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Necessary conditions (1-D)

Suppose that f : R — Ris twice continuosly differentiable

necessary optimality conditions sufficient optimality conditions

2™ is a local minimizer only if 2™ is a local minimizer if
e (first-order) f'(z*) =0 e (first-order) f'(z*) =0
e (second-order) f"(z*) > 0 e (second-order) f"(x*) > 0
" \
§ 0OYo £ (x<o 'z

e generalize second-order conditions to R"
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Example

i T+ o
min — 5
weR2:B1+—w2—F1

using ForwardDiff
f(x) = (x[11+x[2])/(x[1]7"2+x[2]"2+1)
Vf(x) = ForwardDiff.gradient(f, x)

x = [1, 11/sqrt(2);
@show VT (+x)
@show Vf(-x);

Vf(+x) = [1.1102230246251565e-16, 1.1102230246251565e-16]
Vf(-x) = [1.1102230246251565e-16, 1.1102230246251565e-16]

e Both x and —x are stationary. Which is minimial/maximal? 4 /24
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Positive (semi)definite matrices

Let H by n-by-n matrix with H = H T (symmetric)

e H is positive semidefinite (H > 0) if

zTHx >0 forall & R"

H is positive definite (H >~ 0) if

x"Hx >0 forall 0+#xecR"

H is negative semidefinite if —H is positive semidefinite,ie, H <0 <= —H > 0
H is negative definite if — H is positive definite,ie, H < 0 <— —H >~ 0

H is indefinite if it is neither positive nor negative semidefinite, ie,

dz#A#yeR" suchthat z"Hx >0 and y"Hy <0
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Question
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Diagonal matrices

dl 0 .« 0
0 d2 ce 0
D = . ) . ] :Diag(dl,dz,...,dn)
._O 0 co dn_

e D=0 <«—= d; >0forallz
e D>0 <«—= d; > 0forallz
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Eigenpairs of symmetric matrices

Let H be a n-by-n matrix. Then (z, A) € R™ x Ris an eigenvector/eigenvalue pair of H if

Hx

= \x

Theorem 1 (Eigenvalues of symmetric matrices) If H is n-by-n and symmetric, then there exists

n orthogonal eigenvectors and all eigenvalues are real.

where XT = X ~1 (orthogonal) and A is a diagonal matrix of eigenvalues:

X:[wl

(lez)\lwl\

szz)\zwz
\ , > or HX = XA
\Hx,, = Ay

‘A1 O

0 X
ry -+ xp] and A= |

0 0
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Eigenvalues and definiteness

The matrix H is positive (semi) definite if and only if all of its eigenvalues are (nonnegative) positive.

proof (positive definite)

e by spectral theorem,
XTHX =A where XT=X""' and A =Diag(A,\s,...,\,)

e foranyx € R" there existsy = (y1, - - -, Yn) such thatz = Xy and
n
rTHx =y"XTHXy =y Ay = Z Ay
i=1
e thus,zTHx > Oforallz # O (ie, H positive definite) if and only if

Z)\iy?>0 forall y#0 <= A; >0 forall ¢1=1:n
i=1
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Example

using LinearAlgebra

H=1[41; 1 3]
@show eigvals(H);

eigvals(H) = [2.381966011250105, 4.618033988749895]

11 1
H=|11 1
1 1 1/10

H = ones(3,3)
H[3, 3] = 1/10
@show eigvals(H);

eigvals(H) = [-0.6536725037400826, -2.3721342664653315e-17, 2.7536725037400815]
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Equivalent conditions

Let H be a n-by-n symmetric matrix.

positive definite equivalences:

1. all eigenvalues of H are positive
2.2THx > Oforall0 #£ x € R™
3. H = RT R for some nonsingular n-by-n matrix R

4. H is symmetric and all of its leading principal minors are positive

positive semidefinite equivalences:

1. all eigenvalues of H are nonnegative
2.2THx > Qforallz € R"
3. H = RT R for some n-by-n matrix R

4. H is symmetric and all of its principal minors are nonnegative
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Hessians

For f : R™ — R twice continuously differentiable, the Hessian of f at x € R" is the n-by-n

symmetric matrix

9
Oz

o2 f
851226331 (w)

