
Second-Order
Optimality

CPSC 406 – Computational Optimization

1 / 24



Hessians and second-order optimality
sufficient optimality conditions in R
positive definite matrices

Hessians

quadratic functions

sufficient optimality conditions in Rn
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Necessary conditions (1-D)
Suppose that f : R→ R is twice continuosly differentiable

necessary optimality conditions

x∗ is a local minimizer only if

(first-order) f ′(x∗) = 0

(second-order) f ′′(x∗) ≥ 0

sufficient optimality conditions

x∗ is a local minimizer if

(first-order) f ′(x∗) = 0

(second-order) f ′′(x∗) > 0

generalize second-order conditions to Rn
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Example

min
x∈R2

x1 + x2

x2
1 + x2

2 + 1

Both x and −x are stationary. Which is minimial/maximal?

using ForwardDiff1
f(x) = (x[1]+x[2])/(x[1]^2+x[2]^2+1)2
∇f(x) = ForwardDiff.gradient(f, x)3

4
x =  [1, 1]/sqrt(2);5
@show ∇f(+x)6
@show ∇f(-x);7

∇f(+x) = [1.1102230246251565e-16, 1.1102230246251565e-16]
∇f(-x) = [1.1102230246251565e-16, 1.1102230246251565e-16]
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positive
   definite
      matrices
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Positive (semi)definite matrices
Let H  by n-by-n matrix with H = H ⊺ (symmetric)

H  is positive semidefinite (H ⪰ 0) if

x⊺Hx ≥ 0 for all x ∈ Rn

H  is positive definite (H ≻ 0) if

x⊺Hx > 0 for all 0 ≠ x ∈ Rn

H  is negative semidefinite if −H  is positive semidefinite, ie, H ⪯ 0 ⟺ −H ⪰ 0

H  is negative definite if −H  is positive definite, ie, H ≺ 0 ⟺ −H ≻ 0

 

H  is indefinite if it is neither positive nor negative semidefinite, ie,

∃ x ≠ y ∈ Rn such that x⊺Hx > 0 and y⊺Hy < 0
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Question
The matrix H = [ ] is

a. positive definite

b. positive semidefinite

c. negative definite

d. negative semidefinite

e. indefinite

2 −1
−1 1
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Diagonal matrices

D = = Diag(d1, d2,… , dn)

D ≻ 0 ⟺ di > 0 for all i

D ⪰ 0 ⟺ di ≥ 0 for all i

⎡

⎢

⎣

d1 0 ⋯ 0
0 d2 ⋯ 0

⋮ ⋮ ⋱ ⋮
0 0 ⋯ dn

⎤

⎥

⎦
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Eigenpairs of symmetric matrices
Let H  be a n-by-n matrix. Then (x,λ) ∈ Rn × R is an eigenvector/eigenvalue pair of H  if

Hx = λx

Theorem 1 (Eigenvalues of symmetric matrices) If H  is n-by-n and symmetric, then there exists
n orthogonal eigenvectors and all eigenvalues are real.

or HX = XΛ 

where X⊺ = X−1 (orthogonal) and Λ is a diagonal matrix of eigenvalues:

X = [ ] and Λ =

⎧

⎪

⎨

⎪

⎩

Hx1 = λ1x1

Hx2 = λ2x2

⋮
Hxn = λnxn

⎫

⎪

⎬

⎪

⎭

x1 x2 ⋯ xn

⎡

⎢

⎣

λ1 0 ⋯ 0
0 λ2 ⋯ 0

⋮ ⋮ ⋱ ⋮
0 0 ⋯ λn

⎤

⎥
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Eigenvalues and definiteness
The matrix H  is positive (semi) definite if and only if all of its eigenvalues are (nonnegative) positive.

proof (positive definite)

by spectral theorem,

X⊺HX = Λ where X⊺ = X−1 and Λ = Diag(λ1,λ2,… ,λn)

for any x ∈ Rn there exists y = (y1,… , yn) such that x = Xy and

x⊺Hx = y⊺X⊺HXy = y⊺Λy =
n

∑

i=1

λiy
2
i

thus, x⊺Hx > 0 for all x ≠ 0 (ie, H  positive definite) if and only if

n

∑

i=1

λiy
2
i > 0 for all y ≠ 0 ⟺ λi > 0 for all i = 1 : n
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Example

