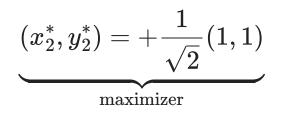
c. saddle point

$$egin{aligned} \min_{x,y} \; f(x,y) &= rac{x+y}{x^2+y^2+1} \
onumber \nabla f(x,y) &= rac{1}{(x^2+y^2+1)^2} iggl[egin{matrix} y^2 - 2xy - x^2 + 1 \ x^2 - 2xy - y^2 + 1 \end{bmatrix} \end{aligned}$$



Stationary points $abla f(x^*,y^*)=0$:





Hessian of f at these points:

$$abla^2 f(x_1^*,y_1^*) = rac{1}{\sqrt{2}} egin{bmatrix} 1 & 0 \ 0 & 1 \end{bmatrix} \succ 0$$

$$abla^2 f(x^*)2, y_2^*) = rac{1}{\sqrt{2}}egin{bmatrix} -1 & 0 \ 0 & -1 \end{bmatrix} \prec 0$$