8% f
| &vn&cl ( )

example

f(z) = 27 + 8z122 — 223,

- ﬁ(5’3) d

Vi(z) =

8:131

2

211 + 819 ]

82 f

82 f

35(37;3:13j B 833]8337,
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Quadratic Functions



Quadratic functions

Quadratic functions over R™ have the form
f(z) = 32"Hz + b7z +

where H is symmetricand b € R" and vy € R.

f(z) = 3ha® +bx+~, H =I[h]

F(@) = L1 2] [Z; Z] H + b1 bs] H y

T2 2
= shi1x; + k12122 + 5 haoxs + bzt + baza +
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Quadratic functions and symmetry

f(@)=32"Hz +b'z+v, Vf(z)=Hz+b, V’f(z)=H

We can always assume without loss of generality that

H=HT (symmetric)

Supposethat H == HT:

t"Hx = s2"Hz+ 2" H'e =27 L (H+ HT)|z

Thus we can replace H with 5 (H + HT) and not change the function value
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Optimality for quadratic functions

min f(z) = y2"Hz + bTz + v
zcR"

Vf(z)=Hz+b, V’f(z)=H
optimality conditions

e (necessary) x* is optimalonly if V f(z*) = Hz* 4+ b = 0 (stationary)
e (sufficient) if stationary and H > 0, then z* is a global minimizer

e (sufficient) if stationary and H > 0, then 2™ is the unique global minimizer

proof
foralld # 0,
—H
———x [>0 ifH>0
fla* +d) — f(z") dvf(a;)'+2£lvifi(w)gl{>0 if H>0

=0 >0
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Nonlinear functions



Directional second derivatives

Given f : R™ — R, recall the directional derivative

fond) — i JET D @

a—0* o

= dTV f(z)

Definition 1 The directional second derivative of f at x in the direction d is

f”(w' d) _ I f'(z + ad;d) — f'(z;d)

a—0T" (8

= dTV%f(z)d

partial 2nd derivatives are the directional 2nd derivatives along each canonical basis vector e;:

82 f

L 7] . . (A 1 ﬂ?j ::i
4 ®) = T'we) with e = {4

if j £
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Linear and quadratic approximations

Suppose f : R®™ — Ris twice continuously differentiable.

Theorem 2 (Linear approximation) For allz € R™ and e > 0, foreach y € eB(x) there exists
z € [z, y] such that

f(y) = f(z) + V(@) (y—z) + 5 (y — 2) TV f(2)(y — 2)

Theorem 3 (Quadratic approximation) For all x and d in R",

f(z +d) = f(z) + Vf(z)Td + 5d"V*f(z)d + o||d||*)

20 /24



Second-order necessary conditions

For f : R™ — R twice continuously differentiable and £ € R" stationary (ie, V f(Z) = 0)

e Zisalocalmin = VZ2f(z) =0
e Zisalocalmax =— VZ2f(z) <0

proof sketch for local min (analogous for local max). If Z is a local min, then foralld # 0

0 < f(Z +ad) — () =d'VF(Z) + $°d"V?f(z)d + o(a?||d|?)
\:6_/

Divide both sides by o and take the limit as o — 0. Because o(a?||d||?) /a? — 0,
0 <d"V*f(z)d

Because this hold for all d # 0,
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Sufficient conditions for optimality

For f : R™ — R twice continuously differentiable and £ € R" stationary,
« Vf(z)=0

e« V2f(z) =0 = Zisalocalmin

e« V°f(2) <0 = Zisalocal max

proof sketch for local min (analogous for local max). By linear approximation theorem and
continuity of V2 £, for any z close enough to Z there exists z € [Z, x] such that

f(z) = (@) = (. —2)"Vf(@) + 5 (x - 2) TV f(2)(z — T) > 0
T T
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Question
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Example

: Tr+y
min f(z,y) =
1 y? —2zy — 22 +1
Vi(z,y) =

(22 +y2+1)% |22 — 22y — y® + 1]

Stationary points V f(z*, y*) = 0:

(miayi) -

(.

(1,1)

1
V2§

minimizer

Hessian of f at these points:

1 [1 O
V) = |y ] -0

Vif(z")2,y3) =

04
w2y Se
o s __:?e\ o
7 \\ 4 | 3 o,
) 2 a0 1 ‘
(2,92) = +—2( 5
maximizer
1 -1 0
valo
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