H = [ ]

H =

using LinearAlgebra1

4 1
1 3

H = [4 1; 1 3]1
@show eigvals(H);2

eigvals(H) = [2.381966011250105, 4.618033988749895]

⎡

⎢

⎣

1 1 1
1 1 1
1 1 1/10

⎤

⎥

⎦

H = ones(3,3)1
H[3, 3] = 1/102
@show eigvals(H);3

eigvals(H) = [-0.6536725037400826, -2.3721342664653315e-17, 2.7536725037400815]
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Equivalent conditions
Let H  be a n-by-n symmetric matrix.

positive definite equivalences:

1. all eigenvalues of H  are positive

2. x⊺Hx > 0 for all 0 ≠ x ∈ Rn

3. H = R⊺R for some nonsingular n-by-n matrix R

4. H  is symmetric and all of its leading principal minors are positive

positive semidefinite equivalences:

1. all eigenvalues of H  are nonnegative

2. x⊺Hx ≥ 0 for all x ∈ Rn

3. H = R⊺R for some n-by-n matrix R

4. H  is symmetric and all of its principal minors are nonnegative
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Hessians
For f : Rn → R twice continuously differentiable, the Hessian of f  at x ∈ Rn is the n-by-n
symmetric matrix

H(x) =
∂ 2f

∂xi∂xj

=
∂ 2f

∂xj∂xi

example

f(x) = x2
1 + 8x1x2 − 2x3

3, ∇f(x) = , H(x) =

⎡

⎢
⎣

∂ 2f

∂x2
1
(x) ∂ 2f

∂x1∂x2
(x) ⋯ ∂ 2f

∂x1∂xn
(x)

∂ 2f
∂x2∂x1

(x) ∂ 2f

∂x2
2
(x) ⋯ ∂ 2f

∂x2∂xn
(x)

⋮ ⋮ ⋱ ⋮
∂ 2f

∂xn∂x1
(x) ∂ 2f

∂xn∂x2
(x) ⋯ ∂ 2f

∂x2
n
(x)

⎤

⎥
⎦

⎡

⎢

⎣

2x1 + 8x2

8x1

−6x2
3

⎤

⎥

⎦

⎡

⎢

⎣

2 8 0
8 0 0
0 0 −12x3

⎤

⎥

⎦
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Quadratic Functions
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Quadratic functions
Quadratic functions over Rn have the form

f(x) = 1
2 x⊺Hx + b⊺x + γ

where H  is symmetric and b ∈ Rn and γ ∈ R.

n = 1

f(x) = 1
2 hx2 + bx + γ, H = [h]

n = 2

f(x) = 1
2 [x1 x2 ] [ ] [ ] + [ b1 b2 ] [ ] + γ

= 1
2 h11x2

1 + h12x1x2 + 1
2 h22x2

2 + b1x1 + b2x2 + γ

h11 h12

h21 h22

x1

x2

x1

x2

15 / 24



Quadratic functions and symmetry
f(x) = 1

2 x
⊺Hx+ b⊺x+ γ, ∇f(x) = Hx+ b, ∇2f(x) = H

We can always assume without loss of generality that

H = H ⊺ (symmetric)

Suppose that H ≠ H ⊺:

x⊺Hx = 1
2 x

⊺Hx+ 1
2 x

⊺H ⊺x = x⊺ [

1
2 (H +H ⊺)]x

Thus we can replace H  with 12 (H +H ⊺) and not change the function value
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Optimality for quadratic functions
min
x∈Rn

f(x) = 1
2 x

⊺Hx+ b⊺x+ γ

∇f(x) = Hx+ b, ∇2f(x) = H

optimality conditions

(necessary) x∗ is optimal only if ∇f(x∗) = Hx∗ + b = 0 (stationary)

(sufficient) if stationary and H ⪰ 0, then x∗ is a global minimizer

(sufficient) if stationary and H ≻ 0, then x∗ is the unique global minimizer

proof

for all d ≠ 0,

f(x∗ + d) − f(x∗) = d⊺∇f(x∗)

=0

+ 1
2 d

⊺
=H

∇2f(x∗)d

≥0

{







≥ 0 if H ⪰ 0
> 0 if H ≻ 0

17 / 24



Nonlinear functions
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Directional second derivatives
Given f : Rn → R, recall the directional derivative

f ′(x; d) = lim
α→0+

f(x+ αd) − f(x)
α

= d⊺∇f(x)

Definition 1 The directional second derivative of f  at x in the direction d is

f ′′(x; d) = lim
α→0+

f ′(x+ αd; d) − f ′(x; d)
α

= d⊺∇2f(x)d

partial 2nd derivatives are the directional 2nd derivatives along each canonical basis vector ei:

∂ 2f

∂x2
i

(x) = f ′′(x; ei) with ei(j) = {

1 if j = i

0 if j ≠ i

19 / 24



Linear and quadratic approximations
Suppose f : Rn → R is twice continuously differentiable.

Theorem 2 (Linear approximation) For all x ∈ Rn and ϵ > 0, for each y ∈ ϵB(x) there exists
z ∈ [x, y] such that

f(y) = f(x) + ∇f(x)⊺(y− x) + 1
2 (y− x)⊺∇2f(z)(y− x)

Theorem 3 (Quadratic approximation) For all x and d in Rn,

f(x+ d) = f(x) + ∇f(x)⊺d+ 1
2 d

⊺∇2f(x)d+ o(∥d∥2)
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Second-order necessary conditions
For f : Rn → R twice continuously differentiable and x̄ ∈ Rn stationary (ie, ∇f(x̄) = 0)

x̄ is a local min ⟹  ∇2f(x̄) ⪰ 0

x̄ is a local max ⟹  ∇2f(x̄) ⪯ 0

proof sketch for local min (analogous for local max). If x̄ is a local min, then for all d ≠ 0

Divide both sides by α2 and take the limit as α → 0+. Because ο(α2∥d∥2)/α2 → 0,

0 ≤ d⊺∇2f(x̄)d

Because this hold for all d ≠ 0,

∇2f(x̄) ⪰ 0

0 ≤ f(x̄+ αd) − f(x̄) = d⊺∇f(x̄)

=0

+ 1
2 α

2d⊺∇2f(x̄)d+ ο(α2∥d∥2)

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Sufficient conditions for optimality
For f : Rn → R twice continuously differentiable and x̄ ∈ Rn stationary,

∇f(x̄) = 0

∇2f(x̄) ≻ 0 ⟹  x̄ is a local min

∇2f(x̄) ≺ 0 ⟹  x̄ is a local max

proof sketch for local min (analogous for local max). By linear approximation theorem and
continuity of ∇2f, for any x close enough to x̄ there exists z ∈ [x̄,x] such that

f(x) − f(x̄) = (x− x̄)⊺∇f(x̄)

=0

+ 1
2 (x− x̄)⊺∇2f(z)

≻0

(x− x̄) > 0
 
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Question

f(x) = x2
1 + 8x1x2 − 2x3

3, ∇f(x) = , H(x) =

The stationary point x∗ = (0, 0, 0) is a

a. minimizer

b. maximizer

c. saddle point

⎡

⎢

⎣

2x1 + 8x2

8x1

−6x2
3

⎤

⎥

⎦

⎡

⎢

⎣

2 8 0
8 0 0
0 0 −12x3

⎤

⎥

⎦
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Example

min
x,y

 f(x, y) =
x+ y

x2 + y2 + 1

∇f(x, y) =
1

(x2 + y2 + 1)2
[ ]

Stationary points ∇f(x∗, y∗) = 0:

(x∗
1, y

∗
1) = −

1

√2
(1, 1)

minimizer

(x∗
2, y

∗
2) = +

1

√2
(1, 1)

maximizer

Hessian of f  at these points:

∇2f(x∗
1, y

∗
1) =

1

√2
[ ] ≻ 0 ∇2f(x∗)2, y∗2) =

1

√2
[ ] ≺ 0

y2 − 2xy− x2 + 1

x2 − 2xy− y2 + 1

 

1 0
0 1

−1 0
0 −1
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